机翼设计和复变函数
- 格式:ppt
- 大小:1.71 MB
- 文档页数:27
复变函数理论是数学的基本分支。
其研究对象是复变函数。
复函数理论源远流长,内容丰富,理论完善。
它广泛用于数学,力学和工程技术的许多分支。
复数源自找到代数方程的根。
复数的概念起源于方程式的根。
在二次和三次代数方程的根中,出现负数的平方根。
长期以来,人们无法理解这种数字。
但是,随着数学的发展,这种数字的重要性越来越明显。
复数的一般形式是+ bi,其中I是虚数单位。
复杂功能理论在18世纪应运而生。
1774年,欧拉(Euler)在他的论文中考虑了两个从复杂变量函数的积分中得出的方程。
甚至比他还早,法国数学家d'Alembert就在他的流体力学论文中获得了它们。
因此,后来人们提到了这两个方程,并将其称为“d'Alembert Euler 方程”。
在19世纪,当Cauchy和Riemann研究流体力学时,更详细地研究了上述两个方程。
因此,这两个方程也称为“Cauchy Riemann条件”。
复变函数理论的全面发展是在19世纪。
正如微积分的直接扩展主导了18世纪的数学一样,复杂函数的新分支主导了19世纪的数学。
当时的数学家们认识到,复函数理论是数学中最丰富的分支,在本世纪被称为数学的享受。
有人称赞它是抽象科学中最和谐的理论之一。
Euler和d'Alembert是最早创建复变函数理论的人。
法国的拉普拉斯(Laplace)随后也研究了复杂变量功能的集成。
他们是该学科的开拓者。
是Cauchy,Riemann和德国数学家willstrass为该学科的发展做出了许多基础性工作。
20世纪初,复变函数理论取得了长足的进步。
Willstrass,瑞典数学家莱弗勒,法国数学家Poincare,Adama等的学生做了很多研究工作,开辟了复变函数理论的广阔研究领域,并为该学科的发展做出了贡献。
复函数理论涉及广泛的应用,并解决了许多复杂的计算问题。
例如,物理学中有许多不同的稳定平面场。
所谓场是指具有与每个点相对应的物理量的区域,其计算通过复变函数来求解。
复变函数科普知识1.简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现 了负数开平方的情况。
在复变函数 复变函数很长时间里,人们对这类数不能理解。
但随着数学的发展,这类数的重要性就日益显现出来。
复数的一般形式是:a+bi,其中i是虚数单位。
2.历史复变函数 复变函数复变函数论产生于十八世纪。
1774年,欧拉在他 的一篇论文中考虑了由复变函数的积分导出的两个方程。
而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。
因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。
到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。
复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。
当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。
为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。
后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。
二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。
复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。
比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。
比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。
复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。
复变函数论文复变函数论文复变函数的精确之美学习复变的感想对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度。
因为所有的推导、证明以及应用,归根结底都是在基本概念的基础上衍生而来的。
因此只有将相关概念真正理解同时牢记于心,才可以真正地走进一门学科,真正的领略一门学科的美妙与精华所在。
在我的理解看来,复变函数从某种意义上来说可以看成是大一所学的高等数学的一种延伸与拓展。
在高等数学,也就是我们通常所说的微积分学中,我们所研究讨论的对象都是实函数,也就是函数的定义域与值域所代表的集合都是实数集合。
