★结构方程模型要点
- 格式:doc
- 大小:160.50 KB
- 文档页数:9
★结构方程模型要点一、结构方程模型的模型构成1、变量观测变量:能够观测到的变量(路径图中以长方形表示)潜在变量:难以直接观测到的抽象概念,由观测变量推估出来的变量(路径图中以椭圆形表示)内生变量:模型总会受到任何一个其他变量影响的变量(因变量;路径图会受外生变量:模型中不受任何其他变量影响但影响其他变量的变量(自变量;路中介变量:当内生变量同时做因变量和自变量时,表示该变量不仅被其他变量影响,还可能对其他变量产生影响。
内生潜在变量:潜变量作为内生变量内生观测变量:内生潜在变量的观测变量外生潜在变量:潜变量作为外生变量外生观测变量:外生潜在变量的观测变量中介潜变量:潜变量作为中介变量中介观测变量:中介潜在变量的观测变量2、参数(“未知”和“估计”)潜在变量自身:总体的平均数或方差变量之间关系:因素载荷,路径系数,协方差参数类型:自由参数、固定参数自由参数:参数大小必须通过统计程序加以估计固定参数:模型拟合过程中无须估计(1)为潜在变量设定的测量尺度①将潜在变量下的各观测变量的残差项方差设置为1②将潜在变量下的各观测变量的因子负荷固定为1(2)为提高模型识别度人为设定限定参数:多样本间比较(半自由参数)3、路径图(1)含义:路径分析的最有用的一个工具,用图形形式表示变量之间的各种线性关系,包括直接的和间接的关系。
(2)常用记号:①矩形框表示观测变量②圆或椭圆表示潜在变量③小的圆或椭圆,或无任何框,表示方程或测量的误差单向箭头指向指标或观测变量,表示测量误差单向箭头指向因子或潜在变量,表示内生变量未能被外生潜在变量解释的部分,是方程的误差④单向箭头连接的两个变量表示假定有因果关系,箭头由原因(外生)变量指向结果(内生)变量⑤两个变量之间连线的两端都有箭头,表示它们之间互为因果⑥弧形双箭头表示假定两个变量之间没有结构关系,但有相关关系⑦变量之间没有任何连接线,表示假定它们之间没有直接联系(3)路径系数含义:路径分析模型的回归系数,用来衡量变量之间影响程度或变量的效应大小(标准化系数、非标准化系数)类型:①反映外生变量影响内生变量的路径系数②反映内生变量影响内生变量的路径系数路径系数的下标:第一部分所指向的结果变量第二部分表示原因变量(4)效应分解①直接效应:原因变量(外生或内生变量)对结果变量(内生变量)的直接影响,大小等于原因变量到结果变量的路径系数②间接效应:原因变量通过一个或多个中介变量对结果变量所产生的影响,大小为所有从原因变量出发,通过所有中介变量结束于结果变量的路径系数乘积③总效应:原因变量对结果变量的效应总和总效应=直接效应+间接效应4、矩阵方程式(1)和(2)是测量模型方程,(3)是结构模型方程 测量模型:反映潜在变量和观测变量之间的关系 结构模型:反映潜在变量之间因果关系 5x x ξδ=∧+ (1)y y ηε=∧+ (2) B ηηξζ=+Γ+ (3)三、模型修正1、参考标准模型所得结果是适当的;所得模型的实际意义、模型变量间的实际意义和所得参数与实际假设的关系是合理的;参考多个不同的整体拟合指数;2、修正原则①省俭原则两个模型拟合度差别不大的情况下,应取两个模型中较简单的模型;拟合度差别很大,应采取拟合更好的模型,暂不考虑模型的简洁性;最后采用的模型应是用较少参数但符合实际意义,且能较好拟合数据的模型。
结构方程模型结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,用于验证数理模型,分析变量之间的因果关系以及预测未知变量。
它可以将多个观测变量和潜在变量之间的关系进行建模和评估。
在本文中,我们将详细介绍结构方程模型的基本概念、应用领域和常见的建模过程。
一、基本概念1. 指标变量(Indicator Variables):在结构方程模型中,我们通常使用指标变量来测量潜在变量。
