必修一函数的单调性专题讲解(经典)
- 格式:docx
- 大小:20.09 KB
- 文档页数:4
必修一导数的单调性专题讲解(经典)引言在高中数学中,导数是一个非常重要的概念,掌握导数的基本概念和求法对于我们后续研究数学和工程等学科都有很大的帮助。
其中,本篇文档将着重讲解导数的单调性。
一阶导数的单调性对于一个函数$f(x)$,它的一阶导数为$f'(x)$。
如果$f'(x)>0$,则称函数$f(x)$单调递增;如果$f'(x)<0$,则称函数$f(x)$单调递减。
需要注意的是,函数$f(x)$在某个区间内单调递增或单调递减并不能保证函数在整个定义域内单调递增或单调递减。
此外,当$f'(x)=0$时,函数在该点上的单调性无法确定。
二阶导数的单调性对于一个函数$f(x)$,它的二阶导数为$f''(x)$。
如果$f''(x)>0$,则称函数$f(x)$在该点上取极小值;如果$f''(x)<0$,则称函数$f(x)$在该点上取极大值。
需要注意的是,当$f''(x)=0$时,函数在该点上的极值无法确定。
此外,如果$f''(x)$在某个区间内恒大于(或恒小于)$0$,则$f(x)$在该区间内的单调性与$f'(x)$的单调性相同。
必备技能要想熟练掌握导数的单调性,需要掌握函数的求导方法和二阶导数的求法。
在此基础上,就可以通过对导数符号的分析来确定函数的单调性。
结论导数的单调性是高中数学中比较重要和常出现的考点,掌握好导数的单调性对我们后续研究物理、工程等学科都有着很重要的帮助。
第三节函数的单调性知识清单1.函数单调性的定义一般地,设函数的定义域为I ,区间ID ⊆(1)如果D x x ∈∀21,,当21x x <时,都有)()(21x f x f <,那么称函数)(x f 在区间D 上单调递增.特别地,当函数)(x f 在它的定义域上单调递增时,我们就称它是增函数.(2)如果D x x ∈∀21,,当21x x <时,都有)()(21x f x f >,那么称函数)(x f 在区间D 上单调递减.特别的,当函数)(x f 在它的定义域上单调递减时,我们就称它是减函数函数.(3)如果函数)(x f y =在区间D 上单调递增或单调递减,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的单调区间.注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2.函数单调性的证明步骤(1)取值,D x x ∈∀21,,且21x x <;(2)作差,)()(21x f x f -,然后通过因式分解、配方等进行化简(也可作商);(3)定号,判断出)(1x f 与)(2x f 的大小关系;(4)下结论,根据函数的单调性的定义得出相应的结论.3.复合函数的单调性(同增异减))(x g u =)(u f y =))((x g f y =增增增增减减减增减减减增4.函数的最大值与最小值一般的,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)I x ∈∀,都有M x f ≤)(;(2)I x ∈∃0,使得Mx f =)(0那么,我们称M 是函数)(x f y =的最大值.(最小值同理)题型训练题型一求函数的单调区间1.已知xx x f 2)(+=,当0>x 时,)(x f 的单调递减区间是()A .)2(∞+,B .)2(∞+,C .)20(,D .)20(,2.函数11)(-+=x x f 的单调递减区间为()A .)1(∞+-,B .)1(--∞,C .)1(,-∞D .)1(∞+,3.已知函数212)(++=x x x f ,则函数)(x f 的单调增区间是()A .)(∞+-∞,B .)2(--∞,C .)2()2(∞+---∞,, D .)2(--∞,,)2(∞+-,4.函数452+-=x x y 的单调递增区间是()A .)25(∞+,B .)425(,C .)4(∞+,D .251(,,)4(∞+,5.函数2-=x x y 的单调递增区间为,函数432--=x x y 的单调递减区间为6.函数232--=x x y 的单调递减区间为,函数542--=x x y 的单调递增区间为题型二根据函数的单调性求参数7.若函数32)(2-+=x ax x f 在区间)4(,-∞上是单调递增的,则实数a 的取值范围是()A .)41(∞+-,B .)41[∞+-,C .)041[,-D .]041[,-8.已知函数⎪⎩⎪⎨⎧>≤---=)1()1(5)(2x xa x ax x x f 是R 上的增函数,则a 的取值范围是()A .03<≤-a B .23-≤≤-a C .2-≤a D .0<a 9.若函数3)1()(+-=x m x f 在R 上单调递增,则m 的范围是10.函数3)(2--=ax x x f 在区间]31[,-上是单调函数,则a 的取值范围是11.函数43)(2+-=mx x x f 在上,)2[∞+单调递增,则m 的范围是12.函数⎩⎨⎧≤-+->-+-=0)2(01)12()(2x x a x x a x a x f ,,在R 上为增函数,则实数a 的取值范围是题型三判断与证明函数的单调性(定义法证明单调性)13.下列函数中,在)0(∞+,上为增函数的是()A .xx f -=3)(B .xx x f 3)(2-=C .11)(+-=x x f D .xx f -=)(14.定义在R 上的函数)(x f 对任意两不相等的实数b a ,都有0)()(>--ba b f a f ,则必有()A .函数)(x f 在R 上先增后减B .函数)(x f 是R 上的增函数C .函数)(x f 在R 上先减后增D .函数)(x f 是R 上的减函数15.已知函数24)(++=xx x f ,判断函数)(x f 在)2[∞+,的单调性,并证明.16.已知函数x x x f +=3)(,判断函数)(x f 在R 上的单调性,并证明.题型四复合函数的单调性(同增异减,注意定义域)17.已知函数)(x f y =在R 上是减函数,则)3(-=x f y 的单调递减区间是()A .)(∞+-∞,B .)3(∞+,C .)3(∞+-,D .)3(,-∞18.已知函数)(x f y =是R 上的减函数,则)2(2x x f y -=的单调递增区间为()A .)(∞+-∞,B .)1(--∞,C .)1(,-∞D .)1(∞+,19.已知函数()f x 是定义在区间)13(,-上的减函数,则)1(2x f -的单调递增区间为20.函数11)(2-=x x f 的单调递减区间是题型五单调性的应用21.已知)(x f 对任意的)(,2121x x x x ≠都有0)()(2121<--x x x f x f ,若)3()(2+>-a f a a f ,则实数a 的取值范围是()A .)31(,-B .)13(,-C .)3()1(∞+--∞,, D .)1()3(∞+--∞,, 22.已知函数⎩⎨⎧<+-≥+=0,20,2)(22x x x x x x x f ,若)()2(2a f a f <-,则实数a 的取值范围是()A .)21(,-B .)12(,-C .)2()1(∞+--∞,, D .)1()2(∞+--∞,, 23.已知函数)(x f 是定义在区间]22[,-上的减函数,且有0)21()1(>---m f m f ,则实数m 的取值范围是24.已知函数)(x f 是定义在)0(∞+,上的增函数,满足)()()(y f x f xy f +=,1)3(=f .(1)求)1(f 与)3(f 的值;(2)若2)8()(≤-+x f x f ,求x 的取值范围题型六抽象函数的单调性25.已知)(x f 的定义域为R ,对于任意实数y x ,都有)()()(y f x f y x f +=+,1)2(=f 且当0>x 时,0)(>x f .(1)求)0(f ,)2(-f 与)4(f 的值;(2)证明)(x f 在R 上为增函数;(3)解关于x 的不等式2)1()32(-->+x f x f .26.已知定义域为)0(∞+,的函数)(x f 对任意)0(∞+∈,,y x 都有)()()(y f x f xy f +=,1)3(-=f 且当1>x 时,0)(<x f .(1)求)9(f 与)3(f 的值;(2)证明函数)(x f 在)0(∞+,上为减函数;(3)解不等式)1(2)6(-<+x f x f .27.已知函数)(x f 对任意的实数y x ,都有1)()()(-+=+y f x f y x f ,且当0>x 时,1)(>x f .(1)证明)(x f 在R 上为增函数;(2)若关于x 的不等式)()5(2m f a ax x f <+-的解集为{}23<<-x x ,求m 的值.28.已知)(x f 的定义域为R ,对于任意实数y x ,都有)()()(y f x f y x f ⋅=+,且当0>x 时,1)(0<<x f .(1)求)0(f 的值;(2)证明0)(>x f ;(3)证明)(x f 在R 上为增函数.综合训练1.