这样的研究将许多生活中遇到的数学问题用实变函数的微分与积分表达出来,让我们能够很快地了解一些微积分中的基本概念、知识以及应用技巧。
但是同时,实变函数的应用范围十分狭窄。
尤其是电气工程等方面的计算和问题中,实变函数几乎可以算是毫无用武之地。
因此为了能够更好地解决工程中遇到的问题,我们便对现有的实变函数进行了拓展延伸,创建了复变函数体系,并总结发现了一系列复变函数的定义、定理、方法以及技巧。
精确是所有理科研究学科,尤其是数学学科的一个重要特点,这一点在复变函数中也体现的尤为明显。
复变函数是将复数域之间的映射的特点和关系进行全面系统的总结和归纳。
其研究对象就是复数域之间映射的函数关系。
因此在复变函数的研究中基本都是代数运算,没有带数字之后为计算方便而出现约等的情况。
当然复变函数的精确美远远不止表现与这些方面。
为了解决问题的方便,复变函数的研究中总结归纳了许多的定理和方法。
但每一种的定理与方法都有其十分明确的适用范围和使用方法。
这是为了保证它们在被使用于求解相应问题时不出现错用、误用而最终导致结果有偏差甚至完全错误。
比如在我们在计算闭路积分时常运用的留数定理就有其很明确的适用范围。
此外,复变函数在许多相似概念的区分上也做到了精确二字。
如可导、连续以及解析之间的区别,在复变函数中就体现的尤为明显。
作为一门研究数的学科,复变函数对于结果的精确程度是有着相当高的要求的。
工程数学学习总结学院:学号:姓名:工程数学学习报告从柯西算起,复变函数论已有了150年的历史.它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。
它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中.。
物理学中的流体力学,稳定平面长,航空力学等学科的发展,而且在数学领域的许多分支也都应用了它的理论.复变函数论已经深入到微积分方程,数论等学科,对它们的发展很有影响。
比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献. 复变函数理论以其完美的理论与精湛的技巧成为数学的一个非常重要组成部分。
复变函数理论推动了许多学科的发展,在解决某些实际问题中也是强有力的工具,复变函数的理论和方法在数学,自然科学和工程技术中有着广泛的应用,是解决诸如流体力学,电磁学,热学,弹性理论中的平面问题的有力工具。
复变函数可以应用在地理信息系统中,因为GIS对复杂函数的计算要求以及空间函数的分析,复变函数的应用也渗透到了这个领域,它对复杂函数的计算能力使得在GIS上的应用也不可或缺。
GIS的操作对象是空间数据和属性数据,即点线,面,体这类有三维要素的地理实体。
空间数据的最根本特点是每一个数据都按统一的地理坐标进行编码,实现对其定位,定性和定量的描述,这是其技术难点之所在。
而复变函数中的黎曼曲面理论就是用来解决这种问题的。
复变函数研究多值函数,黎曼曲面理论是研究多值函数的主要工具。
由许多层面安放在一起而构成的一种曲面叫做黎曼曲面,利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。
对于某一个多值函数,如果能做出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。
复变函数的应用主要包括两个方面:一个方面是在物理学中的应用;另一方面是在数学领域中的应用。
1.物理学中复变函数在静电场中的应用复变函数在静电场问题中的应用:在电磁场的学习中,“静电场的标量位”中接触到了复变函数在静电场问题中的应用。
函数概念的历史发展函数概念是中学中最重要的概念之一,它既是数学研究的对象,又是解决数学问题的基本思想方法。
早在16、17世纪,生产和科学技术的发展要求数学不仅研究静止不动的量,而且要研究运动过程中各个量之间的依赖关系,从而促进数学由常量上学时期进入到变量数学时期。
函数也就成为研究变量数学必不可少的概念。
函数(function)一词,始用于1692年,见著于微积分创始人之一莱布尼兹G.W.Leibnic,1646—1717)的著作。
而f(x)则由欧拉(Euler)于1724年首次使用。
我国于1859年引进函数的概念,它首次是在清代数学家李善兰与英国传教士伟烈亚历山大合译的《代微积拾级》中出现。
函数在初高等数学中,在物理、化学和其他自然科学中,在经济领域和社会科学中,均有广泛的应用,起着基础的作用。
函数的概念随着数学的发展而发展,函数的定义在发展过程中不断地精确、完善、抽象,函数的概念也不断得到严谨化、精确化的表达。
牛顿在《自然哲学的数学原理》中提出的“生成量”就是函数概念的雏形。
最初,函数是表示代数上的幂(23,,,x x x…),1673年,莱布尼兹把任何一个随着曲线上的点变动的几何量,如切线、法线,以及点的横坐标都成为函数。
一、解析的函数概念在18世纪占主导地位的观点是,把函数理解为一个解析表达式.1698年,瑞士著名数学家约翰·贝努利定义:由变量x和常量用任何方式构成的量都可以称为x的函数.这里任何方式包括代数式子和超越式子.1748年,约翰的学生,杰出数学家欧拉在它著名的《无穷小分析引沦》中把函数定义为“由一个变量与一些常量通过任何方式形成的解析表达式”,这就把变量与常量以及由它们的加、减、乘、除、乘方、开方和三角、指数、对数等运算构成的式子,均称为函数.并且,欧拉还给出了函数的分类,把函数分为:代数函数与超越函数,有理函数与无理函数,整函数与分函数,单值函数与多值函数.当时把函数看作一个解析表达式的还有著名的法国数学家达朗贝尔和拉格朗日.但这种解析的函数概念有其局阳性,如某些变量之间的对应关系不能用解析式子表达出来,那么根据这个定义就不能称之为函数关系.例如著名的狄利克雷(D1richkt)函数1 D(x)=0x x⎧⎨⎩,为有理数,为无理数二、几何的函数概念因为解析表达式在几何上可表示为曲线,一些数学家把曲线称为函数.1746年,达朗贝尔在研究弦振动问题时,提出了用单独的解析表达式给出的曲线是函数.后来欧拉发现有些曲线不一定是由单个解析式给出的,他提出了一个新定义:函数是“xy 平面上随手画出来的曲线所表示的y与x间的关系”.即把函数定义为一条随意画出来的曲线.欧拉称之为任意函数,即包括了由单个解析表达式给出的连续函数,也包括由若干个解析式表示的不连续函数(“不连续”函数的名称是欧拉首次提出的).但是,欧拉的观点没有被达朗贝尔接受,并展开了激烈争论.1822年,法国数学家傅立叶提出了任意函数可展开为三角级数,这实际上是说,不管是连续函数或不能用解析表达式给出的函数(凡能用图形给出)都可以用三角级数表示.因此也说明了,仅从表达式是否“单一”,或函数是否连续来区别是不是函数,显然是不合理的. 傅立叶在论文《热的分析理论》中,证明了“由不连续的线给出的函数,能用一个三角函数式来表式”.他举例指出图7.2.1所示的不连续曲线,表达式有无穷多个,即,2(21)40,0,1,2,,(21)2(1)4k x k y x k k k x k πππππππ⎧<<+⎪⎪===±±⎨⎪⎪-+<<+⎩…但可以用单一的三角式表示为 sin sin sin 135x x x y =+++…这有力地揭示了,用函数表示式的“单一”与否来区别函数的真伪是不行的,不久人们进一步发现了同一曲线即可用同一个函数,也可用两个以上的函数表示的种种例子:三、科学定义的雏形1775年,欧拉在《微分学》一书中,给出了函数的另一定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后者变化时前者也随之变化,则称前面的变量为后面变量的函数.”值得指出的是这里的“依赖”,“随之变化”等的含意不十分确切.例如g =x^2,当x 取一3,十3时y 均等于9,y 没有变化.又如常量函数y =c ,不论x 如何变化y 总是一个不变的值.因此,该定义限制了函数的外延,只能算函数概念的科学雏型.19世纪最杰出的法国数学家柯西也给出了如下函数定义:“若当x 的每个值,都有完全确定的y 值与之对应,则称y 是f 的函数.”此定义澄清了函数概念与曲线、连续、解析式等纠缠不清的关系,也避免了数学意义欠严格的“变化”一词,但对函数概念的本质---对应思想强调不够.而且,当时柯西仍然考虑f 和y 的关系用若干个解析式表示的情况.其实,所谓用解析式表示这一点,对x 与y 的关系并无多大意义,因此该定义也只能算科学函数概念的维型.四、函数概念的精确化1837年,德国数学家黎曼和狄里克雷克服了前述定义的缺陷,给出函数概念的精确化表述:“若对x的每一个值,有完全确定的y值与之对应,不管建立起这种对应的方式如何,都称y是x的函数.”这个定义彻底地抛弃了前述一些定义中解析式等的束缚,特别强调和突出函数概念的本质——对应思想,使之具有更加丰富的内涵.因而,此定义可视为称得上科学的函数定义.按照此定义,1 D(x)=0x x⎧⎨⎩,为有理数,为无理数就是一个函数了.五、函数定义域限制的取消前述定义基本上达到了精确化的表达.但它对自变量x却存在着一些限制,只允许它在实数集或在实数区间上取值,而不能像f(x)的值那样,既允许取连续的,也允许取不连续的值.因此,为使函数概念的适用范围更加广泛,使保y=f(x)=1/x!(x为正整数)也可看作函数,就促使函数概念朝着取消函数定义域限制的方向发展.为此,人们又给出了如下函数概念:“函数y=f(x)的自变量x可以不必取区间[a,b]中的一切值,而可以仅取其中任一部分.”换句话说是x的取值范围可以是任一数集.这就解除了对自变量x的限制,使函数概念较前广泛得多了.但是,自变量及函数值仍然仅限于数的范围,随着数学的发展.函数概念仍需拓广.六、近代函数定义为了克服上述的局限性,必须重新认识“变量”、“变域”、“常量”等概念.