指标变量是实际可观测到的变量,通过测量值来间接反映潜在变量的状态。
2. 潜在变量(Latent Variables):潜在变量是无法直接观测到的变量,它们通常是一些理论概念或假设的表达。
潜在变量通过指标变量的测量反映出来。
二、应用领域1.社会科学研究:结构方程模型常常被用于心理学、教育学、管理学等领域的研究中,用于探索变量之间的关系,验证理论构建和进行实证研究。
2.经济学研究:结构方程模型在经济学研究中被广泛应用,用于分析经济变量之间的关系,评估政策效果和预测未知变量。
3.市场研究:结构方程模型可以用于分析市场调查数据,探索消费者行为、产品需求和品牌忠诚度等因素之间的关系。
4.医学研究:结构方程模型可用于医学研究中,例如研究药物治疗效果、疾病发展模式和预测相关变量。
三、建模过程建立一个结构方程模型通常需要以下几个步骤:1.模型设定:在设定模型时,我们需要明确研究的目的、理论依据以及构建潜在变量和测量指标的关系。
2.指标开发:选择适当的指标来测量潜在变量。
指标应具有良好的信度和效度,并与潜在变量相关。
3.模型估计:估计结构方程模型的参数,包括路径系数和误差方差。
常用的估计方法有最小二乘法、极大似然法和广义最小二乘法等。
4.模型拟合度检验:通过拟合指标(如χ²检验、RMSEA、CFI等)来评估模型的拟合度。
如果模型拟合度较好,则可以认为模型能较好地解释数据。
5.模型修正:根据模型拟合度检验的结果对模型进行修正。
结构方程模型介绍随着社会科学研究方法的不断发展和进步,结构方程模型(Structural Equation Modeling,简称SEM)作为一种多元统计分析方法逐渐被学者们所重视和应用。
SEM不仅可以用于检验理论模型的拟合度,还可以用于检验因果关系的存在性,并进行预测和模拟分析。
本文将从SEM的基本概念、应用领域、建模流程和常用软件等方面进行介绍。
一、基本概念1. 结构方程模型(SEM)的定义结构方程模型是一种通过变量之间的潜在关系来描述现象的统计模型。
它将观测变量和潜在变量作为模型的构成部分,通过变量之间的因果关系来解释变量之间的关系。
SEM可以用于探究变量之间的关系、检验理论模型的拟合度、预测未来变量的发展趋势等。
2. SEM的基本组成SEM由三部分组成:测量模型、结构模型和误差项。
其中测量模型包括潜在变量和观测变量,结构模型包括潜在变量和观测变量之间的因果关系,误差项则是指观测变量中不受潜在变量和结构模型影响的随机误差。
3. SEM的优势相较于传统的多元回归分析和路径分析等方法,SEM具有以下优势:(1)可以同时处理多个因变量和自变量之间的关系;(2)可以同时考虑测量误差和模型误差的影响;(3)可以将潜在变量和观测变量之间的关系纳入到模型中,更加贴近实际研究问题;(4)可以通过模型拟合度指标来评估研究模型的适应性;(5)可以进行模型的预测和模拟分析。
二、应用领域SEM广泛应用于社会科学领域,如心理学、教育学、管理学、社会学等。
具体应用领域包括但不限于以下方面:1.心理学领域SEM可用于探究心理学中的各种潜在变量之间的关系,如人格因素与心理健康、社会支持与应对策略等。
2.教育学领域SEM可用于探究教育学中的各种潜在变量之间的关系,如教育投入与学生成绩、学习动机与学习成绩等。
3.管理学领域SEM可用于探究管理学中的各种潜在变量之间的关系,如领导风格与员工绩效、组织文化与员工满意度等。
4.社会学领域SEM可用于探究社会学中的各种潜在变量之间的关系,如社会支持与幸福感、社会资本与社会信任等。
结构方程模型知识点总结一、SEM的基本概念1.1 潜变量和观察变量SEM中的变量分为潜变量和观察变量两种。
潜变量是无法直接观测到的,但通过观察变量的测量可以间接反映出来的变量,比如抽象的概念、态度或行为。
