3 5
A
4
2
在基F11,F12,F21,F22下的坐标。
第21页/共85页
1.3 线性子空间
(a) 线性子空间 设V1是数域F上的线性空间V上一个非空子集合, 且对已有的线性运算满足以下条件:
1. 如果x,y∈V1,则x+y∈V1; 2. 如果x∈V1,k∈F,则kx∈V1; 则称V1是V的线性子空间(linear subspace)或子空间。
则称x1,…,xm是线性相关(linearly dependent)的。否 则称x1,…,xm是线性无关(linearly independent)的。
第12页/共85页
例5 在Rn中,分别讨论下面两个向量组的线性相关 性:
例6 讨论下面2阶矩阵的线性相关性:
a 1
1 a
1 1
1 1
A1 1
1 , A2 1
• 范数、序列、级数:定义了范数,我们就可以定义矩阵序列、矩阵级数及其极限, 并讨论其收敛和发散性。
第4页/共85页
• 矩阵函数:以矩阵为变量的函数称为矩阵函数。Jordan标准形在此起了很重要的 作用。
• 函数矩阵与矩阵微分方程:将矩阵的概念推广,元素为任意函数的矩阵称为函数 矩阵。这样我们可以求矩阵的导数、微分、积分,并求解相应的微分方程。
一、线性空间概念 (a) 数域
数域(field):关于四则运算封闭的数的集合。 ✓任何数域都含有元素0和元素1;
✓典型数域:复数域C,实数域R,有理数域Q; ✓任意数域F都包括有理数域Q。
第8页/共85页
阿贝尔群V和数域F上的线性运算具有良好性质,则<V,F>构
(b) 线性空间 成一个线性空间。
给定非空集合V ,数域F,如果满足: