2[1].2.2整式的加减——去括号第二课时
- 格式:ppt
- 大小:273.50 KB
- 文档页数:12
2.2 整式的加减-第二课时1教学目标1.1知识与技能:①让学生经过观察、合作交流、类比讨论、总结出去括号法那么;②理解去括号就是将分配律用于整式运算,掌握去括号法那么;③能熟练、准确地应用去括号、合并同类项将整式化简;④熟练掌握整式的加减运算法那么,能够列整式解决实际问题。
1.2 过程与方法:①经历类比有括号的有理数的运算,发现去括号时的符号变化规律,归纳出去括号法那么,培养学生观察、分析、归纳的能力。
②经历去括号与合并同类项的运算,培养学生的观察、分析、归纳以及整式加减的运用能力。
1.3情感态度与价值观:①培养学生主动探究、合作交流的意识和严谨治学的学习态度。
②认识到数学是解决实际问题和进展交流的重要工具。
2教学重点 / 难点 / 易考点2.1教学重点①准确应用去括号法那么将整式化简。
②整式的加减。
2.2教学难点①括号前面是“ - 〞号去括号时,括号内各项变号容易产生错误。
②总结出整式的加减的运算法那么。
3专家建议“数学教学是数学活动的教学〞。
我们进展数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。
也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。
这一节课,从去括号法那么,到整式的加减运算。
不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而到达培养学生观察、归纳、概括能力的目的。
4教学方法问题引入 ----类比探究----去括号法那么----整式加减运算法那么----课堂小结----稳固练习5教学用具6教学过程6.1问题引入问题一:用火柴棍拼成一排正方形图形,如果图形中含有 1、2、3 或 4 个正方形,分别需要多少根火柴棍?如果图形中含有 n 个正方形,需要多少根火柴棍?【教师说明】 总结同学们的答案,共有三种方法〔 1〕第一个正方形用 4 根火柴棍,每增加一个正方形增加 3 根火柴棍,搭 n 个正方形就需要 [4+ 3(n - 1)]根火柴棍.〔〕把每一个正方形2都看成用 4 根火柴棍搭成的,然后再减去多算的火柴棍,得到需要 [4n - ( n -1)] 根火柴棍.( 3〕第一个正方形可以看成是 3 根火柴棍加 1 根火柴棍搭成的,此后每增加一个正方形就增加 3 根,搭 n 个正方形共需要 (3 n + 1) 根火柴棍.6.2 类比探究我们看以下两个简单问题:〔1〕4+(3 -1)〔2〕4-(3 -1)方法一: =4+2方法一: = 4 -2=6=2方法二: =4+3-1方法二: =4-3+1=6=26.3 交流讨论1.4 + 3(n -1) 应如何计算?2.4n -(n -1) 应如何计算?【教师说明】 算式 1:=4+3n-3算式 2: =4n-n+1=3n+1=3n+1所以在问题一中的三种算法的结果是一样的。
2.2 整式的加减(第二课时)去括号法则学案学习目标1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.3.能学生主动探究、合作交流的意识,严谨治学的学习态度.学习重点和难点重点:1.去括号法则,准确应用法则将整式化简.2.整式的加减.难点:1.括号前面是“−”号去括号时,括号内各项变号容易产生错误.2.总结出整式的加减的一般步骤.学习过程一.创设情景,引入新课问题引入:黄老师今天开车从营前经双溪到紫阳,在营前到双溪路段的平均速度是40千米/时,在双溪到紫阳路段的平均速度是60千米/时. 从双溪到紫阳所需时间比从营前到双溪的时间多0.5小时.若从双溪到紫阳所需时间为t小时,则:(1)从营前到双溪的时间为小时;(2)从营前到紫阳的路程是多少?千米;①(3)从双溪到紫阳与从营前到双溪的路程之差是多少?千米 . ②二.探究新知上面的式子①、②都带有括号,它们应如何化简?思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:比较两式,你能发现去括号时符号变化的规律吗?思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师总结:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的.法则顺口溜: .小试牛刀(1)去括号:a+(b-c)=a-(b-c)= a+(-b+c)= a-(-b+c)= (2)判断正误:a-(b+c)= a-b+c()a-(b-c)= a-b-c()2b+(-3a+1)=2b-3a-1 ()3a-(3b-c)=3a-3b+c()三.应用新知例1.化简下列各式:(1) 8a+2b+(5a−b);(2)(5a−3b)−3(a2−2b).例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.四.大显身手1.化简(1)12(x-0.5); (2)-5(1-0.5x);(3)-5a+(3a-2)-(3a-7); (4)1(9y-3)+2(y+1);32.飞机的无风航速为a千米/时,风速为20千米/时.飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?五.畅所欲言话体会你学到了什么?你有哪些收获?去括号时应注意的哪些事项:六.课外作业必做题:课本P71习题2.2 第2、8题.选做题:化简−[−(−x+y)]−[+(−x−y)] .。