函数322-+=x x y 的单调递减区间是()A .]3(--∞,B .]1(--∞,C .)1[∞+-,D .)1[∞+,2.函数x x y )3(-=的递增区间是()A .)23(∞+,B .)23(,-∞C .)230(,D .)30(,3.若函数)(x f 在R 上是减函数,则下列关系式一定成立的是()A .)2()(a f a f >B .)()(2a f a f <C .)()(2a f a a f <+D .)()1(22a f a f <+4.若函数⎩⎨⎧≤->--=222)1()(2x ax x x a x a x f ,,在R 上为减函数,则实数a 的取值范围为5.若定义在R 上的二次函数b ax ax x f +-=4)(2在区间]20[,上是增函数,且)0()(f m f ≥,则实数m 的取值范围是6.已知函数1)3()(2+-+=x a ax x f 在区间)1[∞+-,上单调递减,则a 的取值范围是7.已知函数)21(21)(≠++=a x ax x f .(1)当2=a 时,证明函数在)2(∞+-,上是增函数;(2)讨论函数在)2(∞+-,上的单调性.8.已知定义在区间)0(∞+,上的函数)(x f 满足)()()(2121x f x f x x f -=,且当1>x 时,0)(<x f .(1)求)1(f 的值;(2)证明:)(x f 为单调递减函数;(3)若1)31(=f ,解不等式:2)63(->-x f .第三节函数的单调性参考答案题型一求函数的单调区间1-4C ,B ,D ,C5.(1)(1,2)(2)(1-,+∞),(23,4)6.(1))2,(-∞,),2(+∞(2)(2-,0),(2,+∞)题型二根据函数的单调性求参数7-8D ,B9.1>m 10.2-≤a 或6≥a 11.34≤m 12.21≤≤a 题型三判断与证明函数的单调性13-14C ,D15-16略题型四复合函数的单调性17-18B ,C19.(0,2)20.(0,1),(1,+∞)题型五单调性的应用21-22A ,D23.)32,21[-24.略题型六抽象函数的单调性25-28略综合训练1-5A ,C ,D ,4≥a ,40≤≤m 6.03≤≤-a 7.(1)略(2)当21>a 时,函数)(x f 在)2(∞+-,上单调递增,当21<a 时,函数)(x f 在()2(∞+-,上单调递减.8.(1)0)1(=f (2)略(3)(2,5)。
高一升高二个辅资料第三课时第二次课、基本知识1定义:对于函数 y f (x),对于定义域内的自变量的任意两个值 x-\, x 2,当 x-\ x 2时,都有f(xj f (X 2)(或f(xj f (X 2)),那么就说函数 y f (x)在这个区间上是增(或减)函数。
重点2 .证明方法和步骤:(1) 取值: 设X i ,X 2是给定区间上任意两个值,且 X i X 2 ;(2) 作差:f (X i )f (X 2);(3) 变形: (如因式分解、配方等); (4) 宀口定号:即 f (X i ) f (X 2)或 f (X i )f (X 2);(5) 根据定义下结论。
3•常见函数的单调性■ ■-1 -'.时,订述在R 上是增函数;k<0时m 在R 上是减函数(2)代直)(k > 00寸),『仗)在(一a, 0), (0, +8)上是增函数,4•复合函数的单调性:复合函数y f(g(x))在区间(a,b)具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”在函数f(x)、g(x)公共定义域内,5. 函数的单调性的应用:判断函数y f(x)的单调性;比较大小;解不等式;求最值(值域) 例题分析第一章 函数的基本性质之单调性(k<0时),總述在(一汽0), ( 0, +8)上是减函数,(3)二次函数的单调性:对函数2f (x) ax bx c (a 0),当a 0时函数f(x)在对称轴x 当a 0时函数f (x)在对称轴x b 2a 的左侧单调减小,右侧单调增加; b 2a的左侧单调增加,右侧单调减小;增函数f(x)增函数g(x)是增函数; 减函数f (x)减函数g (x)是减函数; 增函数f(x)减函数g(x)是增函数;减函数f(x)增函数g(x)是减函数.例1:证明函数f(x)二一在(0 , +8 )上是减函数。
例2 :证明1上- L :在定义域上是增函数。
(2)第一章函数的基本性质之单调性
一、基本知识
1 .定义:对于函数y f (x),对于定义域内的自变量的任意两个值x「X2,当捲x2时,都有f(x i) f (X2)(或f (x i) f(X2)),那么就说函数y f (x)在这个区间上是增(或减)函数。