观察变量是可以直接测量和观察到的变量,它通过对潜变量的测量可以间接反映出来的现象或特征。
1.2 路径图和模型图SEM通过路径图和模型图来表示变量之间的关系。
路径图用箭头表示变量之间的因果关系,箭头的方向表示因果关系的方向,箭头的粗细表示因果关系的强度。
模型图将观察到的变量和潜变量以及它们之间的关系用图形化的方式表达出来。
1.3 测量模型和结构模型SEM包括测量模型和结构模型两个部分。
测量模型用于描述观察变量和潜变量之间的关系,它通过因子分析或确认因素分析来检验观察变量和潜变量之间的关系。
结构模型用于描述潜变量之间的因果关系,它通过路径分析来检验和估计潜变量之间的因果关系。
1.4 模型拟合度和参数估计SEM通过拟合度指标(比如χ²值、RMSEA、CFI等)来检验模型的拟合程度。
拟合度指标可以用来评估模型对观测数据的解释程度。
参数估计则是用来估计模型中的参数,比如路径系数、测量误差和因子之间的协方差等。
二、SEM的应用领域2.1 社会科学研究在社会科学研究中,SEM广泛应用于心理学、教育学、管理学、政治学等领域。
研究者可以利用SEM来检验和估计变量之间的因果关系,比如影响人们行为的因素、组织管理的影响因素等。
2.2 经济学研究在经济学研究中,SEM可以用来检验和估计宏观经济模型或微观经济模型。
研究者可以利用SEM来分析不同变量之间的关系,比如GDP和通货膨胀之间的关系、利率变动对企业盈利的影响等。
2.3 公共卫生研究在公共卫生研究中,SEM可以用来检验和估计潜变量之间的关系,比如疾病和环境因素之间的关系、健康行为和健康状况之间的关系等。
研究者可以利用SEM来揭示潜在的影响因素,从而提出有效的干预措施。
结构⽅程模型⼊门(纯⼲货!)⼀、结构⽅程模型的概念结构⽅程模型(Structural Equation Model,简称SEM)是基于变量的协⽅差矩阵来分析变量之间关系的⼀种统计⽅法,因此也称为协⽅差结构分析。
结构⽅程模型属于多变量统计分析,整合了因素分析与路径分析两种统计⽅法,同时可检验模型中的显变量(测量题⽬)、潜变量(测量题⽬表⽰的含义)和误差变量直接按的关系,从⽽活动⾃变量对因变量影响的直接效果、间接效果和总效果。
结构⽅程模型基本上是⼀种验证性的分析⽅法,因此通常需要有理论或者经验法则的⽀持,根据理论才能构建假设的模型图。
在构建模型图之后,检验模型的拟合度,观察模型是否可⽤,同时还需要检验各个路径是否达到显著,以确定⾃变量对因变量的影响是否显著。
⽬前,结构⽅程模型的分析软件较多,如Lisrel、EQS、Amos、Mplus、 Smartpls等等,其中AMOS 的使⽤率甚⾼,因此我们重点了解⼀下使⽤AMOS软件进⾏结构⽅程模型分析的过程。
⼆、结构⽅程模型的相关概念在构建模型假设图,我们⾸先需要了解⼀些有关的基本概念1、显变量显变量有多种称呼,如“观察变量”、“测量变量”、“显性变量”、“观测变量”等等。
从这些称呼中可以看到,显变量的主要含义就是:变量是实际测量的内容,也就是我们问卷上⾯的题⽬。
在Amos中,显变量使⽤长⽅形表⽰。
2、潜变量潜变量也叫潜在变量,是⽆法直接测量,但是可以通过多个题⽬进⾏表⽰的变量。
在Amos中,潜变量使⽤椭圆表⽰。
在使⽤的过程中,我们可以通过这样的⽅式区分显变量和潜变量:在数据⽂件中有具体值的变量就是显变量,没有具体值但可通过多个题⽬表⽰的则是潜变量。
3、误差变量误差变量是不具有实际测量的变量,但必不可少。
在调查中,显变量不可能百分之百的解释潜变量,总会存在误差,这反映在结构⽅程模型中就是误差变量,每⼀个显变量都会有误差变量。
在Amos 中,误差变量使⽤圆形进⾏表⽰(与潜变量类似)。