整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。
2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。
3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。
2.2 整式的加减第二课时(去括号)城南中学邱秋梅一、教学内容去括号规律及其应用(课本p65—p67)二、教学目标1、知识与技能:(1)能运用运算律探究去括号规律。
(2)会利用去括号规律进行整式化简。
2、过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号规律,培养学生观察、分析、归纳能力。
3、情感态度和价值观:(1)让学生感受知识的产生、发展及形成过程,培养其勇于探索的精神。
(2)培养学生主动探究、合作交流的意识和严谨治学的学习态度,锻炼学生的语言概括能力和表达能力。
三、教学重难点1、重点:去括号规律及其应用。
2、难点:括号外的因数是负数时符号的变化规律。
四、教法与学法1、教学方法:选用“情境—探索—发现—归纳”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,唤起学生的求知欲,激发学习兴趣,探究去括号规律。
2、学习方法:以“自主参与、勇于探索、合作交流”的探索式学法为主,从而达到提高学习能力的目的。
五、教学准备多媒体课件(用于展示问题,引导讨论,出示答案)。
六、教学过程 (一)复习回顾计算下列式子:(1)22386522+--++xy x xy x(二)创设问题情景(课本P53 本章引言中问题(3))青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,非冻土地段的行驶速度可以达到120千米/时。
请问:在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要u 小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米? 通过师生一起分析列出两个式子:100u+120(u-0.5) ① 100u-120(u-0.5) ② (三)探究新知100u+120(u-0.5)=100u+120u-60=220u-60 100u-120(u-0.5)=100u-120u+60=-20u+60让学生通过观察上面两个式子、类比数的运算、认真分析、归纳得出去括号时符号的变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
2.2.2整式加减(二)去括号添括号去括号法则题型一:去括号法则【例题1】(2017·广东七年级期末)将x ﹣(y ﹣z )去括号,结果是( )A .x ﹣y ﹣zB .x+y ﹣zC .x ﹣y+zD .x+y+z【答案】C【分析】根据去括号规律:括号前是“-”号,去括号后时连同它前面的“-”号一起去掉,括号内各项都要变号可得答案.【详解】解:x ﹣(y ﹣z )= x ﹣y+z.故选:C【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.变式训练【变式1-1】(2019·珠海市第十一中学)()x y z --去括号后的值是()A .x y z--B .x y z -+C .x y z--+D .x y z ++【答案】B 【分析】利用去括号法则计算.去括号时括号前面是负号的括号里的各项符号都要改变.【详解】()x y z x y z --=-+.故选:B .【点睛】本题主要考查了去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.【变式1-2】(2020·浙江省象山县丹城中学七年级期中)将1(2)2y x --去括号,得( )A .1-22y x +B .1-22y x -C .-12y x +D .12y x --【变式1-3】(2020·江苏景山中学七年级期中)下列去括号中,正确的是 ()A .-(1-3m)=-1-3mB .3x-(2y-1)=3x-2y+1C .-(a+b)-2c=-a-b+2cD .m 2+(-1-2m)=m 2-1+2m 【答案】B 【分析】根据去括号的法则,括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号进行各选项的判断.【详解】A.-(1-3m)=-1+3m ,故本选项错误;B.3x-(2y-1)=3x-2y+1,故本选项正确;C.-(a+b)-2c=-a-b-2c ,故本选项错误;D.m 2+(-1-2m)=m 2-1-2m ,故本选项错误.故选B【点睛】本题考查去括号的法则,难度不大,注意掌握括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号.【变式1-4】(2018·全国七年级单元测试)去掉下列各式中的括号:(1)8m –(3n +5); (2)n –4(3–2m ); (3)2(a –2b )–3(2m –n ).【答案】(1)8m –3n –5;(2)n –12+8m ;(3)2a –4b –6m +3n【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,对各式进行处理即可.