重点2 .证明方法和步骤:
(1) 取值: 设X i,X2是给定区间上任意两个值,且X i X2 ;
(2) 作差: f(xj f(X2);
(3) 变形: (如因式分解、配方等);
(4) 宀口
定
号:
即f (x i) f(x2) 0或f (x i) f(x2) 0 ;
(5) 根据定义下结论。
3•常见函数的单调性
⑴ 心) 也+乩k o|时,回在R上是增函数;k<o时,国在R上是减函数
0), (0 , + g)上是增函数,
(k<0时),匚匚1在(一g, 0), (0, + g)上是减函数,
2
(3)二次函数的单调性:对函数f(x) ax bx c (a 0),
b
当a 0时函数f (x)在对称轴x ——的左侧单调减小,右侧单调增加;
a
K
当a 0时函数f (x)在对称轴x ——的左侧单调增加,右侧单调减小;
a
4 .复合函数的单调性:复合函数y f(g(x))在区间(a,b)具有单调性的规律见下表:
以上规律还可总结为:“同向得增,异向得减”或“同增异减” 在函数f(x)、g(x)公共定义域内,增函数f (x)增函数g(x)是增函数;减函数f(x)减函数g (x)是减函数;
5.函数的单调性的应用:
判断函数y f(x)的单调性;比较大小;解不等式;求最值(值域) 例题分析
T
2
例1 :证明函数f(x)=区_1在(0, + 上是减函数。
例2 :证明F@) = / + 3|在定义域上是增函数。
例3 :证明函数f(x)=x 3的单调性。
例4 :讨论函数y =一; 1 — x2在[—1,1]上的单调性.
3
例5 :讨论函数f(x) =W 的单调性.
例6 :讨论函数f(x) x -(x 0)的单调性
x
例7:求函数"Q d + 4—3的单调区间。
习题:求函数¥ = 斗龙_5的单调区间。
例8 :设f(x)在定义域内是减函数,且 f(x) >0,在其定义域内判断函数y = [f(x)] 2.的单调性
(x —1)2 x >0
例9 :若f(x)= ,则f(x)的单调增区间是________ ,单调减区间是 _________
x + 1 x v 0
例10 :对于任意x>0,不等式x2 +2x-a >0恒成立,求实数a的取值范围。
例ii:若函数F(x)= -皿兀+ 5 -皿|在十°°)上是增函数,在1 _卩一可上是减函数,则实数
m的值为
例12 :若定义在R上的单调减函数f(x)满足i I」 I九 I ,求a的取值范围。
习题:若定义在丘回上的单调减函数f(x)满足『魚+ -3a)|,求a的取值范围。
针对性训练
2
习题:若函数仏)-& 叫十―叫在| - 2, + °°)|上是增函数,则实数m的范围为;
a 的取值范围.
一、 选择题(每小题5分,共20分) 1 •函数y = — x
3 4 5 6 7 8
的单调减区间为( )
A • ( — 8, 0]
B . [0,+m
) C • ( — 8, 0) D • (— m,+m)
2 .若函数y = kx + b 是R 上的减函数,那么( )
A. k<0 B . k>0 C . k 工 0 D •无法确定 3 .下列函数在指定区间上为单调函数的是
( )
2
A . y =—, x € ( —8, op,u*8)
x
8 .定义在(—1,1)上的函数f(x)是减函数,且满足 f(1 — a) v f(a),求实数a 的取值范围.
9 . (10分)函数f(x) = x 2
— 2ax — 3在区间[1,2]上单调,求
3
B. y =
, x € (1 ,+8)
x — 1
C. y = x 2 , x €R D . y = |x|, x €R
5 .已知函数f(x) = x 2 + bx + c 的图象的对称轴为直线 x = 1,则( )
A . f( — 1)<f(1)<f(2)
B . f(1)<f( — 1)<f(2)
C . f(2)<f( — 1)<f(1)
D . f(1)<f(2)<f( — 1)
二、 填空题(每小题5分,共10分)
6 .若f(x)是R 上的增函数,且f(X 1)>f(X 2),则X 1与X 2的大小关系是 ______________
7 .设函数f(x)是(—8,+8
)上的减函数,则h 2 + 1)与f(a)的大小是 _________ .
三、 解答题(每小题10分,共20分)
x + 2
8 .求函数f(x)= 的单调区间,并证明 f(x)在其单调区间上的单调性.
x + 1。