分子生物学_ 基因组的调控_
- 格式:pptx
- 大小:960.36 KB
- 文档页数:36
分子生物学知识:小RNA的结构和功能及其在调控基因表达中的作用小RNA是一种短小的RNA分子,通常由20-30个核苷酸组成。
小RNA种类繁多,主要包括siRNA、miRNA、piRNA、tiRNA、srRNA等。
这些小RNA在生命活动中发挥着重要的调控功能,特别是在基因表达调控中的作用尤为显著。
一、小RNA的结构和功能小RNA的结构非常精巧。
以miRNA为例,它是由一条链组成的,具有一段3’端的非反义序列和一段5’端的反义序列。
这两端序列中间还有一个短暂的“环”结构。
miRNA经过一系列复杂的加工和修饰后,最终成熟为约22个核苷酸的小RNA分子。
小RNA具有很强的特异性,可以与mRNA上的互补序列结合并靶向调控基因表达。
小RNA在生命活动中发挥着重要的调控功能。
siRNA是一种具有致命性的RNA,可以介导RNA干扰(RNAi)过程中的靶向剪切。
miRNA则主要参与mRNA的翻译后调控,可以靶向降解mRNA或抑制其翻译。
piRNA则主要参与转座子、跳跃子的抑制等重要生命调控过程。
srRNA则参与基因组的稳定性的维护。
这些小RNA种类不同,但都在基因表达调控中发挥着重要的作用。
二、小RNA在基因表达调控中的作用小RNA在基因表达调控中具有多种作用方式。
它们通过不同的途径,影响着基因表达的水平和稳定性。
下面我们详细解析小RNA在基因表达调控中的作用:1、miRNA靶向降解mRNAmiRNA可以通过靶向结合到mRNA上的互补序列,使得该mRNA被降解。
这是一种非常有效的靶向调控方式。
一般情况下,miRNA与mRNA 的反义序列并不完全互补,而是存在一定的错配。
这种错配可以使得miRNA和mRNA形成局部或全局互补结合,并介导核酸内切酶产生“半导体”切割的效果,最终导致mRNA的降解。
这种方式被称为“miRNA 靶向降解mRNA”,可以有效地降低该基因的转录水平,从而影响基因表达的水平。
2、miRNA抑制mRNA的翻译miRNA可以通过结合到mRNA上的互补序列,特别是mRNA的5’端非翻译区和3’端非翻译区,抑制mRNA的翻译。
分子生物学与基因组学在现代生物学领域,分子生物学与基因组学已经成为了热门的研究方向。
分子生物学是研究细胞、基因、蛋白质等分子结构、功能及相互作用的学科,它促进了人们对生命起源、演化和生物进化规律的深入了解,也为疾病的治疗提供了新思路。
基因组学是研究基因组的结构、功能并全面了解基因在生命过程中的调控和表达的学科,可以帮助人们了解生物的遗传信息和功能。
本文将探讨分子生物学和基因组学的发展现状和研究方法。
一、分子生物学分子生物学是研究生命机理的一门基础科学,通过研究生物分子的结构、功能和调控机制,来深入了解生命现象。
分子生物学的发展离不开对基本生物分子的了解,如核酸和蛋白质这两种生物分子是人们了解生物基本结构和功能的突破口。
1.核酸:DNA和RNADNA和RNA是细胞核酸的两种类型,它们是细胞中最为重要的分子。
DNA是包含物种遗传信息的分子,其分子结构具有双螺旋的形态,由磷酸二酯键和四种碱基组成,其作用是将遗传信息传递给下一代。
RNA则作为 DNA 模板的副本起到信息传递与表达的作用。
核酸的研究对于生物学的发展和分子生物学的进一步研究都有至关重要的作用。
2.蛋白质的结构和功能蛋白质是构成生物体的主要成分之一,是细胞代谢反应的基本催化剂。
蛋白质分子的三维结构决定了它在生物分子间相互作用的特性及各种生物过程中的协同作用。
分子生物学对蛋白质结构和功能的研究,使我们能够更好地了解生命的功能和生命产生的机制。
3.重大科学突破随着分子生物学的发展,不断有新的突破出现。
比如,由美国科学家发现的 RNA 干扰技术,是一种通过选择性地降解特定RNA 来抑制基因表达的技术。
RNA 干扰技术为人们进一步研究细胞、疾病的发生机制和治疗提供了有力的手段。