【详解】(1)8m –(3n +5)=8m –3n –5.(2)n –4(3–2m )=n –(12–8m )=n –12+8m .(3)2(a –2b )–3(2m –n )=2a –4b –(6m –3n )=2a –4b –6m +3n .【点睛】考查去括号法则,去括号时,当括号前面为“-”时常出现错误,常常是括号内前面的项符号改变了,后面就忘记了,是易错点.题型二:去括号合并同类项【例题2】(2020·陕西七年级期中)先去括号,再合并同类项正确的是( )A .2x-3(2x-y)=-4x-yB .5x-(-2x+y)=7x+yC .5x-(x-2y)=4x+2yD .3x-2(x+3y)=x-y【答案】C选项A, 2x -3(2x -y )=2 x -6x +6y =-4x +6y.A 错.选项B, 5x -(-2x +y )=5x +2x -y =7x +y B 错.选项C, 5x -(x -2y )=5 x -x +2y=4x +2y,C 对.选项D, 3x -2(x +3y )=3x-2x-6y=x-6y,D 错.选C.变式训练【变式2-1】(2020·毕节三联学校七年级期中)先去括号,再合并同类项.(1)5(24)a a b --(2)2223(2)x x x +-【答案】(1)34a b +;(2)26x x-+【分析】(1)先去括号,因为括号前面是负号,要注意变号,再合并同类项;(2)先根据乘法分配律去括号,再合并同类项.【详解】解:(1)原式52434a a b a b =-+=+;(2)原式2222636x x x x x =+-=-+.【点睛】本题考查去括号和合并同类项,解题的关键是掌握去括号和合并同类项的方法.【变式2-2】(2018·全国七年级单元测试)去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(12a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-92a+1.【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(12a−3)+2a2]+4=3a2−(5a−12a+3+2a2)+4=3a2−5a+12a-3-2a2+4=a2-92a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.【变式2-3】(2018·全国七年级单元测试)去括号并合并:3(a-b)-2(2a+b)=___________.【答案】-a-5b【分析】根据乘法分配律去括号,再合并同类项.【详解】3(a-b)-2(2a+b)=3a-3b-4a-2b=-a-5b故答案为:-a-5b【点睛】本题考核知识点:整式的运算.解题关键点:正确去括号,合并同类项.【变式2-4】(2020·全国)先去括号,再合并同类项:(1)2(2b-3a)+3(2a-3b);(2)4a2+2(3ab-2a2)-(7ab-1).【答案】(1)-5b;(2)-ab+1【分析】(1)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;【详解】(1)2(2b-3a)+3(2a-3b)=4b-6a+6a-9b=-5b;(2)4a2+2(3ab-2a2)-(7ab-1)=4a2+6ab-4a2-7ab+1=-ab+1.【点睛】本题考查了去括号与添括号,合并同类项,括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.题型三:去绝对值去括号【例题3】(2020·正安县思源实验学校七年级期中)有理数a 、b 、c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“=”或“<”填空:b ________0,+a b ________0,a c -________0,b c -________0;(2)化简a b a c b ++--.【答案】(1)<;=;>;<;(2)c -.【分析】(1)根据数轴判断a 、b 、c 的符号和绝对值,进而即可判断各式的符号;(2)先脱去绝对值,在去括号计算即可.【详解】解:(1)由数轴得a >0>c >b ,a b c =>,∴b <0;a+b =0;a-c >0;b-c <0;故答案为:<;=;>;<;(2)解:∵0a b +=,0a c ->,0b <,∴原式()()0a c b a c b c =+---=-+=-.【点睛】本题考查了根据数轴判断代数式的符号,绝对值的化简,有理数的运算法则,整式的计算等知识,根据数轴判断各式的符号是解题关键.变式训练【变式3-1】(2019·北京师范大学乌海附属学校七年级月考)有理数a 、b 、c 在数轴上的位置如图所示,则代数式a c a b b c +++--的值等于( )A .2aB .2bC .2cD .0【答案】D 【分析】根据数轴,分别判断a+c ,a+b ,b-c 的正负,然后去掉绝对值即可.【详解】解:由数轴可得,a+c>0,a+b<0,b-c<0,则|a+c|+|a+b|-|b-c|=a+c+(-a-b )-(c-b )=a+c-a-b+b-c=0.故选D.【点睛】本题考查了化简绝对值和整式的加减,解答本题的关键是结合数轴判断绝对值符号里面代数式的正负.