电子课程设计 EDA课程设计 乐曲硬件演奏电路
- 格式:doc
- 大小:1.32 MB
- 文档页数:20
eda乐曲硬件演奏电路课程设计一、课程目标知识目标:1. 学生能够理解EDA乐曲硬件演奏电路的基本原理,掌握电路组成及各部分功能。
2. 学生能够描述常见电子元件在演奏电路中的作用,并运用相关知识分析电路性能。
3. 学生能够掌握编程软件及硬件设计工具,完成简单的EDA乐曲演奏电路设计。
技能目标:1. 学生能够运用所学知识,独立完成演奏电路的搭建与调试。
2. 学生能够通过编程软件,编写简单的乐曲程序,实现乐曲演奏。
3. 学生能够运用团队协作能力,共同解决演奏电路设计过程中遇到的问题。
情感态度价值观目标:1. 学生通过本课程的学习,培养对电子技术和音乐艺术的热爱,提高审美情趣。
2. 学生在学习过程中,养成积极探究、勇于创新的精神,增强实践操作能力。
3. 学生能够认识到科技与艺术的结合在生活中的应用,增强社会责任感和团队合作意识。
课程性质:本课程为实践性较强的课程,结合电子技术与音乐艺术,旨在培养学生的动手能力、创新思维和团队协作能力。
学生特点:本年级学生具备一定的电子技术基础知识,对音乐艺术有一定兴趣,好奇心强,善于动手实践。
教学要求:教师应注重理论与实践相结合,引导学生积极参与实践操作,鼓励学生创新思维,提高团队协作能力。
同时,关注学生的个体差异,因材施教,确保每位学生都能在课程中收获成长。
二、教学内容本课程教学内容主要包括以下三个方面:1. 理论知识学习:- 电路基础知识:回顾电路的基本概念、原理及电路图的识别。
- 电子元件介绍:学习常用电子元件的原理、功能及在演奏电路中的应用。
- EDA软件使用:介绍编程软件及硬件设计工具的使用方法,如Multisim、Proteus等。
2. 实践操作能力培养:- 电路搭建:学习演奏电路的搭建方法,熟悉各类电子元件的连接方式。
- 程序编写:编写简单的乐曲程序,掌握编程技巧,实现乐曲演奏。
- 调试与优化:对搭建的演奏电路进行调试,找出问题并进行优化。
3. 创新思维与团队协作:- 设计实践:运用所学知识,小组合作完成指定乐曲的演奏电路设计。
EDA课程设计题目:乐曲硬件演奏电路的VHDL设计一、 设计题目:乐曲硬件演奏电路的VHDL 设计二、 设计目标:1)能够播放“梁祝”乐曲。
2)能够通过LED 显示音阶。
3)具有“播放/停止”功能,并在此基础上实现“按键演奏”的电子琴功能。
三、 设计原理:1. 音乐基础知识一段简单乐谱由音调和节拍组成,音调表示一个音符唱多高的频率,节拍表示一个音符唱多长的时间。
音符的节拍我们可以举例来说明。
在一张乐谱中,我们经常会看到这样的表达式,如1=C 44、1=G 43……等等。
以43为例加以说明,它表示乐谱中以四分音符为节拍,每一小结有三拍。
比如:图1其中1 、2 为一拍,3、4、5为一拍,6为一拍共三拍。
1 、2的时长为四分音符的一半,即为八分音符长,3、4的时长为八分音符的一半,即为十六分音符长,5的时长为四分音符的一半,即为八分音符长,6的时长为四分音符长。
那么一拍到底该唱多长呢?一般说来,如果乐曲没有特殊说明,一拍的时长大约为400—500ms 。
我们以一拍的时长为400ms为例,则当以四分音符为节拍时,四分音符的时长就为400ms,八分音符的时长就为200ms,十六分音符的时长就为100ms。
2.原理图框图:图2.框图3.原理图说明音乐播放原理说明音符的频率由数控分频器模块Speakera产生。
ToneTaba模块从NoteTabs模块中输入的音符数据,将对应的分频预置数据传送给Speakera模块,并将音符数据送到LED模块显示音阶。
NoteTabs模块中包含有一个音符数据ROM,里面存有歌曲“梁祝”的全部音调,在此模块中设置了一个8位二进制计数器,作为音符数据ROM的地址发生器。
这个计数器的计数频率为4Hz,即每一个数值的停留时间为0.25秒。
例如:“梁祝”乐曲的第一个音符为“3”,此音在逻辑中停留了4个时钟节拍,即1秒钟时间,所对应的“3”音符分频预置数为1036,在Speakera的输入端停留了1秒。
