「初中数学」勾股定理与最短距离问题.doc
- 格式:doc
- 大小:23.50 KB
- 文档页数:3
初中数学试卷桑水出品《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短。
二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 14、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
5、在直线l 上依次摆放着七个正方形(如图4所示)。
「初中数学」利用勾股定理解题的几种常见题型(上)一.利用勾股定理求线段长1.如图,在等腰直角三角形ABC中,∠ABC=90°,点D 为AC边的中点,过D点作DE⊥DF,交AB于E,交BC 于F,若AE=4,FC=3,求EF的长.【分析】由于D是等腰三角形ABC斜边AC的中点,想到三线合一所以连接BD,如图则BD⊥AC,∠ADB=∠CDB=90°,AD=BD,又DE⊥DF,∴∠EDF=90°,∴∠ADE=∠BDF,易知∠A=∠DBF=45°,∴△ADE≌△BDF,∴AE=BF=4,而FC=3,∴AB=BC=7,∴BE=3,在Rt△EBF中,由勾股定理得EF²=BE²+BF²,∴EF=5.2.如图,一只蚂蚁若沿长方体表面从A点爬到B点所行路程最短为多少?(AC=2㎝,AA=4cm,BC=1㎝).【分析】本题运用转化的思想,是最短行程问题,从A 点到B点有三种走法,依据两点间线段最短,根据勾股定理求出最短路程.①如图①,沿AC,BC,AA,AC,BB,CB 剪开展为一个平面图形,在AAB这一直角三角形中,求得AB²=25㎝;②如图②,沿AC,CC,CB,DA,AA,BD剪开展为一个平面图形,在ADB这一直角三角形中,求得AB²=29;③如图③,沿AD,DD,BD,CB,CA,AA剪开展为一个平面图形,在ACB这一直角三角形中,求得AB²=37,分析比较得AB最短为5㎝.3.如图,折叠长方形一边AD,使点D落在BC上点F处,AB=8㎝,BC=10㎝,求EC的长.【分析】本题属折叠问题,方法是设出未知数,表示相关的量,进而利用勾股定理列方程求解.设EC为x㎝,则DE=8一x=EF,而由折叠知AF=AD=10,∴在Rt△ABF中,由勾股定理求得BF=6㎝,∴CF=4㎝,在Rt△ECF中,EC²+CF²=EF²,即x²+4²=(8一x)²,解得x=3,∴EC长为3㎝.4.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,点B 关于CD的对称点为B且GB⊥BC,交AC于G,若AB=5,BC=3,求AG的长.【分析】在Rt△ACB中,AB=5,BC=3,由勾股定理得,AC=4,又CD⊥AB,点B关于CD的对称点为B,∴BC=BC=3,∠B=∠CBB,而∠A+∠B=90°,∠GBA+∠CBB=90°,∴∠A=∠GB/A,∴AG=BG,设AG=x,则CG=4一x,在Rt△GBC中,GB²+BC²=CG²,即x²+3²=(4一x)²,解得x=7/8,即AG长为7/8.二.利用勾股定理证明线段之间的平方关系5.如图,∠C=90°,AM=CM,MP⊥AB于点P,求证:BP²=BC²+AP².【分析】此类题一般都是利用勾股定理,结合图形的特点进行推导,几何题用代数法进行证明,体现了数与形的完美结合,本题BP边必须处在一个直角三角形中,所以连接BM,如图则在Rt△BPM中,BP²=BM²一MP²,而在Rt△BCM中BM²=BC²+CM²,∴BP²=BC²+CM²一MP²,而AM=CM,∴BP²=BC²+AM²一MP²,在Rt△APM中,AM²一MP²=AP²,∴BP²=BC²+AP².6.如图,在△ABC中,AB=AC,P是BC边上任意一点,连接AP,求证:AC²=AP²+CP×BP.【分析】要证线段间的平方关系,应用勾股定理,应构建直角三角形,所以过点A作AD⊥BC于D,D为垂足,如图由于AB=AC,∴BD=DC,在Rt△AD中,AC²=AD²+DC²,在Rt△APD中,AD²=AP²一PD²,∴AC²=AP²一PD²+DC²=AP²+(DC+PD)(DC一PD)=AP²+CP(DC一PD),而DC=BD,∴AC²=AP²+CP×BP.7.如图,在△ABC中,AB=AC,∠BAC=90°,D是BC 上任意一点,求证:BD²+CD²=2AD².【分析】由题知△ABC为等腰直角三角形,想到三线合一出直角,所以过A点作AE⊥BC于E,E为垂足,如图则AE=BE=CE,证题时步步向结论靠近,∵BD²=(BE一DE)²=(AE一DE)²=AE²一2AE×DE+DE²,CD²=(CE+DE)²=(AE十DE)²=AE²+2AE×DE十DE²,∴BD²+CD²=2AE²十2DE²=2AD².这里巧用完全平方公式进行了转换.8.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h,求证:①1/a²+1/b²=1/h²,②a+bc+h,③以a+b,h,c+h为边长的三角形是直角三角形.【分析】①左边通过运算,结合勾股定理,结论中有了高h,则要用到面积公式,∴1/a²十1/b²=(a²+b²)/a²b²=c²/a²b²,而ab/2=ch/2,∴a²b²=c²h²,∴1/a²+1/b²=1/h².②是比较大小,需运用勾股定理结合完全平方公式进行推证,∵(a十b)²=a²十b²+2ab=c²+2ab,又ab=ch,∴(a+b)²=c²+2chc²+2ch+h²=(c十h)²,∴a十bc十h.③由上知c十h最大,∵(a十b)²=a²十b²+2ab,∴(a+b)²+h²=a²+b²+2ab十h²=c²+2ch+h²=(c+h)²,∴以a+b,h,c+h为边长的三角形是直角三角形.。
蚂蚁爬行的最短路径正方体4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒ B解:根据两点之间线段最短可知选A . 故选A .2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB=51222=+.8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D1, 根据两点之间线段最短, MD=MC+CD=1+2=3,第6题第7题AB121MD 1=132322212=+=+DD MD .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB= ()1012122=++.故选C .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB= = cm ;(2)展开底面右面由勾股定理得AB==5cm ;所以最短路径长为5cm ,用时最少:5÷2=2.5秒.长方体10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
解:将长方体展开,连接A 、B ,根据两点之间线段最短,AB==25.A B A 1B 1D CD 1C 121411. 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 .解:正面和上面沿A 1B 1展开如图,连接AC 1,△ABC 1是直角三角形, ∴AC 1=()5342142222212=+=++=+BC AB18.(2011•荆州)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂奴爬行的最短路径长为 cm .解:∵PA=2×(4+2)=12,QA=5 ∴PQ=13.故答案为:13.19.如图,一块长方体砖宽AN=5cm ,长ND=10cm ,CD 上的点B 距地面的高BD=8cm ,地面上A 处的一只蚂蚁到B 处吃食,需要爬行的最短路径是多少?解:如图1,在砖的侧面展开图2上,连接AB , 则AB 的长即为A 处到B 处的最短路程.解:在Rt △ABD 中,因为AD=AN+ND=5+10=15,BD=8, 所以AB 2=AD 2+BD 2=152+82=289=172. 所以AB=17cm .故蚂蚁爬行的最短路径为17cm .49、如图,长方体盒子(无盖)的长、宽、高分别12cm ,8cm,30cm.(1)在AB 中点C 处有一滴蜜糖,一只小虫从D 处爬到C 处去吃,有无数种走法,则最短路程是多少?(2)此长方体盒子(有盖)能放入木棒的最大长度是多少?12.如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只小蚂蚁从A 点爬到B 点,那么这只蚂蚁爬行的最短路径为 米。
勾股定理的应用最短路径问题1. 引言大家好,今天咱们聊聊一个古老又有趣的数学概念——勾股定理。
可能有人会问:“这跟我有什么关系呢?”嘿,等着听,勾股定理可不是干巴巴的公式,它其实在我们日常生活中随处可见,特别是在寻找最短路径的时候!想想吧,咱们出门去超市、上班、约会,总是希望能走条最短的路,不是吗?1.1 勾股定理是什么?首先,让我给你简单科普一下,勾股定理就是“直角三角形的两条直角边的平方和等于斜边的平方”。
哎哟,这听起来可能有点抽象,但是举个例子就明白了。
想象一下,你在一个小区里,想从家里去朋友家,结果发现可以选择两条路:一条是笔直的,另一条是绕来绕去的。
咱们用勾股定理算一下,直走那条路肯定最省劲,走得快,又不费力,简直是“稳得一批”!1.2 最短路径的日常应用所以说,勾股定理就像是我们日常生活中的导航仪。
无论是行走还是开车,只要涉及到找路,勾股定理就在那里默默支撑着我们。
有时候你可能会觉得“哎,我怎么就走错了路呢?”其实啊,咱们常常是没有用到这个小聪明,走了冤屈的弯路。
所以,学会利用勾股定理,让我们在出门时不再“走火入魔”,多出点时间来享受生活,简直是“赚到了”!2. 勾股定理在生活中的真实案例接下来,我来给大家分享几个勾股定理在生活中实际应用的例子。
想象一下,你家后院有个长方形的游泳池,你想在旁边建个阳光棚。
你需要测量一下,从池边到棚子的某个点的距离。
这里用上勾股定理就能轻松搞定!假如你从池子的一个角落走到对面的边,再直线走到阳光棚的底部,咱们就能通过计算,得到最短的距离,省得你东跑西颠了。
2.1 工作中的应用再说说工作吧,假设你是一名送货员,天天跑腿送快递。
为了提高效率,你需要计算每次送货的最短路径。
只要把送货点的坐标设定好,运用勾股定理,你就能算出最近的送货路线。
这样一来,工作起来简直是“如虎添翼”,还能多挣点外快,何乐而不为呢?2.2 健身房里的运动还有一种情况,比如你在健身房里锻炼,跑步机上那条直线可不是随便走走的!你想把心率调到最佳状态,搞个“HIIT”训练,结果一不小心跑偏了。
1A B A 1B 1DCD 1C 124勾股定理--最短距离问题蚂蚁爬行的最短路径正方体1.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .3. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .4.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
10题 11 12 1311. 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),蚂蚁到B 处吃食,需要爬行的最短路径是多少?14、如图,长方体盒子(无盖)的长、宽、高分别12cm ,8cm,30cm.(1)在AB 中点C 处有一滴蜜糖,一只小虫从D 处爬到C 处去吃,有无数种走法,则最短路程是多少?(2)此长方体盒子(有盖)能放入木棒的最大长度是多少?15.如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只小蚂蚁从A 点爬到B 点,那么这只蚂蚁爬行的最短路径为 米。
1514 16 17 第2题 第3题 ABCD.1283016.如图,直四棱柱侧棱长为4cm ,底面是长为5cm 宽为3cm 的长方形.一只蚂蚁从顶点A 出发沿棱柱的表面爬到顶点B .求:(1)蚂蚁经过的最短路程;(2)蚂蚁沿着棱爬行(不能重复爬行同一条棱)的最长路程.17.如图,长方体的长、宽、高分别为6cm ,8cm ,4cm .一只蚂蚁沿着长方体的表面从点A 爬到点B .则蚂蚁爬行的最短路径的长是 。
17.1(11)勾股定理--与最短路径问题一.【知识要点】1.两点之间线段最短:⑴将军饮马型;⑵几何体上两点最短型2.垂线段最短型3.造桥选址型二.【经典例题】1.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .2.如图一个圆柱,底圆周长10cm ,高4cm ,点B 距离上边缘1cm,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .3.如图,圆柱形容器中,高为0.4m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,与蚊子相对..的点A 处,求壁虎捕捉蚊子的最短距离(容器厚度忽略不计).4.编制一个底面半径为6cm 、高为16cm 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的111AC B ,222,A CB ,则每一根这样的竹条的长度最少是__________.5.如图,圆柱底面半径为cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B在同一高上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为______.6.一只蚂蚁从长为4cm,宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。
7.已知 A (1,1)、B (4,2).P 为 x 轴上一动点,求 PA+PB 的最小值.8.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.2A B三.【题库】【A 】1.如图,一个长方体盒子,一只蚂蚁由A 出发,在盒子的表面上爬到点C 1,已知AB=7cm ,BC=CC 1=5 cm ,则这只蚂蚁爬行的最短路程是________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是________.3.如图,∠ABC =30°,点D 、E 分别在射线BC 、BA 上,且BD =2,BE =4,点M 、N 分别是射线BA 、BC 上的动点,当DM +MN +NE 最小时,(DM +MN +NE )2的值为( )A 、20B 、26C 、32D 、36【B 】1.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为( ) A.23 B. 26 C.3 D.6A 1B 1C 1D 1 A B C D2.如图,一个无盖的长方体长、宽、高分别为8cm 、8cm 、12cm ,一只蚂蚁从A 爬到C 1,怎样爬路线最短,最短路径是多少?3.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .14.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .4dmB .2dmC .2dmD .4dm8cm 8cm12cm【C 】 1.(8分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A. 李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?2.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,PA+PD 长为( )A .8 B.4+15 C .152 D .1723.如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD 交于点 E 、F ,则△CEF 的周长的最小值为( )A.2B.23C.2+3D. 44.如图,在矩形ABCD 中,AB =5,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,则△AEF 的周长最小时值为( )A .17B .21C .13+41 D. 13+345.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。
《勾股定理》的应用专题之——最短距离问题姓名:一、课前热身1.如图,一条河同一侧的两村庄A、B,其中 A、B到河岸最短距离分别为AC=1km, BD=2km,CD=4cm,现欲在河岸上建一个水泵站向A、 B两村送水,当建在河岸上何处时,使到A、B 两村铺设水管总长度最短,并求出最短距离。
2.三角形 ABC中 ,AB=10,AC=17,BC边上的高线 AD=8,求 BC.二、典型例题例1:如图, C 为线段 BD 上一动点,分别过点 B D 作 AB⊥ BD,ED⊥ BD,连结 AC、EC,已知 AB=5,DE=1,BD=8,设 CD=x.(1)用含 x 的代数式表示 AC 十 CE的长;(2)试求 AC 十 CE的最小值;例 2:一只蚂蚁从长为 4cm、宽为 3 cm,高是 5 cm 的长方体纸箱的 A 点沿纸箱表面爬到 B 点,那么它所行的最短路线的长是多少?BA例 3:如图所示,无盖玻璃容器,高的容器的上口外侧距开口 1 cm的18 cm,底面周长为60 cm,在外侧距下底 1 cm的点 C 处有一蜘蛛,与蜘蛛相对F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.三、巩固练习1.(青岛市)如图 1,长方体的底面边长分别为1cm 和 3cm,高为 6cm.如果用一根细线从点 A 开始经过 4 个侧面缠绕一圈到达点 B,那么所用细线最短需要cm;B6cmA3cm1cm图 12.如图 3,是一个三级台阶,它的每一级的长宽和高分别为20dm 、 3dm 、2dm , A 和 B 是这个台阶两个相对的端点, A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台阶面爬到 B 点最短路程是dmA2023B图 33..如图,长方体的长、宽、高分别为4, 2, 1,一只蚂蚁从实心长方体的顶点C1 处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?A 出发,沿长方体的表面爬到对角顶点D1C1A11 DB1C2A4B。
勾股定理最短路径引言勾股定理是初中数学中的重要定理之一,它描述了直角三角形中三条边之间的关系。
而最短路径是图论中的一个经典问题,它涉及寻找两个顶点之间最短的路径。
本文将探讨如何利用勾股定理来解决最短路径问题。
最短路径问题最短路径问题是在一个图中寻找两个顶点之间的最短路径。
在图论中,图由一组顶点和一组边组成,边连接两个顶点并表示它们之间的关系。
最短路径问题有着广泛的应用,例如在网络路由、物流规划和导航系统中都需要找到最短路径。
勾股定理勾股定理是由古希腊数学家毕达哥拉斯提出的。
它表述为:直角三角形的斜边的平方等于两个直角边的平方和。
即a2+b2=c2,其中c为斜边的长度,a和b为两个直角边的长度。
最短路径算法解决最短路径问题的算法有很多种,其中最著名的一种是迪杰斯特拉算法。
该算法通过动态规划的思想,逐步更新起始点到其他所有点的最短路径。
具体步骤如下:1.创建一个集合S,用于存放已经找到最短路径的顶点。
2.初始化起始点到其他所有点的距离为无穷大,起始点到自身的距离为0。
3.选择一个距离最小的顶点v,将其加入集合S。
4.更新起始点到v的邻接点的距离,如果经过v的路径比当前路径短,则更新距离。
5.重复步骤3和4,直到集合S包含了所有顶点。
6.最终得到起始点到其他所有点的最短路径。
勾股定理最短路径算法在某些特殊情况下,我们可以利用勾股定理来求解最短路径问题。
假设我们有一个平面上的图,其中每个顶点表示一个点的坐标,边表示两个点之间的距离。
如果我们要求解从起始点到目标点的最短路径,并且只能沿着直角边移动,那么我们可以利用勾股定理来解决这个问题。
具体步骤如下:1.将平面上的点表示为二维坐标(x,y),其中x和y分别表示点在x轴和y轴上的坐标。
2.计算起始点到所有其他点的直线距离,并将其作为初始最短路径。
3.对于每个顶点,计算其到目标点的直线距离,并利用勾股定理计算出最短路径。
4.选择最短路径最小的顶点作为下一个移动的目标点。
蚂蚁爬行的最短路径
一.正方体
1. 如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体
的外表面爬到顶点B
的最短距离是 .
2. 正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M 点的最短距离为 .
3.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.
二.长方体
4.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是。
1
A B
A
1
B
1
D C
D
1
C
1
2
4
11. 如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 .
18.(2011•荆州)如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂奴爬行的最短路径长为 cm.
三.圆柱
21.有一圆柱体如图,高4cm,底面半径5cm,A处有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最短距离 .
第2题
22.有一圆形油罐底面圆的周长为24m,高为6m,一只老鼠从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为 .
第3题
23.如图,一只蚂蚁沿着图示的路线从圆柱高AA1的端点A到达A1,
6,高为5,则蚂蚁爬行的最短距离为
若圆柱底面半径为
.。
第1页 共2页 1A B A 1B 1DCD 1C 124勾股定理--最短距离问题蚂蚁爬行的最短路径正方体1.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是A .A ⇒P ⇒BB .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .3. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .4.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是5.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 秒钟.长方体10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
10题 11 12 1311. 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 .12.(2011•荆州)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂奴爬行的最短路径长为 cm .蚂蚁到B 处吃食,需要爬行的最短路径是多少?14、如图,长方体盒子(无盖)的长、宽、高分别12cm ,8cm,30cm.(1)在AB 中点C 处有一滴蜜糖,一只小虫从D 处爬到C 处去吃,有无数种走法,则最短路程是多少?(2)此长方体盒子(有盖)能放入木棒的最大长度是多少?15.如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只小蚂蚁从A 点爬到B 点,那么这只蚂蚁爬行的最短路径为 米。
小专题(一):利用勾股定理解决最短路线问题本文将介绍如何利用勾股定理来解决最短路线问题。
在许多实际应用中,我们需要找到两点之间的最短路径。
这个问题在物流、传输网络以及旅行规划等领域都是非常重要的。
勾股定理简介勾股定理是数学中的一个基本定理,用于解决直角三角形中的关系。
根据勾股定理,直角三角形的两个直角边长度分别为a和b,斜边长度为c,则有以下关系式成立:$c^2 = a^2 + b^2$问题描述假设我们要从A点到B点,但是我们希望走的路径尽可能短。
我们可以将这个问题转化为一个几何问题,即找到直角三角形的斜边长度最小的情况。
解决方法我们可以利用勾股定理来解决这个问题。
假设A点的坐标为(x1, y1),B点的坐标为(x2, y2)。
则A点到B点的直线距离为:$d = \sqrt{(x2 - x1)^2 + (y2 - y1)^2}$我们可以将坐标系中的点表示为直角三角形的两个直角边,直线距离表示为斜边长度。
根据勾股定理,我们可以通过计算斜边长度来找到两点之间的最短路径。
应用举例假设我们需要规划一条从家到公司的最短路径。
我们可以利用勾股定理来计算不同路径的距离,并选择最短的路径进行出行。