【变式3-2】(2018·山东七年级期末)已知有理数a ,b ,c 在数轴上对应的位置如图所示,化简|b ﹣c|﹣|c ﹣a|( )A .b ﹣2c+aB .b ﹣2c ﹣aC .b+aD .b ﹣a【答案】D 【分析】观察数轴,可知:c <0<b <a ,进而可得出b ﹣c >0、c ﹣a <0,再结合绝对值的定义,即可求出|b ﹣c |﹣|c ﹣a |的值.【详解】观察数轴,可知:c <0<b <a ,∴b ﹣c >0,c ﹣a <0,∴|b ﹣c |﹣|c ﹣a |=b ﹣c ﹣(a ﹣c )=b ﹣c ﹣a +c =b ﹣a .故选D .【点睛】本题考查了数轴以及绝对值,由数轴上a 、b 、c 的位置关系结合绝对值的定义求出|b ﹣c |﹣|c ﹣a |的值是解题的关键.【变式3-3】(2020·福州三牧中学九年级月考)有理数a ,b ,c 在数轴上的位置如图所示,化简a -a b +-c a -=________.【答案】a+b-c【分析】根据数轴,可以判断a ,b ,c 的正负情况,从而可以将所求式子的绝对值符号去掉,然后化简即可解答本题.【详解】解:由数轴可知,0,b a c b a c <<<>>,0,0a b c a \+<->∴原式()()a a b c a a a b c a a b c=-++--=-++-+=+-故答案为:a b c +-.【点睛】本题考查的知识点是数轴与绝对值的性质,根据绝对值的性质将所求式子绝对值符号去掉是解此题的关键.添括号法则题型四:添括号法则【例题4】(2019·全国)下列添括号错误的是()A .3-4x=-(4x-3)B .(a+b)-2a-b=(a+b)-(2a+b)C .-x 2+5x-4=-(x 2-5x+4)D .-a 2+4a+a 3-5=-(a 2-4a)-(a 3+5)【答案】D【分析】根据添括号法则, 当括号前添正号时直接添括号即可,当括号前添负号时括号里面的各项都要变号,即可解题.【详解】解:A,B,C 都是正确的,其中,D 项的右侧展开为-a 2+4a-a 3-5,与等号左侧不相等,故错误项选D.【点睛】本题考查了添括号的性质,属于简单题,熟悉去括号和添括号的性质与联系,特别的注意括号前为负号时要变号是解题关键.变式训练【变式4-1】(2020·全国七年级课时练习)不改变多项式3b 3﹣2ab 2+4a 2b ﹣a 3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是( )A .3b 3﹣(2ab 2+4a 2b ﹣a 3)B .3b 3﹣(2ab 2+4a 2b+a 3)C .3b 3﹣(﹣2ab 2+4a 2b ﹣a 3)D .3b 3﹣(2ab 2﹣4a 2b+a 3)【答案】D【分析】根据去括号法则:如果括号外面的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行分析.【详解】3b3﹣2ab2+4a2b﹣a3= 3b3﹣(2ab2﹣4a2b+a3).故选D.【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.【变式4-2】(2019·辽宁抚顺市·八年级期末)2ab+4bc﹣1=2ab﹣( ),括号中所填入的整式应是( ) A.﹣4bc+1B.4bc+1C.4bc﹣1D.﹣4bc﹣1【答案】A【分析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.【详解】解:2ab+4bc﹣1=2ab﹣(﹣4bc+1).故选:A.【点睛】本题考查了添括号法则,熟练掌握添括号的法则是关键.【变式4-3】(2019·上海市实验学校西校)下列各式添括号(1)2a-b-x-3y=2a-(b+x+3y);(2)2a-b-x-3y=(2a-b)-(x+3y);(3)2a-b-x-3y=-(x+3y)-(b-2a);(4)2a-b-x-3y=(2a-3y)-(b-x);错误的有几个()A.1个B.2个C.3个D.4个【答案】A【分析】根据添括号法则即可得出答案.【详解】(1)2a-b-x-3y=2a-(b+x+3y),故(1)正确;(2)2a-b-x-3y=(2a-b)-(x+3y),故(2)正确;(3)2a-b-x-3y=-(x+3y)-(-2a+b)= -(x+3y)-(b-2a),故(3)正确;(4)2a-b-x-3y=(2a-3y)-(b+x),故(4)错误;故答案选择:A.【点睛】本题考查的是添括号,需要熟练掌握添括号法则.题型五:利用添括号整体求值【例题5】(2019·泰州市第二中学附属初中九年级三模)已知x-3y=-3,则5-x+3y为()A.0B.2C.5D.8【答案】D【详解】解:∵x-3y=-3∴5-x+3y=5-( x-3y)=5+3=8故选D变式训练【变式5-1】若23a b -+的值等于5,则42a b -+的值为()A .2B .2-C .3D .3-【答案】A 【分析】根据题意可得22a b -=,然后利用整体代入法求值即可.【详解】解:∵23a b -+的值等于5∴22a b -=∴42a b-+=()42a b --=42-=2故选A .【点睛】此题考查的是求代数式的值,掌握利用整体代入法求代数式的值是解题关键.【变式5-2】(2020·北京北师大实验中学七年级期中)已232a a +=,则多项式22610a a +-的值为______.【答案】-6【分析】对原式添加括号变形,再整体代入条件即可.【详解】原式()2231022106a a =+-=´-=-,故答案为:-6.