电子课程设计——乐曲硬件演奏电路设计学院太原科技大学华科学院专业、班级电子信息工程姓名学号指导教师2011年12月目录一、设计任务与要求 (3)二、总框体图 (3)三、选择器件 (4)四、功能模块 (4)一、音乐数据模块 (4)二、音符控制输出模块 (7)3、音符译码模块 (8)4、数控分频器模块 (11)五、分频器模块 (12)六、译码模块 (13)五、整体设计电路图 (15)一、整体电路原理图……………………………15二、管脚分派图……………………………153、电路仿真结果 (15)4、硬件验证 (16)六、设计心得 (17)七、附录 (19)乐曲硬件演奏电路设计一、设计任务与要求:一、实验内容利用可编程逻辑器件FPGA,设计乐曲硬件演奏电路,可自动演奏乐曲。
二、实验要求(1)利用数控分频器设计硬件乐曲演奏电路。
(2)利用给定的音符数据定制ROM“music”。
(3)设计乘法器逻辑框图,并在QuartusII上完成全部设计。
(4)将音乐通过实验箱上的喇叭播放出来。
(5)与演奏发音相对应的简谱码输出在数码管上显示。
二、整体框图设计思路:C调音阶频率表:同的预置数即可发出不同频率的声音。
由此,可以以此为设计基础。
设计一功能模块,能够将乐曲中的音符一一以对应的频率以预置数的形式置入数控分频计中,即可利用该数控分频计产生不同的声音,演奏出设定好的音乐。
ROM 中的音乐数据文件刚可由编辑好的音符填入MIF 文件中再定制LPM_ROM 将音符数据加载入ROM 中,并设计程序在运行时自动读取ROM 中的文件并置入数控分频器中。
当采用四四拍曲子时,每节拍持续时间为秒。
置入数控分频器的速度也应与此同步或一致,避免音乐过快或过快慢而失真。
由已知的C 调音阶频率表,各频率对应的预置数就与数控分频推动蜂鸣器发作声音的频率对应。
在编写数控分频器时,不仅要考虑预置数的输入方式,还要考虑输入的速度,和驱动蜂鸣器发声的频率。
eda乐曲演奏电路设计
设计一个eda乐曲演奏电路可以分为以下几个步骤:
1. 选择音频输入设备:首先需要选择合适的音频输入设备,如麦克风或乐器接口,用于将音频信号输入到电路中。
2. 音频信号处理:接下来,需要对音频信号进行处理,以便对其进行分析和控制。
可以使用模拟或数字信号处理技术来实现这一步骤。
3. 音符检测与转换:将处理后的音频信号输入到音符检测模块中,以检测出演奏中的音符和音高。
可以使用算法(如傅里叶变换)来实现音符检测,并将检测结果转换成数字形式,以便后续处理。
4. 控制信号生成:根据检测到的音符和音高,产生相应的控制信号。
可以使用模拟电路或数字信号处理器(DSP)来实现这一步骤。
5. MIDI信号输出:将控制信号转换成MIDI(Musical Instrument Digital Interface)格式的信号,以便将其与其他MIDI设备或乐器连接起来。
可以使用MIDI编码/解码器芯片实现这一步骤。
6. 音乐合成与演奏控制:利用MIDI信号控制MIDI设备或乐器,实现乐曲的合成与演奏。
可以使用MIDI合成器,MIDI 乐器模块或其他合成器设备来实现这一步骤。
在整个设计过程中,需要考虑信号处理的实时性、音质、精度等因素,并根据具体需求进行优化和调整。
编号:EDA综合设计实验报告课题:硬件乐曲演奏电路设计专业:智能科学与技术学生姓名:黎良贵学号: 12008502112014 年11 月30 日一、概述:硬件乐曲演奏电路顶层模块图如图1-1所示,电路图由11个子模块组成,能够实现:(1)梁祝乐曲的自动演奏;(2)键盘弹奏歌曲;(3)ROM中能存两首歌曲,并能手动选歌。
二、实验原理:①音符的频率可以由图1-1中的SPKER获得。
这是一个数控分频器。
由其CLK端输入一具有较高频率(1MHz)的时钟,通过SPKER分频后,经由D触发器构成的分频电路,由SPK_KX口输出。
由于直接从分频器中出来的输出信号是脉宽极窄的信号,为了有利于驱动扬声器,需另加一个D触发器分频以均衡其占空比,但这时的频率将是原来的1/2。
SPKER对CLK输入信号的分频比由输入的11位预置数TN[10..0]决定。
SPK_KX的输出频率将决定每一音符的音调;这样,分频计数器的预置值TN[10..0] 与输出频率就有了对应关系,而输出的频率又与音乐音符的发声有对应关系,例如在F_CODE模块中若取TN[10..0]=11'H40C,将由SPK_KX发出音符为“3”音的信号频率。
②音符的持续时间需根据乐曲的速度及每个音符的节拍数来确定,图1-1中模块F_CODE的功能首先是为模块SPKER(11位分频器)提供决定所发音符的分频预置数,而此数在SPKER输入口停留的时间即为此音符的节拍周期。
模块F_CODE是乐曲简谱码对应的分频预置数查表电路,每一音符的停留时间则由音乐节拍和音调发生查表模块MUSIC中简谱码和工作时钟inclock的频率决定,在此为4Hz。