美国数学家维布伦认为:变量是代表某集合中任意一个“元素”的记号.由变量所表示的任一元素,称为该变量的值.变量x所代表的“元素的集合”,称为该变量的变域,而常量是特殊的变量,它是上述集合中只包含一个“元素”情况下的变量.这突破丁“变量是数”的限制,变量可以是数,也可以是别的,如点、线、面、体、向量、矩阵、函数、算子等等,甚至可以泛指任何一种研究对象,这样“变量”、“变域”、“常量”的意义较前一般化了,在此基础上,维布伦给出了近代函数定义:若在变量y的集合与另一变量x的集合之间,有这样的关系成立,即对x的每一值,有完全确定的y与之对应,则称变量y是变量x的函数.建立在“集合对应”基础上的这一函数定义,使得函数概念能广泛地应用于数学的各个分支中,比如,数学分析,复变函数,实变函数,泛函分析中.下面来具体介绍一下。
浅析复变函数在工程中的应用作为一名学习电子信息的学生,我能感受到复变函数在学习中的大量运用,现在正在学习的《电磁场与电磁波》,《信号与系统》中时刻出现复变函数的简单应用。
经过查阅,我想从自己熟悉的角度谈一下复变函数在工程中的应用,主要分为两个方面,一个方面是电磁场中的复变函数方法,一个方面是积分变换及其在通信中的应用。
导入:在学习电磁场的过程中,我曾经接触过这样一道题目,题目如下:由于在给某些定边值的静电场问题中,在直角坐标系中无法找到简单形式的试探解。
通常采用叠加原理和傅里叶级数来构成一个满足边界条件的试探解,然后运用傅里叶级数的相关知识求出待定系数即可。
例如此题中是将Vs(x)= V0用傅里叶级数做了展开而An的求法便是应用复变函数中的傅里叶级数知识,看到这道题后你的第一思路可能是这种不能凑成势能相应形式的题目没有办法解,但是当你深入到复变函数中的傅里叶中的级数展开,你的思路便展开了,由于傅里叶级数可以展开成无数个频率不同,幅度不同的正弦余弦,而正弦余弦形式的解的形式我们是可以解答的,所以我们可以解出这道题,由求出的系数带入到原来的傅里叶级数∅,便可以求出最终解。
经过这道题目,我初步了解到了复变函数的初步作用,即它可以提供一种逼近思想,它可以将一个常数经过傅里叶级数展开变成一个由无数多个不同幅度,不同频率的正余弦函数的和,用信号与系统中的分析思想就是由实数域转换到了复频域。
复变函数在静电场问题中的应用:在电磁场的学习中,我们在“静电场的标量位”这一章中接触到了复变函数在静电场问题中的应用。
如果一个系统为场量和源量分布只与x和y有关的二维静电场系统。
因为在二维无源区域内,静电位满足二维拉普拉斯方程,即∇2∅(x,y)=∂2(x,y)∂x2 + ∂2(x,y)∂y2我们发现,此时的点位是一个调和函数,通过复变学习我们已经知道,解析函数的实部和虚部都是调和函数,而且是一对共轭的调和函数。
因此,我们可以使用复变函数这一数学工具来解决二维静电场问题。
数学专业“复变函数”课程的教学探讨————————————————————————————————作者:————————————————————————————————日期:数学专业“复变函数”课程的教学探讨-中学数学论文数学专业“复变函数”课程的教学探讨陶元红,南华,刘东旭(延边大学理学院数学系,吉林延吉133002)摘要:本文针对学生在学习了“数学分析”课程之后,对“复变函数”课程有可能存在的迫切、畏惧或忽视等问题,探讨了在“复变函数”课程教学中应该注意的三个环节,并探讨了第一次课的教学内容的有效选择和安排。
关键词:数学专业;复变函数;数学分析;教学探讨中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2015)23-0278-02基金项目:国家自然科学基金项目(11361065);吉林省自然科学基金项目(201215239)通讯作者:陶元红(1973-),女,博士,副教授。
“复变函数”课程是高等院校数学专业的一门重要的专业基础课,该课程体系完整、理论性强,对学生的理论知识要求比较高。
数学专业的许多后续课程,甚至研究生阶段开设的分析理论课程,都会涉及复变函数论的内容。
“复变函数”课程的内容是“数学分析”中实变函数微积分的推广和发展,所以在我国高等院校数学专业的课程设置中,通常会把“复变函数”这门课程当作“数学分析”课程的后续课程,将其安排在二年级下半学期或三年级,此时学生已经完整地学习过三个学期的“数学分析”课程,对一元函数和多元函数微积分的核心内容已经很熟悉。
多年来,笔者一直在延边大学数学系从事“复变函数”课程的教学工作,研读了不同的“复变函数”教材[1-4]和一些教学研讨文章[5],在教学中发现了一些学生在学习“复变函数”课程时的一些困惑和问题,也积累了一些教学经验。
本文针对学生在学习了“数学分析”课程之后,对“复变函数”课程有可能存在的迫切、畏惧或忽视等问题,探讨了“复变函数”课程教学中应该注意的教学环节以及对第一次课的教学内容的有效选择和安排。