【点睛】本题考查添括号法则,以及整式求值,熟练运用添括号法则以及整体思想是解题关键.【变式5-3】(2019·安徽七年级期末)已知221x x +=-,则2364x x ++的值为______.【答案】1【分析】可将2364x x ++变形为23(2)4x x ++,再将221x x +=-整体代入即可.【详解】解:223643(2)4x x x x ++=++,因为221x x +=-,所以,原式=3(1)41´-+=.故答案为:1.【点睛】本题考查代数式求值——已知式子的值,求代数式的值,加括号法则.能利用加括号法则对需要求的代数式进行变形是解决此题的关键.【真题1】(2012·浙江温州市·中考真题)化简:2(a+1) -a=____【答案】a+2把括号外的2乘到括号内,去括号,然后合并同类项即可:原式=2a+2-a=a+2.【真题2】(2021·江苏中考真题)计算:()2222a a -+=__________.【答案】22a -【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2222a a --=22a -,故答案是:22a -.【点睛】本题主要考查整式的运算,掌握去括号法则以及合并同类项法则,是解题的关键.【拓展1】(2019·广州市第五中学七年级月考)已知,,a b c 在数轴上的位置如图所示,所对应的点分别为、、A B C .(1)在数轴上表示1-的点与表示3的点之间的距离为;由此可得点AB 、之间的距离为 (2)化简:2a b c b b a -++---(3)若24,c b =-的倒数是它本身,a 的绝对值的相反数是2-,M 是数轴上表示x 的一点,且20x a x b x c -+-+-=,求x 所表示的数.【答案】(1)4;-a b ;(2)222a b c -+-;(3)x 所表示的数为3-或193.【分析】(1)根据数轴的定义:两点之间的距离即可得;(2)根据数轴的定义,得出,,a b c 的符号、绝对值大小,再根据绝对值运算化简即可;(3)先根据平方数、倒数、相反数的定义求出,,a b c 的值,再根据绝对值运算化简求值即可得.【详解】(1)由数轴的定义得:在数轴上表示1-的点与表示3的点之间的距离为3(1)4--=;点,A B 之间的距离为-a b故答案为:4;-a b ;(2)由,,a b c 在数轴上的位置可知:0,c b a a b<<<>则2()2()()a b c b b a a b b c a b -++---=-++---22a b b c a b=--+--+222a b c =-+-;(3)由,,a b c 在数轴上的位置可知:0c b a<<<由24c =得,2c =-或2c =(舍去)由b -的倒数是它本身得,()1b b -×-=,解得1b =-或1b =(舍去)由a 的绝对值的相反数是2-得,2a -=-,解得2a =或2a =-(舍去)将2,1,2a b c ==-=-代入得21220x x x -++++=根据数轴的定义、绝对值运算分以下四部分讨论:①当2x -≤时,21220x x x -----=解得7x =-,符合题设②当21x -<£-时,21220x x x ---++=解得17x =-,不符题设,舍去③当12x -<£时,21220x x x -++++=解得15x =,不符题设,舍去④当2x >时,21220x x x -++++=解得193x =,符合题设综上,x 所表示的数为3-或193.【点睛】本题考查了数轴的定义、绝对值运算等知识点,熟记并灵活运用数轴的定义是解题关键.【拓展2】(2017·崇仁县第二中学七年级期中)数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当,,a b c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当 1.4a a a=时,求的值,(2)当 2.5b b b =-时,求的值.(3)请根据,,a b c 三个数在数轴上的位置, abca b c +求+的值.(4)请根据,,a b c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1) 1;(2)-1;(3)-1;(4)原式=-c.试题分析:(1)当 1.4a = 时,点A 在原点右边,由题意可知,此时a a =,代入a a即可求值;(2)当 2.5b =- 时,点B 在原点左边,由题意可知,此时b b =-,代入b b 即可求值;(3)由图中获取A 、B 、C 三点的位置信息后,结合题意即可求原式的值;(4)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符合,就可化简原式了.试题解析:(1)当 1.4a =时, 1.411.4aa ==;(2)当 2.5b =-时, 2.512.5bb ==--;(3)由图可知点A 在原点左边、点B 在原点右边、点C 在原点左边,∴由题意可得:a a b b c c =-==-,,,∴abca b c ++=11(1)1a b c a b c--++=-++-=-;(4)由图可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.点睛:在解第4小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.。