这4Hz频率来自分频模块FDIV,模块MUSIC是一个LPM_ROM。
它的输入频率来自锁相环PLL20的2kHz输出频率。
而模块F_CODE的14个值的输出由对应于MUSIC模块输出的q[3..0]及4位输入值INX[3..0]确定,而INX[3..0]最多有16种可选值。
摘要随着科学技术的飞速发展,微电子技术、集成技术和计算机技术也有了迅速的发展,电子系统的设计方法也随之发生变革,基于EDA技术的设计方法也成为现代电子系统设计的主流。
大规模可编程逻辑器件FPGA/CPLD是当今应用最广泛的两类可编程专用集成电路(ASIC)。
由于结构和工艺的改进,可编程ASIC 芯片上包含的资源越来越丰富,可实现的功能越来越强,它已成为实现电子系统集成化的重要手段。
特别是可编程逻辑器件的功能和容量的不断扩大,如FPGA(Field Programmable Gate Array,现场可编程门阵列)使集成电路的设计进入片上系统(System on a Chip,SOC)或可编程片上系统(System on a Programmable Chip,SOPC)的设计时代。
同时采用超高速集成电路硬件描述语言VHDL (Very High Speed Integrated Circuit Hard—ware Description Language),其具有多层次描述系统硬件功能的能力,既支持模块化设计,也支持层次化设计,使各种数字化电子系统的设计通过描述芯片功能实现系统功能,从而有效地缩短了产品开发周期,减少了设计芯片的数量,缩小了系统体积,降低了系统能耗,提高了系统的灵活性和可靠性。
关键词FPGA, 音乐节拍发生器模块,音乐译码电路模块,数控分频模块AbstractTechnically fly to soon develop along with science, micro-electronics technique, integration technique and calculator technique also had a quick development and the design method of electronics system also immediately took place a change and also become modern main current of design of the electronics system according to the EDA technical design rge-scale and programmable FPGA/CPLD of the logic spare part is nowadays to apply two types of most extensive programmable appropriation integrated circuits(ASIC).Because of the improvement of structure and craft, include on the programmable ASIC chip of the resources be more and more abundant, can carry out of the function be more and more strong, it has become to carry out electronics system the integration turn of important means.Function and capacity of especially programmable logic spare part continuously extend and make the design of integrated circuit get into a slice of top system(the System on a Chip, SOC) or programmable slice the top system(a Programmable of the System on Chip, SOPC) such as the FPGA(the Gate Array of the Field Programmable, the spot programmable door array) of