结合局部优化算法的改进粒子群算法研究_殷脂
- 格式:pdf
- 大小:1.35 MB
- 文档页数:3
大连理工大学硕士学位论文改进的粒子群优化算法<APSO和DPSO)研究姓名:张英男申请学位级别:硕士专业:计算机应用技术指导教师:滕弘飞20080601大连理工大学硕士学位论文摘要粒子群优化(PSO>算法由Kennedy和Eberhart于1995年提出,是群体智能优化方法中具典型代表性的算法,具有广泛的应用领域,例如神经网络训练,工程优化等。
PSO的基本思想是群体中的每一个成员通过学习患身和群体中其他成员的信息以决定下一步动作,即一个粒予通过追随两个目标点(分别代表离身信息和其他成员信息>进行寻优,第一个譬标点为囊身历史最优点,第二个冒标点有两种:~种是种群最优点(称为全局版PSO>,另一种是邻域最优点(称为局部版PSO>。
PSO计算简单有效、鲁棒性好。
僵是,PSO最大弱点是在处理多峰溺数优化闯题时,容易出现晕熟收敛,并且搜索后期的局部搜索能力较差。
如何解决上述问题并进一步提高PSO的性能,~直是PSO研究的重要开放性课题。
本文的研究目的,~是从理论方法上研究一种性能较好算法,二是从应用上将这种方法既用于高效求解函数优化又用于求解Packing问题,最终期望用它作为求解卫星舱布局设计混合方法中的有效组成部分。
由此,本文尝试从研究修改粒子搜索路径的角度,通过构造新的速度更新公式,提出了两种改进的粒子群优化算法,分别为活跃目檬点粒子群优化(APSO>算法和搽测粒子群优纯(DPSO>算法,并应用予求解匾数优化和约束布局优化问题。
本文的工作主要包括以下两个方面:(1>提出了一种活跃目标点粒子群优化(APSO>算法。
基本思想是,在标准PSO速度更新公式中引入第3个目标点,称为活跃目标点,从而构成新的基于3圈标点速度更新机制的粒子速度更新公式。
APSO的优点是较好地竞服了PSO的早熟收敛问题,并兼具复合形法射线搜索的能力;缺点是增加了一定的额外计算开销。
基于SLP和改进粒子群算法的产品布局优化方法研究孙昕;吉晓民;王毅【摘要】产品布局设计要求在一定的功能空间内,各产品满足一定的约束条件且工作效率达到最高。
本文从优化角度考虑,将产品布局问题看作是组合优化中的布局问题,在综合考虑产品之间的关系、尺寸、布置方向的基础上,引入工艺专业化布局SLP方法对产品的综合关系进行分析,并以整体厨房产品为例建立数学模型,采用改进粒子群算法进行求解,实现了产品布局优化设计。
研究结果表明,采用SLP和改进粒子群算法为解决产品布局优化问题提供了一种有效的途径。
该方法可以推广到家具产品布局、陈设用品布局、舱室布局、生产系统布局等方面。
%The products layout design requires that all products can meet certain constraints,and can reach the highest work efficiency in a certainspace.From the optimization point of view,this problem can be seen as a layout problem in combinatorial optimization.In consideration of the products’relationship,size and direction,this paper uses the system layout planning method and sets up a mathematical model for integral kitchen products as a case study.By the IPSO method, the products layout optimization design is achieved,providing an effective way to solve these problems.This can be popularized to furniture,furnishing,cabin,production system layout de-sign and so on.【期刊名称】《西安理工大学学报》【年(卷),期】2016(032)004【总页数】6页(P488-493)【关键词】产品;布局;优化设计;SLP;改进粒子群算法【作者】孙昕;吉晓民;王毅【作者单位】西安理工大学机械与精密仪器工程学院,陕西西安 710048; 西安理工大学艺术与设计学院,陕西西安 710048;西安理工大学机械与精密仪器工程学院,陕西西安 710048; 西安理工大学艺术与设计学院,陕西西安 710048;西安理工大学机械与精密仪器工程学院,陕西西安 710048【正文语种】中文【中图分类】TH122产品布局问题在一定程度上可以看作是组合优化中的布局问题(Placement Problem,PLP)。