二、基因组学基因组学是一门研究整个生物基因组的学科,它包括整个基因组的组成、功能、表达、代谢和调控等方面的内容。
基因组学的研究,为深入了解与探索生物的遗传信息和功能及其规律提供了重要的研究方法和手段。
Central dogma (中心法则):DNA 的遗传信息经RNA 一旦进入蛋白质就不能再输出了。
Reductionism (还原论):把问题分解为各个部分,然后再按逻辑顺序进行安排的研究方法.Genome (基因组):单倍体细胞的全部基因。
transcriptome(转录组):一个细胞、组织或有机体在特定条件下的一组完整基因。
roteome (蛋白质组):在大规模水平上研究蛋白质特征,获得蛋白质水平上的关于疾病的发生、细胞代谢等过程的整体而全面的认识。
Metabolome (代谢组):对生物体内所有代谢物进行定量分析并寻找代谢物与生病理变化的相关关系的研究方法。
Gene (基因):具有遗传效应的DNA 片段。
Epigenetics (表观遗传学现象):DNA 结构上完全相同的基因,由于处于不同染色体状态下具有不同的表达方式,进而表现出不同的表型。
Cistron (顺反子):即结构基因,决定一条多肽链合成的功能单位。
Muton(突变子):顺反子中又若干个突变单位,最小的突变单位被称为突变子。
recon(交换子):意同突变子.Z DNA(Z型DNA) :DNA 的一种二级结构,由两条核苷酸链反相平行左手螺旋形成。
Denaturation (变性):物质的自然或非自然改变.Renaturation (复性):变形的生物大分子恢复成具有生物活性的天然构想的现象。
egative superhelix (负超螺旋):B-DNA 分子被施加左旋外力,使双螺旋体局部趋向松弛,DNA分子会出现向右旋转的力的超螺旋结构。
C value paradox (C值矛盾):生物overlapping gene(重叠基因):不同的基因公用一段相同的DNA序列。
体的大C值与小c值不相等且相差非常大.interrupted gene (断裂基因):由若干编码区和非编码区连续镶嵌而成的基因。
splitting gene(间隔基因):意思与断裂基因相同。
基因组重复序列的进化与调控生命的演化历程从原始的单细胞生物到复杂的多细胞生物,伴随着基因组的不断变化和进化。
基因组重复序列是基因组组成的重要部分,它们在遗传学和进化生物学研究中起着重要的作用。
本文将从基因组重复序列的定义、分类和功能等方面入手,探讨基因组重复序列的进化和调控。
一、基因组重复序列的定义与分类基因组重复序列,简称重复序列,是指在基因组中存在两个或多个相同或相似DNA序列的部分。
根据其在基因组中的数量和分布,重复序列可分为两类:单拷贝序列和多拷贝序列。
1. 单拷贝序列:指仅在基因组中出现一次的DNA序列,包括基因、内含子、转座子等。
2. 多拷贝序列:指在基因组中存在两个或多个拷贝的DNA序列,可分为以下几种类型:(1)串联重复序列:由同一种或不同种的DNA序列组成,成串、成簇或成长链地重复出现在某些染色体区域上,如穗间区域的微卫星序列和卫星DNA序列等。
(2)片段重复序列:由长度为100bp以下的DNA序列组成,以短片段序列的形式重复出现在基因组中,如长转录本的外显子内序列、rRNA和tRNA基因的内含子序列等。
(3)转座子:是能够在基因组中移动的DNA片段,广泛存在于各个物种的基因组中,能够嵌入到其他基因序列中,导致基因重组和突变,也是基因组演化的重要因素。
二、基因组重复序列的进化基因组重复序列的存在不仅是生物基因组结构的重要组成部分,也是基因组演化的重要动力。
基因组重复序列的起源和演化,与物种的分化、融合和适应性等有着密切的关系。
1. 基因组重复序列的起源基因组重复序列的起源可以追溯到DNA复制机制,其中,多拷贝序列的起源包括基因家族扩增、基因重组和复制错误等。
随着进化的进行,这些重复序列在物种中繁殖并逐渐演变成为新的序列发生基因重组,甚至可能产生新的基因。
2. 基因组重复序列的功能基因组重复序列的功能多种多样,不同类型的重复序列具有不同的生物学作用。
在转录调控方面,基因前后区域的重复序列可以影响到基因表达的调控以及表达的时空特异性。
《分子生物学》试卷(基因表达的调控)(课程代码)班级姓名学号一、名词解释(每小题﹡分,共﹡分)1.基因表达(gene expression)2.启动子(promoter)3.多顺反子(polycistron)4.操纵子(operon)5.单顺反子(monocistron)6.顺式作用元件(cis-acting element)7. 核心启动子(core promoter)8. 上游启动子元件(upstream promoter element, UPE)9. 增强子(enhancer)10. 沉默子(silencer)11. 反式作用因子(trans-acting factor)12. 转录因子(transcription factor, TF)13. 锌指结构(zinc finger structure)14. 同源结构域(homeodomain, HD)15. 碱性亮氨酸拉链(basic leucine zipper, bLZ)16. 转录活化结构域(transcription activation domain)17. 选择性剪接(alternative splicing)18. 核不均一性RNA(heterogeneous nuclear RNA, hnRNA)二、单项选择题(从下列各题所给备选答案中选出一个正确的答案,并将其序号填在题干后的括号内。
1. 下列哪项是属于乳糖操纵子的转录调控序列( C )A. ZB. YC. OD. AE. CAP2. 有关真核基因转录调控的反式作用因子描述不正确的是( C )A. 包括基本和特异性转录因子B. 通常含有DNA结合结构域C. 基因组上一段DNA序列D. 通常还有与其它蛋白结合的结构域E. 含有转录活化域3. 下列哪项不属于真核基因转录调控的顺式作用元件( D )A. 启动子B. 增强子C. TATA 盒D. 一种RNAE. 沉默子4. 有关基因表达描述错误的是( A )A. 其过程总是经历基因转录及翻译的过程B. 某些基因表达经历基因转录及翻译等过程C. 某些基因表达产物是蛋白质分子D. 某些基因表达产物不是蛋白质分子E. 某些基因表达产物是RNA分子5. 关于管家基因叙述错误的是( C )A.在生物个体的几乎所有细胞中持续表达B.在生物个体的几乎各生长阶段持续表达C.在一个物种的几乎所有个体中持续表达D.在生物个体的某一生长阶段持续表达E.在生物个体全生命过程的几乎所有细胞中表达6. 大多数基因表达调控的最基本环节是(C)A. 复制水平B. 转录水平C. 转录起始水平D. 转录后加工水平E. 翻译水平7.当培养基内色氨酸浓度较大时,色氨酸操纵子处于( B )A. 诱导表达B. 阻遏表达C. 基本表达D. 组成表达E. 协调表达8. 顺式作用元件是指( E )A. 基因的5侧翼序列B. 基因的3侧翼序列C. 基因的5、3侧翼序列D. 基因5、3侧翼序列以外的序列E. 具有转录调节功能的特异DNA序列10. 一个操纵子通常含有( B )A. 一个启动序列和一个编码基因B. 一个启动序列和数个编码基因C. 数个启动序列和一个编码基因D. 数个启动序列和数个编码基因E. 两个启动序列和数个编码基因11. 反式作用因子是指( D )A. 具有激活功能的调节蛋白B. 具有抑制功能的调节蛋白C. 对自身基因具有表达调控的蛋白D. 对另一基因具有表达调控的蛋白E. 对另一基因具有功能的调节蛋白12. 乳糖操纵子的直接诱导剂是( E )A. β-半乳糖苷酶B. 透酶C. 葡萄糖D. 乳糖E. 别乳糖13. 阻遏蛋白结合乳糖操纵子的( B )A、P序列B、O序列C、CAP结合位点D、I基因E、Z基因14. 乳糖操纵子的阻遏蛋白是由( D )A、2基因编码B、Y基因编码C、A基因编码D、I基因编码E、以上都不是15. 