design ages.Adopt in the meantime extremely high soon the integrated circuit hardware describe language VHDL(the Circuit Description Language of the Hard-ware of the Speed Integrated of the Very High), it has the system hardware of the multilayers description the ability of the function, since support the mold piece turn a design, also support layer's turn a design and make various numeral turn the design of electronics system to pass description chip function to carry out system function, thus and availably shortenned a product a development a period, reduced to design chip of amount, contracted a system physical volume, lowering system can consume and raised the vivid and credibility of the system.Keywords FPGA, the music rhythm occurrence machine mold piece, music translates the code electric circuit mold piece and the number controls the Pin mold of cent a piece目录摘要 (I)ABSTRACT (II)1引言 (1)1.1 ASIC技术 (1)1.2可编程专用集成电路ASIC (1)1.2.1 概述 (1)1.2.2主要特点 (1)1.2.3发展前景 (2)1.3EDA技术 (2)1.3.1概述 (2)1.3.2 EDA技术的发展趋势 (2)2乐曲演奏系统设计原理分析 (3)2.1乐曲演奏基本要求 (3)2.2乐曲演奏原理 (3)3系统硬件设计 (6)3.1FPGA的介绍 (6)3.1.1 FPGA的基本结构 (6)3.1.2 Altera公司的FPGA (6)3.2FLEX系列的结构特点 (7)3.2.1 概述 (7)3.2.2 FLEX的特点 (7)4乐曲硬件演奏电路的层次化设计方案 (8)4.1音乐节拍发生器N OTE T ABS (8)4.2音符译码电路T ONE T ABA模块 (13)4.3数控分频模块S PEAKERA设计 (15)4.4乐曲硬件演奏电路的顶层设计和仿真 (17)总结 (20)致谢 (21)参考文献 (22)附录 (23)1引言1.1ASIC技术ASIC(Application Specific Integrated Circuits)专用集成电路,与通用集成电路相比,它是面向专门用途的电路,以此区别于标准逻辑(Standard Logic)、通用寄存器、通用微处理器等电路。
北华航天工业学院课程设计报告(论文)设计课题:乐曲演奏电路的设计专业班级:学生姓名:指导教师:设计时间北华航天工业学院电子工程系乐曲演奏电路的设计课程设计任务书指导教师:胡辉内容摘要在EDA开发工具Quartus II 6.0平台上,采用VHDL语言层次化和模块化的设计方法,通过音符编码的设计思想,预先定制乐曲,实现动态显示乐曲演奏电路的设计,并在此基础上,基于同一原理,使此电路同时具备了简易电子琴的功能,使基于CPLD/FPGA芯片的乐曲播放数字电路得到了更好的优化,提高了设计的灵活性和可扩展性。
关键字:EDA;Quartus II;VHDL;CPLD/FPGA;乐曲演奏电路;简易电子琴目录一概述 (1)二方案设计与论证 (2)三单元电路设计与参数计算 (2)四总原理图 (14)五安装与调试 (14)六性能测试与分析 (14)七结论 (15)八心得体会 (15)九参考文献 (15)一、概述(一)本实验的设计原理是不同的音名对应不同的频率,设计的难点是准确的产生各音名对应的频率。
