人教版数学七年级上册绝对值
- 格式:ppt
- 大小:468.50 KB
- 文档页数:20
1 / 2绝对值【知识梳理】1、什么叫绝对值?在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如+5的绝对值等于5,记作|+5|=5;-3的绝对值等于3,记作|-3|=3.2、绝对值的特点有哪些?(1)一个正数的绝对值是它本身;例如,|4|=4 , |+7.1| = 7.1 (2)一个负数的绝对值是它的相反数;例如,|-2|=2,|-5.2|=5.2 (3)0的绝对值是0.容易看出,两个互为相反数的数的绝对值相等.如|-5|=|+5|=5.若用a 表示一个数,当a 是正数时可以表示成a >0,当a 是负数时可以表示成a <0,这样,上面的绝对值的特点可用用符号语言可表示为:(1) 如果a >0,那么|a|=a ; (2) 如果a <0,那么|a|=-a ; (3) 如果a =0,那么|a|=0。
3、绝对值在本节课中的应用――比较两个负数的大小由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小.【重点难点】重点:(1)绝对值的概念; (2)化简;(3)用绝对值比较两个负数的大小。
难点:绝对值的化简;用绝对值比较两个负数的大小。
【典例解析】例1 、已知|x |=5,求x 的值。
解:因为|x |=5,所以x =5或x =-5。
﹡拓展:|x -3|=5,求x 的值.解:因为|x -3|=5所以x -3=5或x -3=-5,则x=8或x=-2 例2、绝对值小于5的整数有哪些?解:有4+,4-,3+,3-,2+,2-,1+,1-,0。
例3、 比较87-和76-的大小. 分析 比较两个负数的大小,应先比较它们绝对值的大小,再根据“两个负数,绝对值大的反而小”来判断它们的大小.解 564987|87|==-,564876|76|==-, 56485649>,所以87-<76- 【过关试题】1、下列说法中正确的有( )① 互为相反数的两个数的绝对值相等;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④一个数的绝对值相反数一定是负数。
第3讲 绝对值姓名 学校 日期【知识要点】一、绝对值的概念1.定义:一个数的绝对值就是数轴上表示a 的点与原点的距离,数a 的绝对值记作a ,读作a 的绝对值。
2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值还是0。
3.绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。
4绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对任意有理数a ,总有a ≥0。
5.互为相反数的两个数的绝对值相等,但绝对值相等的两个数相等或互为相反数。
6.绝对值等于它本身的数一定是非负数,绝对值等于它的相反数的数一定是非正数。
二、绝对值的求法绝对值是一种运算,这个运算符号是“”,求一个数的绝对值就是想办法去掉绝对值符号,对于任意有理数a ,有 (1)(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)(0)(0)a a a a a ≥⎧⎨-<⎩ (3)(0)(0)a a a a a >⎧⎨-≤⎩ 【典型例题】例1 求下列各数的绝对值。
(1)34= ; (2)13-= ; (3)144-= ; (4)132= ; 例2 (1)一个数的绝对值是3,则这个数是 。
(2)一个数的绝对值是0,则这个数是 。
(3)有没有一个数的绝对值是-4? 。
思考:a 与0的大小关系例3 (1)若2m -=,求m 的值;(2)若a b =,则a b 与的关系是什么?例4 写出绝对值不大于3的所有整数,并求出它们的和。
例5 如果a 的相反数是最大的负整数,b 是绝对值最小的数,那么a 与b 的和是多少?例6 数b a ,在数轴上的位置如图,观察数轴,并回答:(1)比较a 和b 的大小;(2)比较a 和b 的大小; (3)判断b a a b b a b a ⨯--+,,,的符号;(4)试化简a b b a -+--经典练习一、填空题1.31-的绝对值是 ,31的绝对值是 , 的绝对值是31.2.一个正数的绝对值为8,这个数是 ,一个负数的绝对值为8,这个数是 .3. 的绝对值是它本身, 的绝对值是它的相反数.4.若0>a ,则=a ;若0<a ,则=a ;若0=a ,则=a .5.若a a =,则a 0,若a a -=,则a 0.6. 的绝对值比它的本身大.7.一个数的绝对值不大于3,则满足条件的最大的负数是 .二、选择题1.下列等式中,成立的是( )A 、33±=+B 、()33--=-C 、33±=±D 、3131=--2.下列计算中,错误的是( )A 、1257=-+-B 、04.03.034.0=---C 、535154=-- D 、311312213=---a b3.如果两个数的绝对值相等,那么这两个数必满足( )A 、相等B 、都是0C 、互为相反数D 、相等或互为相反数4.下列各式中,不正确的是( )A 、01.001.0->-B 、001.001.0->-C 、⎪⎭⎫⎝⎛--<--3131D 、2.32.3->--5.下列判断正确的是( )A 、若b a =,则b a =B 、若b a =,则b a =C 、若b a <,则b a <D 、若b a >,则b a >三、解答题1.试写出:(1)绝对值小于5的所有负整数 ;(2)绝对值小于5.2而又大于2.1的所有整数 .2.已知一组数;4,-3,21-,+5.1,214-,0,-2.2.在这组数中:(1)绝对值最大的数为 ;绝对值最小的数为 ;(2)相反数最大的数为 ;相反数最小的数为 .3.如图,直线上有三个不同的点A 、B 、C ,且AB ≠BC ,那么,到A 、B 、C 三点距离的和最小的点( )(A )是B 点 (B )是AC 的中点 (C )是AC 外一点 (D )有无穷多个4.对任意有理数a ,式子1a -,1a +,1a -+,1a +中,取值不为0的是 。
第一章第6课绝对值-七年级上册初一数学(人教版)1. 绝对值的概念绝对值是数学中的一个重要概念,简单来说,它表示一个数与0的距离。
对于任意一个实数a,它的绝对值记作|a|,定义如下:•如果a大于等于0,则|a|等于a本身;•如果a小于0,则|a|等于-a。
绝对值的计算结果始终为非负数。
2. 绝对值的性质绝对值有以下几个重要的性质:•非负性:对于任意一个实数a,|a|大于等于0。
•正负性:对于任意一个实数a,如果a大于0,则|a|等于a本身;如果a小于0,则|a|等于-a。
•零的绝对值:|0|等于0。
•数轴上的表示:数轴上的点a到原点0的距离就是|a|。
3. 绝对值的运算3.1. 绝对值的加法绝对值的加法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a + b| <= |a| + |b|即绝对值的加法不会增加数的绝对值,而是有可能减小。
3.2. 绝对值的减法绝对值的减法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a - b| <= |a| + |b|即绝对值的减法的结果的绝对值不会大于原来两个数的绝对值之和。
3.3. 绝对值的乘法绝对值的乘法遵循以下规则:对于任意两个实数a和b,有以下等式成立:|a * b| = |a| * |b|即绝对值的乘法相当于两个数的绝对值相乘。
4. 绝对值的应用4.1. 距离的计算绝对值可以用来计算两个数在数轴上的距离。
例如,记数轴上的点A和点B的坐标分别为a和b,则点A和点B之间的距离为|a - b|。
4.2. 数据的取模在实际问题中,我们常常需要对数据进行取模运算。
取模运算即取绝对值,可以去除数据的符号,使得结果始终为非负数。
4.3. 求解不等式绝对值可以用来求解一些简单的不等式。
例如,求解|2x - 1| < 5这个不等式,可以分为两种情况讨论:当2x - 1大于等于0时,原不等式可化简为2x - 1 < 5,解得x < 3;当2x - 1小于0时,原不等式可化简为-(2x - 1) < 5,解得x > -2。