多目标优化的粒子群算法及其应用研究共3篇多目标优化的粒子群算法及其应用研究1多目标优化的粒子群算法及其应用研究随着科技的发展,人们对于优化问题的求解需求越来越高。
在工程实践中,很多问题都涉及到多个优化目标,比如说在物流方面,安全、效率、成本等指标都需要被考虑到。
传统的单目标优化算法已不能满足这些需求,因为单目标算法中只考虑单一的优化目标,在解决多目标问题时会失效。
因此,多目标优化算法应运而生。
其中,粒子群算法是一种被广泛应用的多目标优化算法,本文将对这种算法进行介绍,并展示其在实际应用中的成功案例。
1. 算法原理粒子群算法(Particle Swarm Optimization,PSO)是一种仿生智能算法,源自对鸟群的群体行为的研究。
在算法中,将待优化的问题抽象成一个高维的空间,然后在空间中随机生成一定数量的粒子,每个粒子都代表了一个潜在解。
每个粒子在空间中移动,并根据适应度函数对自身位置进行优化,以期找到最好的解。
粒子的移动和优化过程可以通过以下公式表示:$$v_{i,j} = \omega v_{i,j} + c_1r_1(p_{i,j} - x_{i,j}) + c_2r_2(g_j - x_{i,j})$$$$x_{i,j} = x_{i,j} + v_{i,j}$$其中,$i$ 表示粒子的编号,$j$ 表示该粒子在搜索空间中的第 $j$ 个维度,$v_{i,j}$ 表示粒子在该维度上的速度,$x_{i,j}$ 表示粒子在该维度上的位置,$p_{i,j}$ 表示粒子当前的最佳位置,$g_j$ 表示整个种群中最好的位置,$\omega$ 表示惯性权重,$c_1$ 和 $c_2$ 分别为粒子向自己最优点和全局最优点移动的加速度系数,$r_1$ 和 $r_2$ 为两个 $[0,1]$ 之间的随机值。
通过粒子群的迭代过程,粒子逐渐找到最优解。
2. 多目标优化问题多目标优化问题的具体表述为:给出一个目标函数集 $f(x) = \{f_1(x), f_2(x),...,f_m(x)\}$,其中 $x$ 为决策向量,包含 $n$ 个变量,优化过程中需求出 $f(x)$ 的所有最佳解。
一种新改进的粒子群优化算法时贵英;吴雅娟;倪红梅【摘要】针对粒子群优化算法容易陷于局部最优的情况,将蚁群算法的信息素机制引入到粒子群算法中,保证了粒子间的多样性,从而有效克服了粒子群算法容易发生早熟停滞的缺陷.最后通过仿真实验证明了算法应用于软件测试的可行性和高效性.【期刊名称】《长春理工大学学报(自然科学版)》【年(卷),期】2011(034)002【总页数】3页(P135-137)【关键词】粒子群算法;蚁群算法;信息素机制;软件测试【作者】时贵英;吴雅娟;倪红梅【作者单位】东北石油大学计算机与信息技术学院,大庆163318;东北石油大学计算机与信息技术学院,大庆163318;东北石油大学计算机与信息技术学院,大庆163318【正文语种】中文【中图分类】TP311粒子群优化(Particle SwarmOptimization,简称PSO)算法是1995年berhart 博士和kennedy博士提出的一种新的进化算法[1]。
这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中显示了其优越性。
但是任何方法都有其缺陷或不足,比如遗传算法[2-4]虽然具有良好的全局搜索能力,但是实现复杂,且局部搜索能力差容易发生早熟现象;同遗传算法比较,粒子群算法[5]容易实现并且没有太多参数需要调整,但是在算法后期局部搜索能力较差,反馈信息利用不充分,容易陷入局部最优,导致算法出现停滞,破坏了粒子间的多样性,导致算法不再继续搜索解空间,从而发生早熟;蚁群算法[6]具有正反馈性、并行性、强收敛性以及鲁棒性,但是由于搜索初期信息素相对匮乏,导致算法的搜索效率降低,容易产生停滞早熟现象。
一种有效的方法是将粒子群算法和蚁群算法有机地结合起来,在传统的粒子群优化算法基础上引入蚁群思想,运用类似于蚁群算法中信息素的选择机制,在每个粒子的当前最好位置附近通过局部搜索产生若干个位置,它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解。
粒子群优化算法论文粒子群优化算法摘要近年来,智能优化算法—粒子群算法(particle swarm optimization,简称PSO)越来越受到学者的关注。
粒子群算法是美国社会心理学家JamesKennedy 和电气工程师Russell Eberhart在1995年共同提出的,它是受到鸟群社会行为的启发并利用了生物学家Frank Heppner的生物群体模型而提出的。
它用无质量无体积的粒子作为个体,并为每个粒子规定简单的社会行为规则,通过种群间个体协作来实现对问题最优解的搜索。
由于算法收敛速度快,设置参数少,容易实现,能有效地解决复杂优化问题,在函数优化、神经网络训练、图解处理、模式识别以及一些工程领域都得到了广泛的应用。
PSO是首先由基于不受约束的最小化问题所提出的基于最优化技术。
在一个PSO系统中,多元化解决方案共存且立即返回。