简谱音名与频率的关系各音名所对应的频率可由一频率较高的基准频率进行整数分频得到,所以实际中产生各音名频率为近似的整数值。
基准频率越高,近似程度越好,音准也越好,但同时分频系数会很大,耗费芯片资源也越多。
本实验选取fo=1MHZ的信号作为基准频率。
分频系数A及n的公式如下:分频系数A=fo÷音名频率分频系数n=分频系数A÷2分频系数n=fo÷音名频率÷2以中音1为例来说明:由fo=1MHZ产生中音1的523.25Hz,其中分频系数A=1000000÷523.25≈1911.13,取整数值为A=1911,此分频系数可由计数器实现。
但若不加处理语句,其分频后的523Hz信号不是对称方波,而占空比很小的方波将很难使扬声器有效的发出声音。
为了得到对称方波,可将分频系数A分解为:分频系数A=分频系数n×2。
EDA技术与应用实验报告姓名学号专业年级电子信息工程实验题目乐曲硬件演奏电路设计实验目的1.学习利用数控分频器设计硬件乐曲演奏电路2.掌握模块化和层次化的设计方法以及音符编码的设计思想实验原理1.一定频率的矩形波通过扬声器可以发出相应频率的声音,乐曲是由一系列的音符组成的。
所以,如果我们通过控制每个音符的发音频率值及其持续的时间,就可以以纯硬件的手段,利用这些数值来实现所希望演奏的乐曲。
2.该硬件演奏电路由三个模块构成<1>音符数据ROM的地址发生器模块NoteTabs.vhdl内置8位二进制计数器,作为ROM的地址发生器,计数频率4Hz,即每一计数值的停留时间为0.25s,恰为全音符设为1s时,四四拍的4音符持续时间。
随着NoteTabs中的计数器按4Hz的时钟速率作加法计数即地址值递增时,ROM中的音符数据将通过ToneIndex[3..0]输向ToneTaba模块,乐曲即开始演奏起来。
<2>乐曲简谱码对应的分频预置数查表电路模块ToneTaba.vhdlToneTaba为Speakera提供决定所发音符的分频预置数,此数在Speakera输入口停留的时间即为此音符的节拍值。
输入Index[3..0]可确定乐曲全部音符所对应的分频预置数(13个)每一音符的停留时间由NoteTabs模块的clk决定(4Hz)。
<3>决定每一个音符音调的数控分频器模块Speakera.vhdl输入端clk输入一较高频率(12MHz)的信号,经Speakera分频,再经2分频以展宽脉冲后,由SpkOut输出。
11位预置数Tone[10..0]决定由clk输入信号的分频比,SpkOut输出的频率决定每一音符的音调。
实验内容1.定制存放LPM-ROM模块Music,在连续地址上存放乐曲的音符数据,2.用vhdl文本输入法和元件例化语句完成NoteTabs.vhdl的设计,该模块包含音符数据ROM模块Music.vhdl3.完成ToneTaba.vhdl的设计,此模块给数控分频模块提供每个音符所对应的分频预置数,即计数初值4.完成Speakera.vhdl的设计,该模块是一个初值可变的加法计数器。
《电子技术基础Ⅲ》项目设计报告课程名称任课教师设计题目乐曲硬件演奏电路设计班级姓名学号成绩日期一、题目分析1.设计要求利用FPGA,设计一硬件乐曲硬件演奏电路,能够利用硬件电路,自动播放音乐。
2.题目分析乐曲是由一连串的音符组成,而每个音符的发音频率值及其持续时间是乐曲能连续演奏所需的两个基本因素。
所以,设计音乐发生电路,需要得到相应音符的频率值,及其持续时间。
如果能够得到这两个基本元素,利用程序来控制FPGA 某个引脚输出一定频率的矩形波,接上扬声器就能发出相应频率的声音。
所以,获取这两个要素是本实验的关键。
(1)频率值频率的高低决定了音调的高低。
由于乐曲都是由一连串的音符组成,因此按照乐曲的乐谱,依次输出这些音符相对应的频率,就可以在蜂鸣器上连续地发出各个音符的音调。
简谱的音名与频率的关系如下表:表1 简谱中的音名与频率的关系(2)时长这次设计中所演奏的乐曲的最短的音符为四分音符,如果将全音符的持续时间设为1s的话,那么一拍所应该持续的时间为0.25秒,则只需要再提供一个4Hz 的时钟频率即可产生四分音符的时长。
系统工作时就按4Hz的频率依次读取简谱,当系统读到某个音符的简谱时就对应发这个音符的音调,持续时间为0.25秒,如果在曲谱文件中某个音符为三拍音长,只要将该音符连续书写三遍,系统读乐曲文件的时候就会连续读到三次,也就会发三个0.25秒的音长,这时我们听上去就会持续了三拍的时间,这样就可以控制音乐的音长了。
二、设计方案1.顶层实体描述音乐播放器,是能够演奏一曲完整的乐曲,在外部时钟的作用下,产生相应频率的方波信号,即在乐曲中对应相应的音符。
并且信号要持续一定的时间,即对应乐曲中的节拍。
得到了音调和节拍后,就可以组成相应的乐曲了。
2.模块划分采用“自顶向下”的设计方法,将音乐播放器模块主要划分为地址发生模块、数控分频模块、music模块和预置数模块。
(1)地址发生模块:增地址计数器,用于产生地址数。
郑州航空工业管理学院《EDA技术及应用》课程设计报告13 届通信工程专业班级题目:乐曲自动演奏机姓名:学号:同组人:指导老师:2015年7月9日乐曲自动演奏机一、设计要求:(1)可以在电路上自动演奏至少两首乐曲,在这里我们选用的是《茉莉花》、《欢乐颂》和《小苹果》。
(2)有相应的LED灯指示高低音。
二、其他要求:(在EDA实验箱上完成)1.晶振为48 MHz。
2. 采用FPGA器件为ALTERA 的EP1C6Q240C8。
3.采用数码管显示。
一、设计方案规划1、整体规划输入一个:clk(系统时钟48MHz)输出四个:beep(蜂鸣器输出端)、led(LED指示灯)、dig(数码管选择输出引脚)、seg(数码管段输出引脚)2、功能模块与模块划分总共分为三部分,①蜂鸣器发声部分,②LED灯显示部分,③数码管显示部分。
3、各功能或各模块的功能细分①蜂鸣器自动演奏乐曲,②LED灯显示高低音,③数码管显示音调。
二、各模块的实现方法、技术、要点1、乐曲演奏的原理是:由于组成乐曲的每个音符的频率值(音调)及其持续(时间音长)是乐曲演奏的2个基本数据,因此需控制输出到扬声器的激励信号的频率高低和该频率信号持续的时间。
频率的高低决定了音调的高低,而乐曲的简谱与各音名的频率对应关系在后面将给出。
所有不同频率的信号都是从一基准频率分频而得来的,由于音阶频率多为非整数,而分频系数有不能为小数,故必须将计算得到的分频数进行四舍五入取整,基准频率和分频系数应综合考虑加以选择,从而保证音乐不会走调。
如在48MHz 时钟下,中音1(对应的频率值是523.3Hz)的分频系数应该为:48000000/(2*523.3)=45863,这样只需对系统时钟进行45863次分频可得到所要的中音M1(分频系数计算公式为D=F/2K,由于F/2K之后,会使分频系数D变小,所以功能模块中语句:beep_r<=!beep_r,使得输出取反,K=F/2count_end,消除了前面除以2K的影响)。
电子课程设计——乐曲硬件演奏电路设计学院太原科技大学华科学院专业、班级电子信息工程姓名学号指导教师2011年12月目录一、设计任务与要求 (3)二、总框体图 (3)三、选择器件 (4)四、功能模块 (4)1、音乐数据模块 (4)2、音符控制输出模块 (7)3、音符译码模块 (8)4、数控分频器模块 (11)5、分频器模块 (12)6、译码模块 (13)五、总体设计电路图 (15)1、总体电路原理图 (15)2、管脚分配图 (15)3、电路仿真结果 (15)4、硬件验证 (16)六、设计心得 (17)七、附录 (19)乐曲硬件演奏电路设计一、设计任务与要求:1、实验内容利用可编程逻辑器件FPGA,设计乐曲硬件演奏电路,可自动演奏乐曲。
2、实验要求(1)利用数控分频器设计硬件乐曲演奏电路。
(2)利用给定的音符数据定制ROM“music”。
(3)设计乘法器逻辑框图,并在QuartusII上完成全部设计。
(4)将音乐通过实验箱上的喇叭播放出来。
(5)与演奏发音相对应的简谱码输出在数码管上显示。
二、总体框图设计思路:C调音阶频率表:同的预置数即可发出不同频率的声音。
由此,可以以此为设计基础。
设计一功能模块,能够将乐曲中的音符逐一以对应的频率以预置数的形式置入数控分频计中,即可利用该数控分频计产生不同的声音,演奏出设定好的音乐。
ROM中的音乐数据文件刚可由编辑好的音符填入MIF文件中再定制LPM_ROM将音符数据加载入ROM中,并设计程序在运行时自动读取ROM中的文件并置入数控分频器中。
当采用四四拍曲子时,每节拍持续时间为0.5秒。
置入数控分频器的速度也应与此同步或一致,避免音乐过快或过快慢而失真。
由已知的C调音阶频率表,各频率对应的预置数就与数控分频推动蜂鸣器发出声音的频率对应。
在编写数控分频器时,不仅要考虑预置数的输入方式,还要考虑输入的速度,以及驱动蜂鸣器发声的频率。
为了显示高音音调,可在音符预置数的译码过程中,同时译出高音音阶的信号,并利用LED灯输出信号。
同时,也可利用该译码模块,将当前演奏的音符简谱表达出来。