对大多数基因来说,CpG序列甲基化( A )A、抑制基因转录B、促进基因转录C、与基因转录无关D、对基因转录影响不大E、以上都不是16. 大肠杆菌转录启动子-10区的核苷酸序列称为( E )A. TATA盒B. CAAT盒C. 增强子D. 调节子E. Pribnow盒17. 别乳糖对乳糖操纵子的作用是( C )A. 作为阻遏物结合于操纵基因B. 作为辅阻遏物结合于阻遏蛋白C. 使阻遏蛋白变构而不能结合DNAD. 抑制阻遏基因的转录E. 使RNA聚合酶变构而活化18. 有关操纵子学说的正确论述是( B )A. 操纵子调控系统是真核生物基因调控的主要方式B. 操纵子调控系统是原核生物基因调控的主要方式C. 操纵子调控系统由结构基因、启动子和操纵基因组成D. 诱导物与操纵基因结合启动转录E. 诱导物与启动子结合而启动转录19. 属于反式作用因子的是( E )A. 启动子B. 增强子C. 终止子D. RNA聚合酶E. 转录因子20. 乳糖操纵子上Z、Y、A基因产物是( B )A. 脱氢酶、黄素酶、CoQB. β-半乳糖苷酶、渗透酶、硫代半乳糖苷乙酰转移酶C. 乳糖还原酶、乳糖合成酶、别构酶D. 葡萄糖-6-磷酸酶、变位酶、醛缩酶E. 乳糖酶、乳糖磷酸化酶、激酶21. RNA聚合酶结合于操纵子的( E )A. 结构基因起始区B. 阻遏物基因C. 诱导物D. 阻遏物E. 启动子22. 诱导乳糖操纵子转录的物质是( D )A. 果糖B. 葡萄糖C. 阿拉伯糖D. 别乳糖E. AMP21. cAMP对转录的调控作用是通过( C )A. cAMP转变为CAPB. CAP转变为cAMPC. 形成cAMP-CAP复合物D. 葡萄糖分解活跃,使cAMP增加,促进乳糖利用来扩充能源E. cAMP是激素作用的第二信使,与转录无关22. 增强子是( D )A. 特异性高的转录调控因子B. 真核生物细胞内的组蛋白C. 原核生物的启动子在真核生物中的别称D. 增强启动子转录活性的DNA序列E. 在结构基因的5'-端的DNA序列23. 下列哪些不是操纵子的组成部分( A )A. 阻遏蛋白B. 启动子C. 操纵基因D. 结构基因E. Pribnow盒24. 转录前起始复合物是指( C )A. RNA聚合酶与TATAAT序列结合B. RNA聚合酶与TATA序列结合C. 各种转录因子与DNA模板、RNA聚合酶结合D. σ因子与RNA聚合酶结合E. 阻遏物变构后脱离操纵基因复合物25. 下述关于管家基因表达的描述最确切的是(B)A. 在生物个体的所有细胞中表达B. 在生物个体生命全过程几乎所有细胞中持续表达C. 在生物个体生命全过程部分细胞中持续表达D. 特定环境下,在生物个体生命全过程几乎所有细胞中持续表达E. 特定环境下,在生物个体生命全过程部分细胞中持续表达。
分子生物学第一篇: 基因表达调控和蛋白质修饰基因组(Genome): 生物个体所携带遗传性物质的总量。
即细胞中的DNA总量,或病毒的DNA或RNA量“C值悖论”(C-value paradox): C值:一种生物细胞中特异不变的DNA总量(单倍体基因组)。
物种的C值和它进化的复杂性之间没有严格的对应关系,这种现象称为C值悖论。
基因表达(Gene expression): 在一定调控机制下基因经过激活、转录、翻译、等过程产生具有生物学功能分子从而赋予细胞一定功能或表型,即基因的转录和翻译的过程。
基因表达调控(Regulation of gen expression): 细胞或生物体接受环境信号刺激或适应环境营养状况变化在基因表达水平上作出应答的分子机制。
这包括对表达基因种类和数量上的调调控。
基础基因表达(basic gene expression):又称持续性/组成型基因表达(constitutive gene expression): 不易受环境变化而改变的基因表达。
这其中包括一类“管家基因(housekeeping genes)”, 这类基因产物是细胞生存活动所必需的,在个体各生长阶段都表达。