1结构方程模型概述1.1结构方程模型的基本概念结构方程模型(Structural Equation Modeling,SEM) 早期又被称为线性结构方程模型(Linear Structural Relationships,简称LISREL)或称为工变数结构分析(Coratiance Strucyure Analysis)。
SEM起源于二十世纪二十年代遗传学者Eswall Wrihgt发明的路径分析,七十年代开始应用于心理学、社会学等领域,八十年代初与计量经济学密切相连,现在SEM技术己广泛运用到众多的学科。
结构方程模型是在已有的因果理论基础上,用与之相应的线性方程系统表示该因果理论的一种统计分析技术,其目的在于探索事物间的因果关系,并将这种关系用因果模式、路径图等形式加以表述。
与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。
另外,通过结构方程多组分析,我们还可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。
结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法。
1.2结构方程模型的优点(一) SEM可同时考虑和处理多个因变量在传统的回归分析或路径分析中,就算统计结果的图表中展示多个因变量,其实在计算回归系数或路径系数时,仍然是对每一因变量逐一计算。
表面看来是在同时考虑多个因变量,但在计算对某一因变量的影响或关系时,其实都忽略了其他因变量的存在与影响。
(二) SEM容许自变量及因变量项含测量误差例如在心理学研究中,若将人们的态度、行为等作为变量进行测量时,往往含有误差并不能使用单一指标(题目),结构方程分析容许自变量和因变量均含有测量误差。
可用多个指标(题目)对变量进行测量。
(三) SEM容许同时估计因子结构和因子关系要了解潜在变量之间的相关性,每个潜在变量都用多指标或题目测量,常用做法是首先用因子分析计算机每一潜在变量(即因子)与题目的关系(即因子负荷),将得到的因子得分作为潜在变量的观测值,其次再计算因子得分的相关系数,将其作为潜在变量之间的相关性,这两步是同时进行的。
结构方程模型精讲结构方程模型(Structural Equation Modeling,即SEM)是一种多变量统计分析方法,主要用于建立和验证变量之间的因果关系模型。
SEM在社会科学研究领域中被广泛应用,可以用于研究因果关系的生成机制、模型拟合度评估和预测效果等。
一个SEM模型通常包括以下几个重要的组成部分:1. 构念(Latent variables):构念是无法直接观察到的理论概念,代表研究对象的特征、态度或行为。
通过测量指标来间接度量构念。
构念可以是单一的或多个指标组合而成的。
2. 指标(Indicators):指标是可以直接观察到的变量,用于测量构念的表现。
指标可以是连续变量、二元变量、有序变量等。
3. 因果路径(Causal paths):因果路径是指构念之间或构念与指标之间的直接或间接影响关系。
因果路径可以是正向的、负向的或双向的。
4. 误差项(Error terms):误差项是构念和指标之间的测量误差或未被模型涵盖的因素。
误差项是模型的随机部分,代表了模型解释不了的部分。
5. 模型拟合度(Model fit):模型拟合度指模型是否能够较好地解释观察数据。
常用的模型拟合度指标包括卡方检验、比较拟合指数(CFI)、均方根误差逼近指数(RMSEA)等。
在进行SEM分析时,通常需要进行以下步骤:1.建立理论模型:根据研究问题和理论背景,构建起变量间的理论关系模型。
2.设计测量指标:选择符合研究目标的指标,考虑指标之间的相关性和可信度。
3.收集数据:通过问卷调查或实验等方法,收集观察数据。
4.编码和建模:将数据输入到结构方程模型软件进行分析和建模。