每种方案被称作“微粒”,寻找空间的问题的微粒运动着寻找目标位置。
一个微粒,在他寻找的时间里面,根据他自己的以及周围微粒的经验来调整他的位置。
追踪记忆最佳位置,遇到构建微粒的经验。
因为那个原因,PSO占有一个存储单元(例如,每个微粒记得在过去到达时的最佳位置)。
PSO系统通过全局搜索方法(通过)搜索局部搜索方法(经过自身的经验),试图平衡探索和开发。
粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性。
关键词:粒子群优化算法;粒子群;优化技术;最佳位置;全局搜索;搜索精度Particle swarm optimization (PSO) algorithm is a novel evolutionary algorithm. It is a kind of stochastic global optimization technique. PSO finds optimal regions of complex search spaces through the interaction of individualsin a population of particles. The advantages of PSO lie in simple and powerful function. In this paper , classical particle swarm optimization algorithm , thepresent condition and some applications of the algorithms are introduced , and the possible research contents in future are also discussed.PSO is a population-based optimization technique proposed firstly for the above unconstrained minimization problem. In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each solution called a ‘‘particle’’, flies in the problem sear ch space looking for the optimal position to land. A particle, as time passes through its quest, adjusts its position according to its own ‘‘experience’’ as well as the experience of neighboring particles. Tracking and memorizing the best position encountered build particle_s experience. For that reason, PSO possesses a memory (i.e. every particle remembers the best position it reached during the past). PSO system combines local search method(through self experience) with global search methods (through neighboring experience), attempting to balance explorationand exploitation.Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community.But the standard particle swarm optimization is used resulting in slow after convergence, low search precision and easily leading to local minimum. A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision. The obtained results showed the algorithm computation precision and the astringency are improved,and local minimum is avoided. The experimental results of classic functions show that the improved PSO is efficientand feasible.Key words :particle swarm optimization algorithms ; unconstrained minimization problem;the bestposition;global search methods; the search precision目录一.