可调节基因表达(regulated gene expression):易受环境变化而改变的基因表达。
对环境应答时被增强表达的过程称为诱导(induction), 被激活的基因称为可诱导基因(inducible genes);对环境应答时被抑制表达的过程称为阻遏repression),被抑制的基因称为可阻遏基因(repressible genes)基因表达规律:组织特异性(tissue specificity) 时间特异性(temporal specificity)基因表达调节的生物学意义:(一) 适应环境,维持生长和增殖(二) 维持个体发育与分化.真核细胞的结构特性:1、庞大基因组,结构复杂,大量重复序列,基因组大部分是非蛋白质编码的序列,基因内部常被内含子(intron)隔开2、结构基因转录产物是一条单顺反子(monocistron) mRNA,基本上没有操纵元件的结构,而且真核细胞的许多活性蛋白是由相同和不同的多肽链形成的亚基构成的,涉及到多个基因的协调表达。
分子生物学(第五版)(一)引言概述:分子生物学是现代生物学中的一个重要分支,它研究生命体内分子层面的结构、功能和相互作用。
本文将介绍《分子生物学(第五版)》的内容,旨在帮助读者深入理解分子生物学的基本原理和应用。
本文将从分子结构、遗传物质、基因表达、基因调控和遗传变异等五个方面进行阐述。
正文内容:一、分子结构:1. 生命分子的组成:a. 碳水化合物的结构和功能;b. 蛋白质的结构和功能;c. 脂质的结构和功能;d. 核酸的结构和功能。
2. 分子间相互作用:a. 氢键的形成和性质;b. 范德华力的作用机制;c. 疏水作用和疏水效应;d. 离子间相互作用的重要性。
3. 分子的空间结构:a. 氨基酸序列和蛋白质的三维结构;b. DNA的双螺旋结构及其稳定性;c. RNA的次级结构和功能。
二、遗传物质:1. DNA的复制:a. DNA的准备过程;b. DNA的复制酶及其功能;c. DNA复制的机制。
2. RNA的合成和加工:a. 转录的步骤和参与者;b. RNA的修饰和加工过程;c. RNA的转运和翻译。
3. 遗传密码和蛋白质合成:a. 遗传密码的排列和读取;b. 蛋白质合成的过程和调控;c. 翻译后修饰对蛋白质功能的影响。
三、基因表达:1. 转录的调控:a. 转录因子的作用和调控网络;b. DNA甲基化和表观遗传调控;c. 过程中的转录激活和抑制。
2. RNA的稳定性和降解:a. RNA降解的机制和相关酶;b. RNA稳定性的调控;c. RNA降解与基因表达的关系。
3. 蛋白质合成的调控:a. 翻译前的调控机制;b. 翻译后的调控机制;c. 蛋白质翻译和功能的关联。
四、基因调控:1. 染色质结构和基因组编码:a. 染色质的组织和压缩;b. 染色质修饰和基因组编码;c. 基因组重复序列的功能和调控。
2. 转录组学方法和技术:a. 基于RNA-seq的转录组学分析;b. 谷氨酰-tRNA合成酶中的嵌合体络合物;c. 转录因子和miRNA调控研究进展。
分子生物学填空题部分1、分子生物学研究内容主要包括以下四个方面:DNA重组技术、基因表达调控研究基因组、功能基因组与生物信息学和生物大分子的结构功能研究。
2、原核生物中一般只有一条染色体且大都带有单拷贝基因,只有很少数基因是以多拷贝形式存在,整个染色体DNA几乎全部由功能基因与调控序列所组成。
3、核小体是由H2A、H2B、H3、H4各两个分子生成的_八聚体和由大约200bpDNA组成的。
八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。
4、错配修复系统根据“保存母链,修正子链”的原则,找出错误碱基所在的DNA链,进行修复。
5、基因表达包括转录和翻译两个阶段,转录阶段是基因表达的核心步骤,翻译是基因表达的最终目的。
6、-10位的TATA区和-35位的TTGACA区是RNA聚合酶与启动子的结合位点,能与。