5.评估拟合度:使用适当的拟合度指标,评估模型对实际数据的拟合效果。
6.参数解释和检验:分析模型结果,解释参数估计值和检验统计量,判断变量间的因果关系和显著性。
通过SEM分析,可以帮助研究者建立潜在的因果关系模型,验证理论假设和推断变量间的关系。
SEM具有灵活性和广泛适用性,可以应用于各种类型的数据和研究领域。
非线性结构方程模型PLS算法分析非线性结构方程模型分为:非线性指标的结构方程模型和非线性关系的结构方程模型。
非线性指标的结构方程模型:是指潜变量存在非线性的结构方程模型。
典型的如含有x2,logx,1/x,xy等形式指标的结构方程。
非线性指标的结构方程模型的PLS建模方法类似于线性结构方程模型。
非线性关系的结构方程模型:1、结构方程模型是一种建立、估计和检验因果关系模型的方法。
结构方程模型是通过观测变量集合的间的协方差结构和相关结构出发,从定量的角度建立模型来研究变量的间因果关系的一种方法2、结构方程模型包括可以观测的显在变量、也包括无法直接观测的潜在变量。
在社会科学的研究中,我们往往会遇到各种各样的变量,其中有一些是我们可以直接测量的,例如收入、教育水平等,而另一些则是我们所不能够直接进行测量的,诸如社会经济地位、智力等等;我们将前者称为显在变量,后者称为潜在变量。
虽然潜在变量不能够被直接观察到,但是因为其与显在变量的间是存在一定的关系的,我们可以通过显在变量对其进行测量。
例如:虽然我们不能直接对一个人的社会经济地位进行测量,但是我们可以通过对一个人的收入、教育水平、职业声望的测量来研究他的社会经济地位。
3、结构方程模型包括外生变量和内生变量。
--外生变量的概念类似于自变量的概念,在结构方程模型中,它是指那些引起其它变量变化,同时它不受系统中其它变量影响,它自身的变化是由模型所涉及的变量以外的其它因素所造成的变量。
--类似的,内生变量的概念类似于因变量的概念,它的变化是由结构方程模型中的外生变量和其它的影响。
4、结构方程的数学模式SEM可分测量(measurement)及潜伏变项(latent variable)两部分。
外显变项含有随机(或系统)性的量度上误差,但潜伏变项则不含这些部份。
SEM可用以下矩阵方程表示(Bollen,1989;Joreskog & Sorbom,1993):η=βη+Γξ+ζ(a)对于潜伏变项(如:社经地位与学业成就)的关系,即潜伏变项部份:η——内生(依变)(endogenous,dependent)潜伏变项ξ——外源(自变)(exogenous,independent)潜伏变项β——内生潜伏变项间的关系г——外源变项对内生变项的影响ζ——模式内未能解释部份(即模式内所包含的变项及变项间关系所未能解释部分)(b)对于外显变项与潜伏变项间的关系,即测量模式部分:X=Λxξ+δY=Λyη+εX,Y是外源及内生指标。
结构方程模型讲义结构方程模型(Structural Equation Modeling,SEM)是一种统计分析方法,多用于研究基于潜变量的复杂系统内在结构的定量关系。
其理论基础源于多元统计分析、因子分析和路径分析,通过建立观察变量与潜变量之间的关系模型,解析出潜变量对观察变量的影响,进而研究变量之间的内在结构关系。
一、SEM的基本概念和特点1.潜变量:潜变量是指无法直接观察或测量的变量,只能通过观察变量来间接反映。
它可以代表一些理论上的构念、心理特质或潜在特征。
2.观察变量:观察变量是可以直接观察和测量的变量,表现为定量或定性的实际测量结果。
3.模型设定:SEM基于研究者对潜变量和观察变量之间关系的理论假设,通过建立潜变量和观察变量之间的关系模型,定量研究变量之间的影响关系。
4.结构关系:SEM通过路径系数来描述潜变量和观察变量之间的关系,并使用结构方程模型来表示这些关系。
路径系数表示了变量之间的直接或间接影响。