假设家的坐标为(1, 1),公司的坐标为(5, 5)。
根据勾股定理的计算公式,我们可以得到:$d = \sqrt{(5 - 1)^2 + (5 - 1)^2} = \sqrt{16 + 16} = \sqrt{32}$所以最短路径的长度为$\sqrt{32}$。
在实际应用中,我们可以通过比较不同路径的长度来选择最优的路径。
总结利用勾股定理解决最短路线问题可以帮助我们在实际应用中找到两点之间最短的路径。
通过将问题转化为几何问题,并利用勾股定理的计算公式,我们可以简单而有效地解决这个问题。
在实际应用中,我们可以根据勾股定理的计算结果选择最优的路径进行出行或者路线规划。
小专题(一):利用勾股定理解决最短路程
问题
简介
本文将介绍如何利用勾股定理来解决最短路程问题。
勾股定理是数学中的一条基本定理,可以用于计算直角三角形的边长。
通过应用勾股定理,我们可以找到两个点之间的最短距离。
解决方法
1. 理解勾股定理:
勾股定理表达式为:a^2 + b^2 = c^2。
其中,a和b是直角三角形的两个直角边,c是斜边。
可以根据已知的两个边长度求解第三个边的长度。
2. 确定两个点的坐标:
在解决最短路程问题时,首先需要确定两个点的坐标,分别表示为点A(x1, y1)和点B(x2, y2)。
3. 计算两点间的距离:
使用勾股定理计算点A和点B之间的距离,可以采用以下公式:
距离AB = √((x2 - x1)^2 + (y2 - y1)^2)
4. 应用最短路程问题:
通过上述计算,我们可以得到点A和点B之间的最短距离。
这个最短距离可以用于解决一些实际问题,如路程规划、导航等。
示例
假设我们需要计算一个城市中两个地点之间的最短距离,其中点A的坐标为A(2, 3),点B的坐标为B(5, 7)。
我们可以使用勾股定理计算出点A和点B之间的最短距离:
距离AB = √((5 - 2)^2 + (7 - 3)^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5
因此,点A和点B之间的最短距离为5。
结论
通过利用勾股定理,我们可以解决最短路程问题,找到两个点之间的最短距离。
这个方法可以应用于各种实际问题中,具有很实用的价值。
勾股定理中的最短路径问题1. 勾股定理的基础1.1 勾股定理的来历哎,你知道吗?勾股定理这玩意儿可真是数学界的明星!想想看,两个直角边的平方和,等于斜边的平方,简直就像是数学的秘密武器。
古希腊的数学家毕达哥拉斯可是大名鼎鼎,他的这个定理为我们揭开了许多几何谜团。
不过,咱们可不能把它当成死板的公式,生活中处处都有它的影子。
1.2 勾股定理的应用想象一下,你和朋友在公园里散步,结果你们发现了一条小径。
这条小径绕来绕去,走得可费劲了,但其实你们只需要沿着一条直线走到目的地。
这个时候,勾股定理就像你的导航,告诉你怎么走最省事。
无论是爬山、越野,还是走街串巷,最短路径的问题无处不在,真是“走一步算一步”的好帮手。
2. 最短路径的趣味探讨2.1 最短路径的魅力说到最短路径,简直可以用“行走在正确的道路上”来形容。
想象一下,你在迷宫里游荡,四周都是墙壁,脑袋都要炸了。
这个时候,找到那条直达出口的路,那种心里一亮的感觉,真的是无与伦比!而勾股定理就像你的秘密武器,让你用最少的步数找到最佳出口,真是“智者千虑,必有一失”,谁都想少走弯路嘛!2.2 日常生活中的最短路径不过,最短路径可不仅限于数学题。
比如说,假设你要去隔壁的超市,走着走着,突然发现原来有一条小巷子可以穿过去,走起来省时又省力,心里那个爽啊,简直像捡到了一分钱。
生活中总是有这样的小发现,就像勾股定理教给我们的道理——有时候,直接一点,反而是最好的选择。
3. 总结与思考3.1 勾股定理的哲理勾股定理不仅是个数学公式,它其实还给我们带来了一些人生的哲理。
我们常常在生活中绕来绕去,寻找看似完美的路径,但实际上,简单的直线才是最有效的。
有时候,想太多反而让我们迷失方向,真的是“越想越糊涂”。
所以,咱们在面对选择时,别忘了用勾股定理的思维,寻找那条最短、最简单的路。
3.2 实际应用的启示最终,勾股定理和最短路径的问题不仅仅是数学的事,更是生活的智慧。
我们在每一次选择中,都可以尝试运用这种思维,尽量少走弯路,快速达到目标。
勾股定理在最短路径问题中的应用标题:勾股定理的在最短路径问题中的应用导言:最短路径问题是一类在图论中广泛应用的数学问题,它关注着在给定的网络中寻找两个节点之间最短路径所需经过的边或弧的集合。
