高度换算平均风速梯度风剖面
- 格式:ppt
- 大小:4.67 MB
- 文档页数:29
某小区区建筑风环境模拟报告目录1. 模拟过程及使用软件介绍 (2)1.1 建筑风环境模拟使用软件介绍 (2)1.2 建筑风环境模拟过程 (2)1.2.1 几何模型的建立 (3)1.2.2 网格的划分 (5)1.2.3 求解参数设置 (6)2. 模拟结果 (12)3. 建筑风环境模拟研究思路及问题 (16)附录I 从百度地图获取三维几何模型的尝试 (17)附录2 Fluent入口边界速度UDF命令 (19)REFERENCE (19)建筑风环境的研究主要有三种方式:现场实测、数值模拟和风洞试验。
随着计算机软硬件技术水平的发展,计算能力及计算精度不断提高,计算流体力学(Computational Fluid Dynamics:CFD)的理论和方法得到了不断改进。
基于CFD 技术对流场进行模拟具有操作周期短,操作成本低,可反复修改的特性,相比较于现场实测和风洞试验具有更广阔的应用前景。
但是由于数值模拟技术对输入的参数十分敏感,必须辅以现场实测或风洞试验的验证。
本次模拟区域直径500m,模拟的工况为10m高度处风速为10m/s,风向为225°,输出结果查看高度10m,20m,40m,78m,100m处的速度云图、速度矢量图和压力云图。
1. 模拟过程及使用软件介绍1.1 建筑风环境模拟使用软件介绍(1)前处理软件ANSYS ICEM CFD 15.0ICEM是ANSYS CFD软件族中前处理软件之一。
具有强大的网格划分功能,接口丰富,可接受绝大多数几何模型格式导入,例如AUTO CAD、SolidWorks、PRO/E等。
(2)求解软件ANSYS Fluent 15.0占据CFD领域绝对领先地位的流体仿真软件。
具有多种物理算法、物理模型。
在医学、航天、机械工程等领域均应用广泛。
(3)后处理软件Tecplot 360提供丰富的绘图格式,具备强大的CFD结果可视化功能,图形美观。
1.2 建筑风环境模拟过程使用计算流体力学对建筑室外风场进行数值模拟一般包括以下四个步骤:(1)几何模型的建立(2)对几何模型进行合适的网格划分(3)将划分网格后的模型导入Fluent,设置求解参数并求解(4)结果的后处理(速度云图、速度矢量图、压力云图等)1.2.1 几何模型的建立在几何模型的建立部分,现阶段采用的是陈宸的模型,他是根据彰武校区附近区域的城规图建立CAD 三维模型(据陈宸描述来自他建筑学院的朋友提供)。
2012新荷载规范风荷载计算及其在PKPM软件中的实现引言相对于上一版规范GB50009-2001(以下简称2001规范),《建筑结构荷载规范》GB50009-2012(以下简称2012规范)对风荷载的计算方法做了较大的修改。
其中不仅调整了风压高度变化系数和体型系数等静力计算—高度z处的风振系数;—风荷载体型系数;—风压高度变化系数;—基本风压。
、风 2 (1) 如果不考虑结构在风荷载作用下的动力响应,则由平均风压引起的静荷载取决于体型系数压高度变化系数1.1 及基本风压这三项因素,下面首先讨论顺风向作用下的静荷载计算:基本风压2012规范在2001规范数据的基础上进行了重新统计,部分城市在补充新的气象资料重新统计后,基本风压有所提高。
1.2 体型系数2012规范中表8.3.1中增加了第31项,对于高度超过45m的矩形截面高层建筑需考虑深宽比D/B对背风面体型系数的影响。
当平面深宽比D/B≤1.0时,背风面的体型系数由-0.5增加到-0.6,矩形高层建筑的风力系数也由1.3增加到1.4 。
8.3.2条还增加了矩形平面高层建筑的相互干扰系数取值。
在PKPM软件中,基本风压和体型系数由设计人员直接指定,以上两项变化需由设计人员确认并在软件参数中体现,软件不做改变。
1.3 风压高度变化系数2012规范在保持划分4类粗糙度类别不变的情况下,适当提高了C、D两类粗糙度类别的梯度风高度,由400m和450m分别修改为450m和550m。
B类风速剖面指数由0.16修改为0.15,适当降低了标准场地类别的平均风荷载,具体变化如下:2001规范2012规范zAz1.37910 z1.00010 z0.61610 z0.318100.24z 1.170.32AzAz1.28410 z1.00010 z0.54410 z0.262100.24z 1.090.30Bz 1.00 (2)0.44AzBBB z 1.00 z0.44Cz0.60Cz0.74Czz 0.650.60CDzBz0.62Dzz 0.51B图1列出了四类地貌的风压高度变化系数的新旧规范对比,可以直观看出2012规范四类地区风压高度变化系数均比2001规范减小:图1在PKPM软件中,风压高度变化系数由程序根据上述公式自动进行计算。
脉动风紊流度的相关参数分析董新胜;张军锋;杨洋;管品武【摘要】从自然风的基本特性入手,在系统介绍相关背景参数和假定的基础上,包括平均风速剖面U(z)、粗糙高度z0、表面阻力系数κ、剪切速度u*、湍流幅值σu 以及零平面位移zd和参数β等,选择多国荷载规范对其紊流度I(z)取值进行对比分析.对比发现,尽管我国荷载规范GB 50009-2012在修订中提高了I(z)取值,但相较美国、日本和欧洲规范和我国公路桥梁抗风规范,其取值依然偏低,尤其对于A类和B类地区.另外,详细分析了I(z)与粗糙高度z0和表面阻力系数κ等参数的函数关系,为脉动风数值模拟的参数取值提供了参考.【期刊名称】《结构工程师》【年(卷),期】2019(035)003【总页数】6页(P155-160)【关键词】脉动风;紊流度;粗糙高度;表面阻力系数【作者】董新胜;张军锋;杨洋;管品武【作者单位】国网新疆电力公司电力科学研究院,乌鲁木齐830011;郑州大学土木工程学院,郑州450001;国网新疆电力公司电力科学研究院,乌鲁木齐830011;郑州大学土木工程学院,郑州450001【正文语种】中文0 引言受大气湍流和地表粗糙度的影响,自然风本身存在显著的脉动性,这也是结构顺风向风振的主要原因[1-3]。
准确地描述和确定自然风速的脉动性是结构风振效应试验或计算分析的基础。
尽管各国规范[4-8]都采用紊流度描述风速的脉动性,但各国规范紊流度的定义方式、具体取值以及基本假定都存在一定的差异。
尤其是紊流度的定义均针对具体的地貌类型,而各国规范对地貌类型的定义并不一致,这就给规范间的参考借鉴带来了诸多障碍。
随着我国工程界逐步走出国门承揽国际项目,有必要深入了解各国规范对紊流度的定义及差别,为国际工程设计咨询提供参考。
同时,对紊流度所涉及的相关背景参数的准确理解也是脉动风模拟的必要基础。
因此,本文从自然风的基本特性入手,在系统介绍相关背景参数的基础上,选择多国荷载规范如中国的GB 50009—2012和GB 50009—2001[4]、美国的ASCE7-10[5]、日本的AIJ-2004[6]、欧洲的EN-2010[7]以及公路桥梁抗风规范JTG D60-1—2004[8]等多部规范,对其紊流度取值进行对比分析。
第49卷第5期2021年5月同济大学学报(自然科学版)JOURNAL OF TONGJI UNIVERSITY(NATURAL SCIENCE)Vol.49No.5May2021论文拓展介绍超强台风山竹近地风场特性实测谢壮宁1,段静1,刘慕广1,张丽2(1.华南理工大学亚热带建筑科学国家重点实验室,广东广州510641;2.深圳市国家气候观象台,广东深圳518040)摘要:基于356m高的深圳气象梯度塔(SZGMT)的实测风速时程数据,分析了超强台风山竹侵袭过程风场特性的竖向分布规律。
结果表明,SZGMT上游地面的平均风速剖面指数为0.238,略高于建筑结构荷载规范(GB50009-2012)的C 类地貌的指数值;纵向湍流强度接近GB50009-2012D类地貌的建议值,三向湍流强度比值较我国公路桥梁抗风设计指南的建议值小,并随高度的增加而增大;阵风因子和湍流强度呈高度线性相关,各向峰值因子的拟合结果接近2.5;纵向湍流积分尺度略大于日本规范AIJ2004和美国规范ASCE7-2010的建议值;实测纵向风速谱和Von Karman谱具有较好的一致性。
关键词:风场特性;剖面;下垫面;台风实测中图分类号:TU312.1;TU317.2文献标志码:A Field Measurement of Near-Ground Wind Characteristics of Supper Typhoon MangkhutXIE Zhuangning1,DUAN Jing1,LIU Muguang1,ZHANG Li2(1.State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou510640,China;2. Shenzhen National Climate Observatory,Shenzhen518040,China)Abstract:Based on the wind speed records from the 356m high Shenzhen Meteorological Gradient Tower (SZMGT),this paper analyzes the vertical distribution of wind characteristics during the invasion of the super typhoon Mangkut.The results show that:the mean wind speed profile exponent of the upstream surface of the SZGMT is0.238,which is slightly higher than that of the Load Code for the Design of Building Structures (GB50009-2012)for terrain category C.The longitudinal turbulence intensity distribution is close to the recommended value of GB50009-2012for terrain category D.The three-direction turbulence intensity ratio is smaller than the recommended value of Highway Bridge Wind Resistance Design Guide,and increases with the increase of height.The gust factor is highly linear with the turbulence intensity,and the fitting result of the peak factor is close to2.5.The observed longitudinal turbulence integral scale profile is slightly larger than the recommended value of AIJ2004and ASCE7-2010,and the longitudinal wind speed spectra are consistent with Von Karman spectrum.Key words:wind characteristics;wind profile;underlying surface;typhoon observation在强(台)风作用下边界层高度范围内风场特性参数(包括平均风速剖面、湍流强度剖面、脉动风速功率谱密度和湍流积分尺度剖面等)的科学描述对于风敏感结构的风效应评估和抗风设计具有十分重要的意义。
hiwind气象参数
1.高空风速:测量高度上的风速,通常以米每秒(m/s)或节(kt)
为单位。
2.高空风向:测量高度上的风的方向,通常以度数表示(例如,北
风为0度,顺时针方向递增)。
3.高空风剖面:通过多个高度点的测量数据,得出高空风速和风向
随高度的变化情况。
4.高空风切变:指的是高空风速和风向随着高度变化的差异。
风切
变的存在对于飞行、风能发电以及其他气象应用都具有重要意义。
5.高空风能资源评估:通过对 HiWind 数据的分析和建模,可以评
估高空风能资源的潜力和可利用性,从而辅助决策制定和风能项目的规划。