整式的加减(二)—去括号与添括号(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2.会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c;(2)-(-xy-1)+(-x+y)=xy+1-x+y.【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.举一反三【变式1】去掉下列各式中的括号:(1).8m-(3n+5);(2).n-4(3-2m);(3).2(a-2b)-3(2m-n).【答案】(1).8m-(3n+5)=8m-3n-5.(2).n-4(3-2m)=n-(12-8m)=n-12+8m.(3).2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】下列运算正确的是().A.-3(x-1)=-3x-1B.-3(x-1)=-3x+1C.-3(x-1)=-3x-3D.-3(x-1)=-3x+3【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1).=-xx y z t+-+=-=+2() 2345()()=+-;23()x y(2).x y z t=--=--x y z t x x-+-=+=-23()45() 23452()2().【答案】(1).2345x y z t --+-,2345x y z t +-+,345y z t -+-,45z t -.(2).345y z t -+-,345y z t -+,45z t -+,23x y -+.【解析】(1)2345x y z t +-+(2345)x y z t =---+-(2345)x y z t =++-+2(345)x y z t =--+-23(45)x y z t =+--;(2)2345x y z t -+-2(345)x y z t =+-+-2(345)x y z t =--+23(45)x y z t =---+45(23)z t x y =---+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.【高清课堂:整式的加减(二)--去括号与添括号388394添括号练习】举一反三【变式】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.【答案】b c d -+;2x y z --+;a b -;2b b +.类型三、整式的加减3.()()222232,23,1.;2.23.M x xy y N x xy y M N M N =-+=+---已知求:【答案与解析】(1)2222(32)(23)M N x xy y x xy y -=-+-+-222222223223(32)(21)(13)34x xy y x xy y x xy y x xy y =-+--+=--+++=-+(2)2222232(32)3(23)M N x xy y x xy y -=-+-+-2222(642)(639)x xy y x xy y =-+-+-2222222642639(66)(43)(29)711x xy y x xy y x xy y xy y =-+--+=--+++=-+【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.类型四、化简求值4.先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中【答案与解析】原式=2221312232233x x y x y x y -+-+=-+,当22,3x y =-=时,原式=22443(2)()66399-⨯-+=+=.【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?举一反三【变式1】先化简再求值:(-x 2+5x +4)+(5x -4+2x 2),其中x =-2.【答案】(-x 2+5x +4)+(5x -4+2x 2)=-x 2+5x +4+5x -4+2x 2=x 2+10x .当x =-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数.【答案】3(2)[3()]236322()y x x x y x y x x x y x x y +----=+-+--=+因为,x y 互为相反数,所以0x y +=所以3(2)[3()]22()200y x x x y x x y +----=+=⨯= 5.已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【答案与解析】由2xy =-,3x y +=很难求出x ,y 的值,可以先把整式化简,然后把xy ,x y +分别作为一个整体代入求出整式的值.原式310(5223)xy y x xy y x =++--+3105223xy y x xy y x=++--+5310232x x y y xy xy=++-+-88x y xy=++8()x y xy =++.把2xy =-,3x y +=代入得,原式83(2)24222=⨯+-=-=.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.举一反三【变式】已知代数式2326y y -+的值为8,求2312y y -+的值.