数学家们在求解最短路径问题的过程中,经过了数不清的探索和尝试。
本文将介绍勾股定理在最短路径问题中的应用,通过深入讨论和具体案例分析,旨在帮助读者更加深入、全面地理解这一主题。
一、勾股定理概述1.1 勾股定理定义勾股定理,也称毕达哥拉斯定理,是三角学中一个经典的定理。
它表明,在一个直角三角形中,设直角边的长度分别为a和b,斜边长度为c,则有a² + b² = c²。
二、最短路径问题介绍2.1 最短路径问题的定义最短路径问题是一个经典的图论问题,它要求在给定的加权有向图或无向图中,求解两个顶点之间的最短路径。
这种路径可能经过一些中间节点,但其总权值和需要最小。
三、勾股定理在最短路径问题中的应用3.1 最短路径问题的建模在最短路径问题中,我们需要将问题建模为一个加权有向图或无向图。
对于一个直角三角形,我们可以将直角边的长度作为边的权值,斜边的长度作为两个节点之间的距离。
3.2 以勾股定理为基础的最短路径算法基于勾股定理的最短路径算法利用了直角三角形的特性,将直角边长度作为边的权值,通过计算两个节点之间的距离来求解最短路径。
3.3 实例分析:勾股定理在最短路径问题中的具体应用通过一个具体的实例,我们可以更好地理解勾股定理在最短路径问题中的应用。
假设我们有一个城市地图,有一辆车位于城市的某个节点A上,我们需要找到车从节点A到达另一个节点B的最短路径。
4. 总结与回顾通过本文的讨论,我们了解了勾股定理在最短路径问题中的应用。
勾股定理提供了一种有效的方法来计算两个节点之间的距离,从而为最短路径问题的求解提供了便利。
通过建立一个适当的数学模型,我们可以利用勾股定理来解决各种实际应用中的最短路径问题。
「初中数学」勾股定理与最短距离问题勾股定理与最短路径问题
最短路径问题的核心理论是:两点之间线段最短,但在不同情形中,会以不同的方式出现,也就会涉及到不同的思路和方法,比如在【几何模型】“将军饮马”问题——作一首小诗这一讲中,主要利用到两点之间线段最短和三角形两边之和大于第三边(三角形的三边关系本质上还是两点之间线段最短),而这一讲,我们主要涉及到立体图形的最短路径问题。
一、立体图形的最短路径问题的解决思路
对于立体图形的最短路径问题,我们一般是利用横切或展开等手段,将其转换到平面图形中解决,而这种情形不免会在直角三角形中解决,也自然会和勾股定理扯上关系
二、利用横切,转换成平面图形
【例】
如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一只14cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为多少?
(注:内径即底面直径)
【分析】
若使吸管露出杯口最短,自然留在杯中最长,而最长莫
过于下列情况:
这样,按照上图将圆柱横切,就可以将其转换到RT△ACB 中解决,而AB可有勾股定理解得:AB=13cm,所以吸管露出杯口的最短长度AD=BD-AB=1cm
【练习题】
如图,将一根25cm长的细木棒,放入长、宽、高分别为8cm、6cm、10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是多少?(保留1位小数)。
三、利用展开,转换成平面图形
这类问题又可以细分为两种情形:直面(正方体或长方体)和曲面(圆柱),但无论直面或曲面,一般都是展开为矩形,进而利用勾股定理解决
【例】直面(正方体或长方体)
【分析】
研究在表面从点M到点C的最短路径,可以将正方体表面局部展开:
根据“两点之间线段最短,可知最短路径,即为线段MC。
进而,在RT△CGM中,利用勾股定理,可求MC 【练习题】【例】曲面(圆柱)如图,圆柱高15cm,底面半径为8/兀cm,一蚂蚁从B点爬到A点的最短路径为多少?
【分析】
请注意:此题的易错点是,很多同学直接连接AB,认为
此时线段AB即为最短路径。
拜托,你的蚂蚁会穿墙术吗?
这里是从圆柱表面爬行,即在曲面上爬行。
也就是说,在视觉上,蚂蚁是按照曲线爬行的(实际上,还是一条直线) 尽管如此,我们仍然可以把这个圆柱表面局部展开,可得:关键点:这里的线段BC长,实际上是指上图中,半圆BC的长度(红色部分)
根据两点之间线段最短,可知最短路径,即为线段AB。
进而,在RT△ACB中,利用勾股定理,可求最短路径AB长【练习题】
如图,以A点环绕油罐建梯子,使它正好落在A点的正上方B点处,问梯子最短要多少米?(已知油罐底面半径为6/π m,AB为5m)。