总体框图三、选择器件1.EP1C12Q240C8芯片及相应的连接设备2.外置扬声器3.7段数码管4.LED灯一个5.计算机四、功能模块1、音乐数据ROM模块:该模块为音乐曲谱的存放文件。
其利用LPM_ROM宏模块将共设定512个音符,每个音符宽度为5位,可存放高、中、低三阶21个音符的数据。
文件名为music.mif.其中[0..127]存放第一首歌《挥着翅膀的女孩》,[127..255]存放第二首歌《菊花台》,[256..383]存放第三首歌《两只老虎》,[384..512]存放第四首歌《世上只有妈妈好》,在该数据中,每个字符持续时间为0.25秒(由音符控制输出模块的时钟源4HZ信号确定),故在根据乐谱中音符的实际持续时间进行编写。
如四四拍的则每拍时间为0.5秒,则此处对应数据应该持续两个字符。
MIF文件内容如下:WIDTH=5; DEPTH=512;音乐数据ROM模块不生成模块,通过定制LPM_ROM,以备下一个模块的使用。
2、音符控制输出模块NOTETABS:该模块利用已定制完成的music.mif文件,通过给出LPM_ROM的数据地址,使LPM_ROM输出对应的音符,再送入音符译码电路,最终演奏出编好的音乐。
VHDL语句描述如下:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity notetabs isport(clk1:in std_logic;toneindex:out std_logic_vector(4 downto 0));end;architecture one of notetabs iscomponent musicport(address:in std_logic_vector(8 downto 0);clock:in std_logic;q:out std_logic_vector(4 downto 0));end component;signal counter:std_logic_vector(8 downto 0);begincnt8:process(clk1,counter)beginif counter=512then counter<="000000000";elsif(clk1'event and clk1='1')thencounter<=counter+1;end if;end process;u1:musicport map(address=>counter,q=>toneindex,clock=>clk1);end;其生成项目符号为:该模块时序仿真图如下:时序仿真说明:根据时序图可看出,当输入clock1时,toneindex也相应的改变,即完成在同一ROM内存放多首歌曲。
3、音符译码电路TONETABS模块:该模块将NOTETABS模块输出的音符译成输出电路的数控分频所需要预置数,并将对应的简谱数字用数码管显示出来,同时根据输出的音符,判断其高、中、低特性,并通过一个LED灯将高音显示出来。
其所输出的预置数由最后一级的数控频器所决定,参考值如下表:其计算公式如下:由于所设计的数控分频计采用12MHZ 作为时钟源,并通过一次12分频给出频率为1MHZ 的脉冲溢出信号,再对该1MHZ 的溢出信号进行12位2进制码的带预置数进行计数,并给出一个频率随预置数变化的脉冲信号。
由于该脉冲信号不具有驱动蜂鸣器的能力,故对此脉冲信号进行2分频以推动蜂鸣器发声,故最终输出信号的频率与预置数的关系如下:6104096()2m x f =-⨯其中mf为音阶对应的频率。
模块VHDL 语句描述如下: library ieee;use ieee.std_logic_1164.all; entity ToneTaba isport( Index : in std_logic_vector(4 downto 0); CODE : out std_logic_vector(3 downto 0); HIGH : out std_logic; Tone : out std_logic_vector(11 downto 0)); end;architecture one of ToneTaba is beginSearch: process(Index) begin case Index isWhen "00000"=>tone<="111111111111";code<="0000";high<='0';--4095 When "00001"=>tone<="011000001000";code<="0001";high<='0';--1544 When "00010"=>tone<="011100011110";code<="0010";high<='0';--1822 When "00011"=>tone<="100000010110";code<="0011";high<='0';--2070 When "00100"=>tone<="100010001000";code<="0100";high<='0';--2184 When "00101"=>tone<="100101011001";code<="0101";high<='0';--2393 When "00110"=>tone<="101000010010";code<="0110";high<='0';--2578 When "00111"=>tone<="101001100111";code<="0111";high<='0';--2663 When "01000"=>tone<="101100000100";code<="0001";high<='1';--2820 When "01001"=>tone<="101110001111";code<="0010";high<='1';--2959 When "01010"=>tone<="110000001001";code<="0011";high<='1';--3081 When "01011"=>tone<="110001000100";code<="0100";high<='1';--3140 When "01100"=>tone<="110010101100";code<="0101";high<='1';--3244 When "01101"=>tone<="110100001001";code<="0110";high<='1';--3337 When "01110"=>tone<="110100110011";code<="0001";high<='1';--3379 When "01111"=>tone<="110110000001";code<="0010";high<='1';--3457 When "10000"=>tone<="110111000111";code<="0010";high<='1';--3527 When "10001"=>tone<="111000000101";code<="0010";high<='1';--3589When "10010"=>tone<="111000100001";code<="0010";high<='1';--3617When "10011"=>tone<="111001010101";code<="0010";high<='1';--3669When "10100"=>tone<="111010000100";code<="0010";high<='1';--3716When "10101"=>tone<="111010011001";code<="0010";high<='1';--3737When "10110"=>tone<="111011000000";code<="0010";high<='1';--3776When "10111"=>tone<="111011100011";code<="0010";high<='1';--3811When "11000"=>tone<="111100000010";code<="0010";high<='1';--3842When "11001"=>tone<="111100010000";code<="0010";high<='1';--3856When "11010"=>tone<="111100101010";code<="0010";high<='1';--3882When "11011"=>tone<="111101000001";code<="0010";high<='1';--3905When "11100"=>tone<="111101001100";code<="0010";high<='1';--3916When others => null;end case;end process;end;其生成项目符号为:该模块时序仿真图如下:时序仿真说明:将NOTETABS模块输出的音符译成输出电路的数控分频所需要预置数,并将高音输出。