【答案】∵23268y y -+=,∴2322y y -=.当2322y y -=时,原式=211(32)121222y y -+=⨯+=. 6.如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x 无关.你知道a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x 无关,就是合并同类项,结果不含有“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.注意这里的a 是一个确定的数.(8x 2+6ax +14)-(8x 2+6x +5)=8x 2+6ax +14-8x 2-6x -5=6ax -6x +9=(6a -6)x +9由于多项式(8x 2+6ax +14)-(8x 2+6x +5)的值与x 无关,可知x 的系数6a -6=0.解得a =1.【总结升华】本例解题的题眼是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项.。
2.2整式的加减(第二课时)
教材分析:本节课的教学内容去括号是中学数学代数部分的一个基础知识点,是以后化简代数式、分解因式、配方法等知识点中的重要环节。
对于七年级学生来说接受该知识点存在一个思维上的转换过程。
所以又是一个难点,由此不难看出,该知识点在初中数学教材中有其特殊地位和重要作用。
学情分析:本节课教学的对象是初一年级学生。
学生在第一章学习了带括号有理数的化简,在第二章学习了整式的定义、同类项以及合并同类项,通过前面的学习学生掌握了一定的分析、推理和探讨问题的方法,养成了合作交流、敢于探究的良好习惯。
学生能进行一定的独立思考、互相补充。
教学目标
1.知识与技能
(1)在具体情境中体会去括号的必要性,能运用运算律去括号;
(2)掌握去括号法则并能利用法则解决简单的问题。
2.过程与方法
启发式引导教学,能够由一般到特殊,再由特殊到一般,体会研究数学的一些基本方法。
3.情感态度与价值观
培养学生严谨的思维和勇于探索的思想意识,体会整式去括号知识的内涵,并锻炼学生的语言概括能力和表达能力。
教学重点及难点
1.教学重点:理解去括号法则,并能用去括号法则正确地去括号。
2.教学难点:当括号前是“-”号和括号前有系数的括号的去法。
教学过程
一、处置前置性作业。
2.2整式的加减(第2课时)——去括号一、内容和内容解析1、内容:去括号法则2、内容解析:去括号是本小节的主要内容,也是本章的难点。
它是整式加减的基础,也是今后学习整式的乘法,分式运算及解方程的基础。
通过本小节的学习,应使学生掌握去括号时符号的变化规律,为学习整式的加减运算作好准备。
二、目标和目标解析1.目标:知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.情感、态度、价值观:培养学生主动探究、合作交流的意识,严谨治学的学习态度.2.目标解析去括号并且利用去括号法则将整式化简是本小节的主要内容,它是整式加减的基础,也是今后学习整式的乘法,分式运算及解方程的基础,所以要经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.在情感、态度、价值观方面要培养学生主动探究、合作交流的意识,严谨治学的学习态度.三、教学问题诊断分析去括号时如果括号前面因数是负数,去括号后原括号内各项的符号与原来的符号相反。
这里学生很容易出现错误,特别是后面的项不是忘记变号,就是忘记乘括号前面的因数。
在教学的过程中,这里一定要加以强调,让学生细心。
为了避免出现这样的错误,可以先把因数乘进括号里,然后再去括号。
四、教学过程设计(一)、新授利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①冻土地段与非冻土地段相差100t-120(t-0.5)千米②上面的式子①、②都带有括号,它们应如何化简?思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t-0.5)=+120t-60 ③-120(t-0.5)=-120+60 ④比较③、④两式,你能发现去括号时符号变化的规律吗?思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3 (括号没了,括号内的每一项都没有变号)-(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.(二)、范例学习例1.化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.解答过程按课本,可由学生口述,教师板书.例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.解答过程按课本第67页.去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.(三)、巩固练习1.课本第67页练习1、2题.2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]思路点拨:一般地,先去小括号,再去中括号.(四)、课堂小结去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。