因子相互识别而具有很髙的亲和力。
7、核糖体小亚基负责对模板mRNA进行序列特异性识别,大亚基负责携带氨基酸及tRNA的功能8、DNA后随链合成的起始要一段短的—RNA引物,它是由—DNA引发酶—以核糖核苷酸为底物合成的。
9、帮助DNA解旋的单链DNA结合蛋白与单链DNA结合,使碱基仍可参与模板反应。
10、真核生物的mRNA加工过程中,5'端加上—帽子结构__,在3'端加上—多腺苷化尾___,后者由—_poly(A)聚合酶—催化。
如果被转录基因是不连续的,那么,—内含子—一定要被切除,并通过—剪接___过程将__外显子__连接在一起。
这个过程涉及很多RNA分子,如U1和U2等,它们被统称为—snRNA。
它们分别与一组蛋白质结合形成―snRNP―,并进一步地组成40S或60S的结构,叫剪接体。
1.DNA修复包括3个步骤:核酸外切酶对DNA链上不正常碱基的识别与切除,DNA聚合酶I酶对已切除区域的重新合成,连接酶对剩下切口的修补。
2.真核生物的序列大致可以分为:不重复序列,中度重复序列和髙度重复序列;3•转座子的类型有单拷贝序列和复合转座子,TnA家族和转座噬菌体;4.RNA的转录包括转录启始,延伸(延长)和终止三过程;5.tRNA的种类有起始tRNA,延伸tRNA,同工tRNA和校正tRNA;6.蛋白质运转可分为两大类:若某个蛋白质的合成和运转是同时发生的,则属于翻译运转同步机制运转同步机制;若蛋白质从核糖体上释放后才发生运转,则属于翻译后运转机制运转机制;7.在PH8.0时核酸分子带负电,在电场下向正级移动;8.质粒DNA及其分离纯化的方法主要有氯化铯密度梯度离心和碱变性法;9.乳糖操纵子的体内功能性诱导物是别乳糖;10.染色体中参与复制的活性区呈Y型结构,称为复制叉;1.分子生物学是从分子水平研究生命现象、生命的本质。
习 题第一章1.什么是分子生物学?⑴广义的分子生物学:蛋白质及核酸等生物大分子结构和功能的研究都属于分子生物学的范畴,即从分子水平阐明生命现象和生物学规律。
⑵狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA 的复制、转录、表达和调控等过程,当然也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。
2.列举分子生物学发展历程中的10个重大事件。
1944年,著名微生物学家Avery 等在对肺炎双球杆菌的转化实验中证实了DNA 是遗传物质。
1953年,Waston 和Crick 提出了DNA 双螺旋模型。
1954年,Gamnow 从理论上研究了遗传密码的编码规律,后来Nirenberg 等于1961年破译了第一批遗传密码。
Crick 在前人基础之上提出了中心法则。
1956年,A. Kornberg 在大肠杆菌中发现了DNA 聚合酶I ,这是能在试管中合成DNA 的第一种核酸酶。
1961年,F. Jacob & J. Monod 提出调节基因表达的操纵子模型。
1967年,Gellert 发现了DNA 连接酶。
1970年,Smith 和Wilcox 等分离得到第一种限制性核酸内切酶。
1970年,Temin 和Baltimore 在RNA 肿瘤病毒中发现逆转录酶。
1972~1973年,H. Boyer 和P. Berg 等发展了重组DNA 技术,并完成了第一个细菌基因的克隆。
1975~1977年,Sanger 、Maxam 和Gilbert 发明了DNA 序列测序技术。
1977年第一个全长5387bp 的噬菌体 X174基因组测定完成。
1981年,Cech 等发现四膜虫26S rRNA 前体自剪接作用,发现了核酶(ribozyme )。
1982年,Prusiner 等在感染瘙痒病的仓鼠脑中发现了阮病毒(Prion )。
1985年,Saiki 等发明了聚合酶链式反应(PCR )。
1988年,McClintock 发现可移动的遗传因子(转座子)。