二、结构方程模型的步骤1.模型设定:根据研究目的和理论依据,建立潜变量和观察变量之间的关系模型,并确定模型中的指标、因子和路径。
2.数据收集:收集样本数据,并根据所设定的模型变量进行测量,获得观察变量的观测值。
3.模型估计:利用SEM软件,通过最大似然估计等方法求解模型中的参数估计值,包括路径系数、因子载荷和误差项。
4.模型拟合:通过拟合度指标对模型的拟合程度进行评估,检验模型是否与观测数据一致。
如果拟合不理想,可能需要修改或调整模型。
5.结果解释和修正:对模型结果进行解释,解释模型中的路径系数和因子载荷,以及观察变量的解释力。
如果有必要,根据拟合结果调整模型,并进行相应修正。
6.结果验证:通过交叉验证、重测等方法验证模型的鲁棒性和稳定性,确保模型结果的可靠性和稳定性。
结构方程模型的应用领域非常广泛,包括心理学、社会学、教育学、市场营销、财务管理等。
它可以用于研究因果关系、探究复杂系统内在结构、验证理论模型等。
★结构方程模型要点
一、结构方程模型的模型构成
1、变量
观测变量:能够观测到的变量(路径图中以长方形表示)
潜在变量:难以直接观测到的抽象概念,由观测变量推估出来的变量(路径图中以椭圆形表示)
生变量:模型总会受到任何一个其他变量影响的变量(因变量;路径图会受到任何一个其他变量以单箭头指涉的变量)
外生变量:模型中不受任何其他变量影响但影响其他变量的变量(自变量;路
中介变量:当生变量同时做因变量和自变量时,表示该变量不仅被其他变量影响,还可能对其他变量产生影响。
生潜在变量:潜变量作为生变量
生观测变量:生潜在变量的观测变量
外生潜在变量:潜变量作为外生变量
外生观测变量:外生潜在变量的观测变量
中介潜变量:潜变量作为中介变量
中介观测变量:中介潜在变量的观测变量
2、参数(“未知”和“估计”)
潜在变量自身:总体的平均数或方差
变量之间关系:因素载荷,路径系数,协方差
参数类型:自由参数、固定参数
自由参数:参数大小必须通过统计程序加以估计
固定参数:模型拟合过程中无须估计
(1)为潜在变量设定的测量尺度
①将潜在变量下的各观测变量的残差项方差设置为1
②将潜在变量下的各观测变量的因子负荷固定为1
(2)为提高模型识别度人为设定
限定参数:多样本间比较(半自由参数)
3、路径图
(1)含义:路径分析的最有用的一个工具,用图形形式表示变量之间的各种线性关系,包括直接的和间接的关系。
(2)常用记号:
①矩形框表示观测变量
②圆或椭圆表示潜在变量
③小的圆或椭圆,或无任何框,表示方程或测量的误差
单向箭头指向指标或观测变量,表示测量误差
单向箭头指向因子或潜在变量,表示生变量未能被外生潜在变量解释的部分,是方程的误差
④单向箭头连接的两个变量表示假定有因果关系,箭头由原因(外生)变量指
向结果(生)变量
⑤两个变量之间连线的两端都有箭头,表示它们之间互为因果
⑥弧形双箭头表示假定两个变量之间没有结构关系,但有相关关系
⑦变量之间没有任何连接线,表示假定它们之间没有直接联系
(3)路径系数
含义:路径分析模型的回归系数,用来衡量变量之间影响程度或变量的效应大小(标准化系数、非标准化系数)
类型:
①反映外生变量影响生变量的路径系数
②反映生变量影响生变量的路径系数
路径系数的下标:
第一部分所指向的结果变量
第二部分表示原因变量
(4)效应分解
①直接效应:原因变量(外生或生变量)对结果变量(生变量)的直接影响,大小等于原因变量到结果变量的路径系数
②间接效应:原因变量通过一个或多个中介变量对结果变量所产生的影响,大小为所有从原因变量出发,通过所有中介变量结束于结果变量的路径系数乘积
③总效应:原因变量对结果变量的效应总和
总效应=直接效应+间接效应
4、矩阵方程式