引言二.PSO算法的基本原理和描述(一)概述(二)粒子群优化算法(三)一种改进型PSO算法——基于遗传交叉因子的粒子群优化算法简介1 自适应变化惯性权重2 交叉因子法(四) PSO与GA算法的比较1 PSO算法与GA算法2 PSO算法与GA算法的相同点3 PSO算法与GA算法的不同点三.PSO算法的实现及实验结果和仿真(一)基本PSO算法(二)算法步骤(三)伪代码描述(四)算法流程图(五)六个测试函数的运行结果及与GA算法结果的比较四结论五. 致谢六.参考文献一、引言混沌是一种有特点的非线形系统,它是一种初始时存在于不稳定的动态状态而且包含着无限不稳定时期动作的被束缚的行为。
改进的二进制粒子群优化算法二进制粒子群优化算法(Binary Particle Swarm Optimization, BPSO)是一种常用的启发式优化算法,它基于群体智能和仿生学理论,模拟鸟群觅食过程中的行为,并通过群体中个体之间的协作和信息共享来寻找最优解。
在传统的粒子群优化算法中,粒子的位置是连续的实数值,而在二进制粒子群优化算法中,粒子的位置和速度都被表示为二进制串,从而减少了计算的复杂性,提高了算法的效率和可靠性。
为了进一步改进二进制粒子群优化算法的性能,研究者们提出了一系列的改进方法,包括参数调整、约束处理、局部搜索策略、自适应策略等。
下面将详细介绍一些改进的二进制粒子群优化算法及其特点:1. Adaptive Binary Particle Swarm Optimization(ABPSO):ABPSO算法引入了自适应参数调整策略,根据粒子群的搜索状态动态调整惯性权重、学习因子等参数,以提高算法的收敛速度和收敛精度。
通过适应性的参数调整,ABPSO算法能够更好地适应不同的优化问题,取得更好的优化性能。
2. Hybrid Binary Particle Swarm Optimization(HBPSO):HBPSO算法将二进制粒子群优化算法与其他优化方法(如遗传算法、模拟退火算法、蚁群算法等)进行有效结合,形成混合优化算法,以充分利用各种算法的优势,提高优化性能。
通过灵活的混合策略,HBPSO算法能够更好地克服局部最优、收敛速度慢等问题,取得更好的优化效果。
3. Constrained Binary Particle Swarm Optimization(CBPSO):CBPSO算法针对约束优化问题提出了专门的处理策略,通过有效的约束处理技术,使算法能够在满足约束条件的前提下搜索最优解。
CBPSO算法能够有效处理约束优化问题,提高了算法的鲁棒性和可靠性。
4. Local Search Binary Particle Swarm Optimization(LSBPSO):LSBPSO算法在二进制粒子群优化算法中引入局部搜索策略,通过在粒子的邻域空间进行局部搜索,加速算法的收敛速度,提高优化性能。
改进的二进制粒子群优化算法二进制粒子群优化算法(Binary Particle Swarm Optimization, BPSO)是一种基于群体智能的优化算法,适用于解决复杂的优化问题。
它模拟了鸟群或鱼群在寻找食物或避开天敌时的群体行为,通过个体之间的信息交换和协作,逐步优化目标函数的值。
传统的BPSO算法在处理高维问题和多模态问题时存在一些局限性,因此需要进行改进和优化,以提高算法的收敛速度、搜索能力和全局寻优能力。
1. 算法原理与流程改进的二进制粒子群优化算法基于传统BPSO算法,通过引入新的策略和机制来增强其性能。
算法流程包括初始化群体、设置适应度函数、更新粒子位置和速度等关键步骤。
与传统的粒子群优化相比,二进制粒子群优化算法主要通过二进制编码表示解空间中的解,并通过更新算子(如异或操作)来调整粒子的位置和速度。
2. 改进策略和机制2.1 自适应学习因子传统的BPSO算法中,学习因子(学习因子控制了粒子在搜索空间中的速度和范围)通常是固定的,不随着搜索过程的进行而调整。
改进的算法引入了自适应学习因子机制,根据群体的搜索状态动态调整学习因子的大小,使得在早期探索阶段能够加快搜索速度,在后期收敛阶段能够更精确地定位到局部最优或全局最优解。
2.2 多策略合并传统的BPSO算法中,粒子更新位置和速度的策略通常是固定的,例如采用全局最优或局部最优的方式更新粒子位置。
改进的算法引入了多策略合并的思想,同时考虑多种更新策略,根据当前搜索空间的局部信息和全局信息动态选择合适的更新策略。
这种策略合并能够有效提高算法的全局搜索能力和局部收敛速度。
2.3 精英粒子保留机制为了防止算法陷入局部最优,改进的算法引入了精英粒子保留机制。
在每一代的更新过程中,保留历史上搜索到的最优粒子位置,并在新一代的初始化和更新过程中考虑这些精英粒子的影响,以引导整个群体向更优的解空间进行搜索。
这种机制有效地增强了算法的全局搜索能力和收敛速度。