反比例函数知识点总结
- 格式:docx
- 大小:39.02 KB
- 文档页数:9
反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。
1.y随着x的增加而减小,或随着x的减小而增加。
2.当x=0时,函数y无定义。
3.曲线y=k/x在第一象限中,以坐标轴为渐近线。
二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。
第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。
三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。
2.反比例函数的图像关于y轴对称。
3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。
4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。
六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。
2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。
3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。
4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。
总结:反比例函数是一类常见的函数关系,具有重要的应用价值。
对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。
同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。
在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。
数学反比例函数知识点大全反比例函数知识点反比例函数定义一般地,如果两个变量某、y之间的关系可以表示成y=k/某(k为常数,k≠0)的形式,那么称y是某的反比例函数。
因为y=k/某是一个分式,所以自变量某的取值范围是某≠0。
而y=k/某有时也被写成某y=k或y=k·某^(-1)。
反比例函数图像性质反比例函数的图像为双曲线。
1.当k>0时,反比例函数图像经过一,三象限,每一象限内,从左往右,y随某的增大而减小。
2.当k<0时,反比例函数图像经过二,四象限,每一象限内,从左往右,y随某的增大而增大。
反比例函数图像是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,其对称轴为y=某和y=-某;反比例函数图像上的点关于坐标原点对称。
知识点1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/某,若在分母上加减任意一个实数m(即y=k/某(某±m)m为常数),就相当于将双曲线图象向左或右平移m个单位。
(加一个数时向左平移,减一个数时向右平移)反比例性质1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交,求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。
2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于某轴,y轴做垂线的交点所连接的线段是相互平行的,同时一次函数与反比函数的交点到一次函数与某轴,y轴的交点的距离是相等的。
3规律:题目中给出线段比例和四边形的面积求k问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。
求出k(此时不用具体求出点坐标)。
4规律:有中点时利用中点坐标公式,再根据反比函数上任何一点处的几何意义都相同的思想转化出面积问题。
5规律:若反比例函数图像经过多个点,那么在这几点处的几何意义是相同的。
关于反比例函数的知识点反比例函数是数学中经常用到的一种重要函数类型。
它是一种特殊类型的函数,通过定义两个变量之间的关系,其中一个变量的增加导致另一个变量的减小,反之亦然。
本文将详细介绍反比例函数的定义、图像、性质以及一些实际应用。
一、反比例函数的定义反比例函数的定义如下:y = k / x其中,x 和 y 是变量,k 是一个常数。
在反比例函数中,y 的值与 x 的值成反比例关系,即 x 越大,y 越小,反之亦然。
常数 k 称为比例常数,它决定了函数的形状。
二、反比例函数的图像反比例函数的图像通常是一个双曲线,它的形状取决于比例常数 k 的值。
当比例常数 k 大于 0 时,反比例函数的图像在 x 轴的正半轴和 y 轴的负半轴上分别存在一个渐近线。
这是因为当 x 趋近于无穷大时,y 趋近于 0,当 y 趋近于无穷大时,x 趋近于 0。
当比例常数 k 小于 0 时,反比例函数的图像与前一种情况相似,但是渐近线位于 x 轴的负半轴和 y 轴的正半轴上。
三、反比例函数的性质1. 定义域和值域:由于反比例函数中 x 不能为 0,所以它的定义域为 x ≠ 0。
根据函数的定义,可以得出反比例函数的值域为 y ≠ 0。
2. 对称性:反比例函数具有轴对称性,即当 (x, y) 在反比例函数中时,(-x, -y) 也在反比例函数中。
3. 变化率:反比例函数的变化率是一个常数,即在函数图像上的任意两个点 (x1, y1) 和 (x2, y2) 中,斜率 k = y1 / x1 = y2 / x2 是一个常数。
四、反比例函数的实际应用反比例函数在实际生活中有许多应用。
以下是一些常见的实际应用示例:1. 物体的速度和时间:当物体的运动速度保持不变时,物体在单位时间内所需的时间与其速度成反比例关系。
当速度增加时,所需时间减小;当速度减小时,所需时间增加。
2. 货币兑换:兑换货币时,汇率决定了兑换后的货币数量。
如果汇率变高,那么兑换后的货币数量就变少;如果汇率变低,兑换后的货币数量就变多。
反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。
通常我们把它写成y = k/x+b,其中 b 为常数。
2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。
当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。
例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。
当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。
反比例函数也不具有最大值或最小值。
4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。
例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。
5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。
这可以通过已知的点对、图像或其他信息来确定。
以上是反比例函数的知识点梳理,希望对您有所帮助。
初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。
2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。
3. 对称性:反比例函数的图象关于原点对称。
三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。
2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。
3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。
四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。
五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。
2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。
六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。
2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。
七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。
八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。
2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。
九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。
反比例函数知识点汇总1.定义与图像特征:反比例函数的定义为y=k/x,在此函数中,x不等于0,k为常数。
反比例函数的图像特点是:经过第一、二象限两点,以y轴和x轴为渐进线,图像在x轴的正半轴和y轴的正半轴上都不会出现,图像呈现出一种双曲线的形状。
2.反比例函数的基本性质:(a)定义域:x≠0,即x不能为0。
(b)值域:排除0,即y不能为0。
当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。
(c)对称中心:该函数关于原点(0,0)对称。
(d)渐进线:图像与x轴和y轴都有渐进线,即当x趋近于无穷大时,y趋近于0;当y趋近于无穷大时,x趋近于0。
(e)单调性:反比例函数在定义域内是单调递减的。
(f)异号性:当x与y异号时,k为负数;当x与y同号时,k为正数。
(g)零点:当x与y相等时,即x=y≠0。
3.确定反比例函数的常数k:y1=k/x1和y2=k/x2通过消去k,可以得到:y1*y2=k因此,可以通过已知点的y值的乘积来确定k的值。
4.反比例函数的应用:(a)正比例与反比例的混合问题:当一个问题与正比例和反比例函数有关时,可以通过组合两种函数来解决问题。
例如,当一个物体的质量与加速度成反比例关系,而力与加速度成正比例关系时,可以通过设置两个函数来解决问题。
(b)流速与管道宽度:根据波的传播速度,流速与管道宽度成反比例关系。
当管道宽度较小时,流速较大;当管道宽度较大时,流速较小。
(c)投资与收益率:投资的利润与投资金额成反比例关系。
当投资金额较小时,相对的利润率较大;当投资金额较大时,相对的利润率较小。
(d)电阻与电流:电阻与电流成反比例关系,即当电阻较大时,电流较小;当电阻较小时,电流较大。
总结起来,反比例函数是一种特殊的函数关系,其图像呈现出一种双曲线的形状。
反比例函数具有一些基本性质,如定义域、值域、对称中心和渐进线等。
确定反比例函数的常数k可以通过已知点进行求解。
反比例函数在实际生活中有很多应用,特别是与强度、速度和功率等相关的问题。
反比例函数最全知识点反比例函数是一种特殊的函数形式,它表示了一种两个变量之间的相互依赖关系。
在反比例函数中,当一个变量增大时,另一个变量会相应地减小,反之亦然。
本文将介绍反比例函数的定义、图像特征、性质、图像变换、实际应用以及解决反比例函数问题的方法等知识点。
一、反比例函数的定义反比例函数可以表示为:y=k/x(k≠0),其中y表示因变量(通常是函数的输出值),x表示自变量(通常是函数的输入值),k表示常数。
该定义中的k称为反比例函数的常数项,它决定了反比例函数的性质,也决定了函数图像的形状。
二、反比例函数的图像特征1.零点:当x=0时,由于分母为0,函数无定义。
因此,反比例函数没有定义在x=0的点,这个点称为函数的零点。
2.渐近线:反比例函数有两条渐近线,分别是x轴和y轴。
当x趋近于无穷大或无穷小时,y趋近于0;当y趋近于无穷大或无穷小时,x趋近于0。
3.反比例函数的图像是一个双曲线,由于分母不能为0,因此函数的图像始终存在。
当x取值较小时,y的取值较大;当x取值较大时,y的取值较小。
图像的形状与常数项k相关,k越大,图像越接近于x轴和y 轴。
三、反比例函数的性质1.定义域:反比例函数的定义域为除去零点以外的实数集合。
2.值域:反比例函数的值域为除去0以外的实数集合。
3.奇偶性:反比例函数是个奇函数,即满足f(-x)=-f(x)。
4.单调性:反比例函数在定义域上是单调递减的。
5.对称轴:反比例函数的对称轴为y=x,即函数图像关于对称轴对称。
四、反比例函数的图像变换对反比例函数进行图像变换可以通过调整常数项k的值来实现。
具体变换如下:1.平移:当k保持不变时,反比例函数的图像向上平移或向下平移。
若向上平移b个单位,则为y=k/(x+b);若向下平移b个单位,则为y=k/(x-b)。
2.拉伸:当k保持不变时,反比例函数的图像可以进行纵向拉伸或纵向压缩。
若纵向拉伸为a倍,则为y=(k/a)/x;若纵向压缩为a倍,则为y=(a*k)/x。
反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。
这种函数的图像是一个双曲线,具有对称轴。
二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。
2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。
3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。
4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。
5. 反比例函数的对称性反比例函数的图像关于原点对称。
6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。
当x→0时,y→±∞。
三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。
2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。
3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。
当k为负数时,反比例函数的图像在第二和第四象限。
四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。
2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。
3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。
五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。
2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。
3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。
4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。
六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。
反比例函数知识点总结
反比例函数知识点总结
1.反比例函数的定义
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例
函数。
它可以从以下几个方面来理解:
⑴ x是自变量,y是x的反比例函数;
⑵自变量x的取值范围是x≠0的一切实数,函数值的取
值范围是y≠0;
⑶比例系数k≠0是反比例函数定义的一个重要组成部分;
⑷反比例函数有三种表达式:
① y=k/x(k≠0);
② y=kx^-1(k≠0);
③ xy=k(定值)(k≠0);
⑸函数y=k/x(k≠0)与函数x=k/y(k≠0)是等价的,所
以当y是x的反比例函数时,x也是y的反比例函数。
当k=0时,y=k/x就不是反比例函数了。
2.用待定系数法求反比例函数的解析式
由于反比例函数y=k/x(k≠0)中,只有一个待定系数,
因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
3.反比例函数的图像及画法
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与
x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:
①列表时选取的数值宜对称选取;
②列表时选取的数值越多,画的图像越精确;
③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;
④画图像时,它的两个分支应全部画出,但切忌将图像
与坐标轴相交。
4.反比例函数的性质
关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表所示:
反比例函数 y=k/x(k≠0) k的符号 k>0 k0 y0时,函数图
像的两个分支分别在第一、第三象限,在每个象限内,y随x
的增大而减小。
当k<0时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。
1、反比例函数是(C)y=k/x,其中k≠0.
2、自变量x的取值范围相同的是(B)。
3、函数y=k/x的图像可能是(A)。
4、反比例函数y=k/x的图象的两个分支分别位于(B)一、三象限。
5、当三角形的面积一定时,三角形的底和底边上的高成(B)反比例函数关系。
6、若点A(x1,1)、B(x2,2)、C(x3,-3)在双曲线y=k/x上,
则(B)x1>x3>x2.
7、由图1可得k1>k3>k2,因此选项为(B)。
8、根据题意可得,m和n分别是t的两根,且P点到原
点的距离为√(m^2+n^2),因此双曲线的表达式为(B)y=k/(x-3),其中k=√(m^2+n^2)。
9、由题意可得,AB=CD=1,AD=BC=x,因此四边形ABCD的面积为(C)2.
10、已知点A是一次函数y=x的图象与反比例函数的图
象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,求△AOB的面积。
二、填空(每题3分共30分)
1、已知y与(2x+1)成反比例且当x=0时,y=2,那么当
x=-1时,y=______。
2、如果反比例函数y=k/x的图象经过点(2,3),那么
k=_______。
3、设反比例函数y=k/x的图象经过点(1,-2),则k=______。
4、若点(2,1)是反比例函数y=k/x的图象上的一点,且
k=3,那么该函数的解析式为y=_______。
5、函数y=k/x的图象经过点(x1,y1)和(x2,y2)且有y1>y2,则k的取值范围为_______。
6、反比例函数y=k/x与y=-2x的图象的交点的坐标是
____________。
7、已知一次函数y=ax+b图象在一、二、三象限,则反
比例函数y=k/x的增大而__________。
8、已知函数y=k/x的函数值随x的增大而减小,那么y
与x成_________比例,k=________,其图象在第_______象限。
9、菱形面积为12cm²,且对角线长分别为x cm和y cm,则y关于x的函数关系式是y=_______。
10、反比例函数y=k/x的图象经过点(1,-4),且在x轴上截距为2,则k=_______。
三、解答题
1、(10分)若数与反比例函数y=k/x,当x>0时,y随x
的增大而增大,则k的值为1.求:
1)正比例函数的解析式为y=x;
2)正比例函数与反比例函数的另一个交点的坐标为(1,1)。
2、(10分)一次函数的图象与x轴,y轴分别交于A、B 两点,与反比例函数的图象交于C、D两点,如果A点坐标
为(2,0),点C、D在第一、三象限,且OA=OB=AC=BD,试
求一次函数和反比例函数的解析式。
设一次函数的解析式为y=ax+b,反比例函数的解析式为
y=k/x。
由题意可得,A、C、D三点坐标分别为(2,0),(m,n),(1/m,-n),其中m>0,n>0.由于OA=AC,可得a=1/m;又因为AC=BD,可得b=-kn²。
将C、D两点的坐标代入反比例函数
的解析式中,可得k=2n²。
综上所述,一次函数的解析式为
y=x-2n,反比例函数的解析式为y=2n²/x。
3、(10分)如图,矩形ABCD,AB = 3,AD = 4,以
AD为直径作半圆,一动点P,可与B,C重合,交半圆于E,设PE为BC上的高,求出PE关于角APD的函数关系式,并
求出角APD的取值范围。
首先,连接AC,连接PE并延长交AC于点F。
由于P点可与B,C重合,可知角APE和角CPF均为直角。
又因为
△APE与△CPF全等,可得PE=FC。
由于AD为直径,可知
角APD为直角。
设角APE的度数为x,则角CPF的度数为
90-x,角EFC的度数为180-2x。
根据正弦定理可得PE=2sinx。
因此,PE关于角APD的函数关系式为PE=2sin(APD/2),角APD的取值范围为0<APD<90°。
4、(10分)某蓄水池的排水管每时排水8m³,6小时(h)可将满水池全部排空。
1)蓄水池的容积是多少?
容积为V=6×8=48m³。
2)如果增加排水管,使每时的排水量达到Q(m³),那
么将满池水排空所需的时间t(h)将如何变化?
设排水管每小时排水量为q(m³),则有V=q×t,即t=V/q。
当排水量由8m³增加至Q(m³)时,排水时间变为t'=V/Q。
因此,t'=t×8/Q。
3)写出t与Q之间的关系式。
由上述分析可得,t与Q成反比例关系,即t=k/Q,其中k 为常数。
4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?
根据题意可得,t=5,V=48,代入关系式t=k/Q中可得
k=240.因此,每时的排水量至少为Q=240/5=48m³/h。
1.已知排水管的最大排水量为每小时12m3,求将满池水
全部排空的最少时间。
答案:最少需要4小时。
2.已知反比例函数y=k/x的图象经过点A(4,2),若一次
函数y=x+1的图象沿x轴平移后经过该反比例函数图象上的
点B(2,m),求平移后的一次函数图象与x轴的交点坐标。
答案:平移后的一次函数图象与x轴的交点坐标为(-2,0)。
3.已知反比例函数y=k/x和一次函数y=2x-1,其中一次
函数的图象经过点(a,b)和(a+k,b+k+2)。
1) 求反比例函数的解析式。
答案:反比例函数的解析式为y=8/x。
2) 已知A在第一象限,是两个函数的交点,求A点坐标。
答案:A点坐标为(2,4)。
3) 利用②的结果,请问:在x轴上是否存在点P,使
△AOP为等腰三角形?
答案:存在,点P坐标为(4,0)。
4.已知函数y=2x+1的图象经过点(-3,-5),求函数y=2x+1
的图象在x轴上的截距。
答案:函数y=2x+1的图象在x轴上的截距为-0.5.
5.已知反比例函数y=k/x的图象经过点A(4,2),若一次
函数y=x+1的图象沿x轴平移后经过该反比例函数图象上的
点B(2,m),求平移后的一次函数图象与x轴的交点坐标。
答案:平移后的一次函数图象与x轴的交点坐标为(-2,0)。