多路复用技术
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
计算机网络 多路复用技术在计算机网络或数据通信系统中,传输介质的传输能力往往会超过传输单一信号的要求。
为了提高通信线路的利用率,实现在一条通信线路上同时发送多个信号,使得一条通信线路可以由多个数据终端设备同时使用而互不影响,这就是多路复用技术。
常见的多路复用技术主要由两大类:一种是将带宽较大的信道分割成为多个子信道,即频分多路复用技术;另一种是将多个带宽较窄的信道组合成一个频率较大的信道,即时分多路复用技术。
1.频分多路复用技术频分多路复用技术(Frequency Division Multiplexing ,FDM )是一种在信道上同时发送多个模拟信号的方法。
它将传输频带划分为若干个较窄的频带,每个频带构成一个子信道,每个子信道都有各自的载波信号,而且其载波信号的频率是唯一的。
一个具有一定带宽的通信线路可以划分为若干个频率范围,互相之间没有重叠,且在每个频率范围的中心频率之间保留一段距离。
这样,一条通信线路被划分成多个带宽较小的信道,每个信道能够为一对通信终端提供服务。
频分多路复用技术是在20世纪30年代由电话公司开发的,用来在一条电话线上传输多个语音信号。
它可以用于语音、视频或数据信号,但是最常见的应用是无线电广播传输和有线电视。
例如电话线的带宽达250kHz ,而音频信号的有效范围为300Hz~3400Hz ,4000Hz 的带宽就足够用来传输音频信号。
为了使各信道之间保留一定的距离减少相互干扰,60kHz~108kHz 的带宽可以划分为12条载波电话的信道(此为CCITT 标准),每对电话用户都可以使用其中的一条信道进行通信。
如图3-17所示,为6路频分多路复用的示意图。
D E F’’’’’’图3-17 6路频分多路复用示意图2.时分多路复用技术时分多路复用技术(Time Division Multiplexing ,TDM )是一种多路传输数字信号的方法,它已经在现代数据网络中替代了频分多路复用技术。
多路复用技术名词解释
嘿,你知道多路复用技术不?这可真是个超级厉害的玩意儿啊!就好比是一条宽阔的大道,能同时让好多辆车在上面欢快地奔跑。
比如说,在通信领域里,多路复用技术就像是一个神奇的指挥家。
它能把好多条信息通道整合在一起,让它们有序地传输,一点都不混乱。
想象一下,就好像是一群人在同时说话,但你却能清楚地分辨出每个人说的内容,这多牛啊!
时分复用,这可是多路复用技术里的明星呢!它就像给信息安排了一个个专属的时间段,在这个时间段里,这条信息就能尽情地展现自己。
这不就跟我们上课有不同的课时一样嘛,每节课都有特定的内容在那个时间段里进行。
还有频分复用呢,它就如同给不同的信息划分了不同的频率区域。
就像广播电台,每个电台都有自己特定的频率,我们想听哪个台,就调到对应的频率就行啦。
多路复用技术的应用那可太广泛啦!从我们日常用的手机通信,到广播电视信号的传输,到处都有它的身影。
没有它,我们的通信世界得变得多么混乱和低效呀!
在这个信息爆炸的时代,多路复用技术简直就是拯救世界的英雄!它让信息能够高效、有序地传输,让我们能顺畅地交流和获取各种信
息。
它就像是通信领域的魔法,把不可能变成了可能。
所以说,多路复用技术真的是超级重要啊,你说是不是呢?!。
多路复用技术定义:多路复用技术是把多个低信道组合成一个高速信道的技术,它可以有效的提高数据链路的利用率,从而使得一条高速的主干链路同时为多条低速的接入链路提供服务,也就是使得网络干线可以同时运载大量的语音和数据传输。
原因:通信线路的架设费用较高,需要尽可能地充分使用每个信道的容量,尽可能不重复建设通信线路;一个物理信道(传输介质)所具有的通信容量往往大于单个通信过程所需要的容量要求,如果一个物理信道仅仅为一个通信过程服务,必然会造成信道容量资源的浪费。
基本原理:把一个物理信道按一定的机制划分为多个互不干扰互不影响的逻辑信道,每个逻辑信道各自为一个通信过程服务,每个逻辑信道均占用物理信道的一部分通信容量。
技术关键:发送端如何把多个不同通信过程的数据(信号)合成在一起送到信道上一并传输,接收端如何把从信道上收到的复合信号中分离出属于不同通信过程的信号(数据)核心设备:多路复用器(Multiplexer):在发送端根据某种约定的规则把多个低速(低带宽)的信号合成一个高速(高带宽)的信号;多路分配器(Demultiplexer):在接收端根据同一规划把高速信号分解成多个低速信号。
多路复用器和多路分配器统称为多路器(MUX):在半双工和全双工通信系统中,参与多路复用的通信设备通过一定的接口连接到多路器上,利用多路器中的复用器和分配器实现数据的发送和接收。
如图一所示图一信道复用技术的类型:如图二所示图二FDM技术全称:频分多路复用技术(Frequency Division Multiplexing technology)适用领域:广播电视系统、有线电视系统、载波电话通信系统等;优点:1. 容易实现,技术成熟。
2. 信道复用率高,分路方便,因此频分多路复用是模拟通信中常采用的一种复用方式,特别是在有线和微波通信系统中应用十分广泛。
缺点:1.保护频带占用了一定的信道带宽,从而降低了FDM 的效率;2.信道的非线性失真改变了它的实际频率特性,易造成串音和互调噪声干扰;3.所需设备随输入路数增加而增多,不易小型化;4.FDM 不提供差错控制技术,不便于性能监测。
fdm的原理
FDM的原理是将不同的信号以不同的频率进行分割,然后在传输过程中将这些频率分割的信号混合在一起,在接收端再进行分割,恢复出原来的信号。
FDM(Frequency Division Multiplexing)是一种多路复用技术,其实现基于以下原理:
1.频率分割:FDM将不同的信号分配到不同的频带或频率范围内。
这样每个
信号都有自己独立的频带或频率范围,不会互相干扰。
2.混合:在发送端,FDM将所有信号混合在一起形成一个复合信号。
这可以
通过将不同的信号相加来实现。
每个信号都被调制到不同的频率上,使得它们可以在频谱中区分开。
3.传输:混合后的复合信号通过传输介质(如电缆、光纤等)进行传输。
传
输介质必须具有足够的带宽以容纳所有信号的频带宽度。
4.分离:在接收端,FDM将复合信号分离成独立的信号。
这可以通过使用滤
波器或解调器对复合信号进行处理来实现。
滤波器或解调器只允许特定频率范围的信号通过,以恢复出原来的信号。
多路复用技术在无线通信中的应用研究随着无线通信的普及,人们对于通信速度、稳定性和可靠性都有了更高的要求。
而多路复用技术正是一种提高无线通信效率的重要技术手段。
本文将从多路复用技术原理、常见的多路复用技术以及多路复用技术在无线通信中的应用方面进行探讨。
一、多路复用技术原理多路复用技术在通信中是指将多个通信信号在一个通道(或载波)上同时传输的技术。
它的主要思想是将各路信号的信息分别编码,然后经过某些方式合成为一个复合信号,最终在通道(或载波)上传输。
常见的多路复用技术有时分复用技术(TDM)、频分复用技术(FDM)、码分复用技术(CDM)和波分复用技术(WDM)等等。
这些技术分别在不同的通信系统中得到广泛的应用。
二、常见的多路复用技术1. 时分复用技术(TDM)时分复用技术是指将同一通信信道分成若干个时间段,每个时间段用于传输不同的信号。
在每个时间段内,只有相应的信号才能被传输,其余时间段则不占用该信道。
时分复用技术被广泛应用于数字通信系统中,如数字电话、数字广播和数字电视等。
在数字系统中,TDM技术实现了各路信号的同时传输和接收,从而提高了通信效率。
2. 频分复用技术(FDM)频分复用技术是指将一个宽带通信信道分成若干个较窄的子信道,每个子信道用于传输不同的信号。
在每个子信道中,只有相应的信号才能被传输,其余信道则不占用该通信信道。
频分复用技术是一个基于频域的信号复用技术,在模拟通信系统和数字通信系统中广泛应用。
它通过将各路信号分离到不同的频段上,从而实现了各路信号的同时传输和接收。
3. 码分复用技术(CDM)码分复用技术是指将不同的通信信号使用不同的码序列进行编码,然后用一个复合码进行传输。
在接收端,通过使用相应的解码算法,可以将各路信号分离出来,从而实现了各路信号的同时传输和接收。
码分复用技术在高速数字通信系统和移动通信系统中得到了广泛的应用。
它可以提高通信信道的利用率,降低通信系统的复杂度,提高传输信号的抗干扰能力。
频分多路复用是将传输介质的可用带宽分割成一个个“频段”,以便每个输入装置都分配到一个“频段”。
传输介质容许传输的最大带宽构成一个信道,因此每个“频段”就是一个子信道。
频分多路复用的特点是:每个用户终端的数据通过专门分配给它的予信道传输,在用户没有数据传输时,别的用户也不能使用。
频分多路复用适合于模拟信号的频分传输,主要用于电话和电缆电视(CATV)系统,在数据通信系统中应和调制解调技术结合使用。
时分多路复用的原理为了提高信道利用率,信号在传输过程中一般采用多路复用的传输方式,即多路信号在同一条信道上传输。
所谓时分多路复用,就是利用多路信号(数字信号)在信道上占有不同的时间间隔来进行通信。
目前应用较多的是频分多路复用和时分多路复用,前者适用于时间连续信号的传输;后者适用于时间离散信号的传输。
异步时分多路复用技术,也叫做统计时分多路复用技术(STDM,Statistic Time-Division Multiplexing)。
指的是将用户的数据划分为一个个数据单元,不同用户的数据单元仍按照时分的方式来共享信道;但是不再使用物理特性来标识不同用户,而是使用数据单元中的若干比特,也就是使用逻辑的方式来标识用户。
这种方法提高了设备利用率,但是技术复杂性也比较高,所以这种方法主要应用于高速远程通信过程中,例如,异步传输模式ATM。
码分多址通信原理:
码分多址(CDMA,Code-DivisionMultiple Access)通信系统中,不同用户传输信息所用的信号不是靠频率不同或时隙不同来区分,而是用各自不同的编码序列来区分,或者说,靠信号的不同波形来区分。
如果从频域或时域来观察,多个CDMA信号是互相重叠的。
接收机用相关器可以在多个CDMA信号中选出其中使用预定码型的信号。
其它使用不同码型的信号因为和接收机本地产生的码型不同而不能被解调。
它们的存在类似于在信道中引入了噪声和干扰,通常称之为多址干扰。
1.系统容量大:据研究表明,理论上CDMA移动网的系统容量比模拟网大20倍,比GSM约大5倍。
2.系统容量的灵活配置:在CDMA系统中,用户数的增加相当于背景噪声的增加,造成话音质量的下降。
但对用户数并无限制,操作者可在容量和话音质量之间折衷考虑。
另外,多小区之间可根据话务量和干扰情况自动均衡。
3.语音质量高:CDMA系统性能质量更佳指的是CDMA系统具有较高的话音质量,声码器可以动态地调整数据传输速率,并根据适当的门限值选择不同的电平级发射。
另外,软切换技术克服了硬切换容易掉话的缺点。
4.网络规划灵活:在CDMA系统中,用户按不同的、唯一、特定的伪随机序列码区分,所以不同CDMA载波可在相邻的小区内使用,网络规划灵活,扩展简单。
5.无线发射功率小:由于CDMA系统采用非常精确的功率控制技术和可变速率声码器,因此,基站设备和手机以及将来的便携式的个人通信器只需很小的发射功率就可以进行正常的通信。
6.建网成本下降:由于CDMA系统的容量大,频率利用率高,在一定的频带内,能容纳更多的用户。
同时,在覆盖相同面积的条件下, CDMA系统要比GSM 系统少建80%以上的基站。
从而,使建网成本大幅度下降.
码分复用是用一组包含互相正交的码字的码组携带多路信号。
采用同一波长的扩频序列,频谱资源利用率高,与WDM结合,可以大大增加系统容量。
频谱展宽是靠与信号本身无关的一种编码来完成的。
称频谱展宽码为特征码或密钥,有时也称为地址码。
码分复用(CDM,Code Division Multiplexing)是靠不同的编码来区分各路原始信号的一种复用方式,主要和各种多址技术结合产生了各种接入技术,包括无线和有线接入。
例如在多址蜂窝系统中是
码分复用
以信道来区分通信对象的,一个信道只容纳1个用户进行通话,许多同时通话的用户,互相以信道来区分,这就是多址。
移动通信系统是一个多信道同时工作的系统,具有广播和大面积覆盖的特点。
在移动通信环境的电波覆盖区内,建立用户之间的无线信道连接,是无线多址接入方式,属于多址接入技术。
联通CDMA(Code Division Multiple Access)就是码分复用的一种方式,称为码分多址,此外还有频分多址(FDMA)、时分多址(TDMA)和同步码分多址(SCDMA)。