(1)和(2)是测量模型方程,(3)是结构模型方程 测量模型:反映潜在变量和观测变量之间的关系 结构模型:反映潜在变量之间因果关系 5、结构方程模型的八种矩阵概念
二、模型整体评价
x x ξδ=∧+ (1)
y y ηε=∧+ (2) B ηηξζ=+Γ+ (3)
三、模型修正
1、参考标准
模型所得结果是适当的;
所得模型的实际意义、模型变量间的实际意义和所得参数与实际假设的关系是合理的;
参考多个不同的整体拟合指数;
2、修正原则
①省俭原则
两个模型拟合度差别不大的情况下,应取两个模型中较简单的模型;
拟合度差别很大,应采取拟合更好的模型,暂不考虑模型的简洁性;
最后采用的模型应是用较少参数但符合实际意义,且能较好拟合数据的模型。
②等同模式
等同模式:用不同的方法表示各个潜在变量之间的关系,能得出基本相同的结果,参数个数相同,拟合程度相同的模式。
实际意义、多次验证
3、模型修正方向
①模型扩展方面(放松一些路径系数,提高拟合度)
修正指数MI=χ12-χm2
MI【Modification Indices(M.I.)】反映的是一个固定或限制参数被恢复自由时,卡方值可能减少的最小的量。
如果MI变化很小,则修正没有意义;通常认为MI>4,模型修正才有意义。
(显著水平为0.05时,临界值为3.84)
②模型简约方面(删除或限制一些路径系数,使模型变简洁)
临界比率CR=χ2/df
CR通过自由度调整卡方值,以供选择参数不是过多,又能满足一定拟合度的模型,寻找CR比率最小者
单个参数调整设为0
两个变量之间路径系数关系进行调整,设为相等4、模型修正容
(1)测量模型修正
添加或删除因子载荷
添加或删除因子之间的协方差
添加或删除测量误差的协方差
(2)结构模型修正
增加或减少潜在变量数目
添加或删减路径系数
添加或删除残差项的协方差
四、验证性因子分析(CFA)
1、验证性因子分析
e1 e2 e3 e4
2、路径分析
非递归模型
自我效能对于学业表现的模型衍生相关:(轨迹法则) 1 直接效应:自我效能 学业表现=0.29
2 间接效应:自我效能 成就动机 学业表现=0.1
3 3 相关间接效应:
自我效能 社会期待 学业表现=0.13*0.16=0.02
自我效能 社会期待 成就动机 学业表现=0.13*0.02*0.21=0.000546
衍生相关为0.29+0.13+0.02+0.00=0.44
五、SPSS 与Amos
一般的研究论文的数据分析部分少不了对样本的描述、对变量进行探索性因子
自我效能感
社会期待
成就动机
学业表现 D 1
D 2
0.29
0.63 0.21
0.02
0.13
0.16
路径分析参数估计图
分析(EFA),然后再利用多变量分析技术或SEM进行数据分析,最后提出研究结论(验证假说),提出建议。
基于这样的了解,我们来看SPSS与Amos所发挥的功能:
利用amos,所得到的值是显著性(p值),我们要用显著性和我们所设的显著水平α值做比较,如果显著性大于α值,未达到显著水平,则接受虚无假说;如果显著性小于α值,达到显著水平,则拒绝虚无假说(即发现有统计上的显著性)。
在统计检验时,本书所设定的显著性水平皆是0.05(α=0.05)
七、拟合度
AMOS是以卡方统计量来进行检验的,一般以卡方值p大于0.05判断模型是否具有良好的拟合度。
但是卡方统计量容易受到样本大小的影响,因此还要参考其
PA-VO的路径分析有两种应用模型:递归与非递归。
递归与非递归模型可以从两个角度来判别:1.变量之间有无回溯关系2.残差之间是否具有残差相关。
九、直接效果与间接效果
直接效果是某一变量对另一变量的直接影响。
间接效果是某一变量通过某一中介变量对另一变量的直接影响。
总效果等于直接效果加上间接效果。
通常:如果直接效果大于间接效果,表示中介变量不发挥作用,可以忽略;如果直接效果小于间接效果,表示中介变量具有影响力,要重视中介变量。