【附5套中考模拟试卷】重庆市綦江县2019-2020学年中考数学模拟试题(1)含解析
- 格式:doc
- 大小:1.24 MB
- 文档页数:30
重庆市綦江县2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A .甲种方案所用铁丝最长B .乙种方案所用铁丝最长C .丙种方案所用铁丝最长D .三种方案所用铁丝一样长:学*科*网]2.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表: 得分(分) 60 70 80 90 100 人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A .70分,70分B .80分,80分C .70分,80分D .80分,70分3.2(2)-的相反数是( )A .2B .﹣2C .4D .﹣24.抛物线223y x +=(﹣)的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)5.在Rt △ABC 中,∠C =90°,那么sin ∠B 等于( )A .AC AB B .BC AB C .AC BCD .BC AC6.若a 与﹣3互为倒数,则a=( )A .3B .﹣3C .D .-7.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .221x =B .1(1)212x x -=C .21212x = D .(1)21x x -= 8.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A .着B .沉C .应D .冷9.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限10.下列各类数中,与数轴上的点存在一一对应关系的是( )A .有理数B .实数C .分数D .整数11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚了10元B .赔了10元C .赚了50元D .不赔不赚12.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的方程(m ﹣5)x 2﹣3x ﹣1=0有两个实数根,则m 满足_____.14.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n 个图形的周长是___.15.如图,反比例函数y=32x的图象上,点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角△ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP ,在点A 运动过程中,当BP 平分∠ABC 时,点A 的坐标为_____.16.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.17.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.18.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.20.(6分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.21.(6分)先化简再求值:212xx-+÷(12x+﹣1),其中x=13.22.(8分)如图,△ABC是⊙O的内接三角形,点D在»BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(1)已知⊙O的半径为1.①若ABAC=53,求BC的长;②当ABAC为何值时,AB•AC的值最大?23.(8分)在平面直角坐标系中,一次函数y ax b=+(a≠0)的图象与反比例函数(0)ky kx=≠的图象交于第二、第四象限内的A、B两点,与y轴交于点C,过点A作AH⊥y轴,垂足为点H,OH=3,tan∠AOH=43,点B的坐标为(m,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.24.(10分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.(1)求证:△ADE~△ABC;(2)当AC=8,BC=6时,求DE的长.25.(10分)解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.26.(12分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对A B C D E,,,,五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为;(2)补全条形统计图(3)扇形统计图中,C类所在扇形的圆心角的度数为;,两类校本课程的学生约共有多少名.(4)若该中学有2000名学生,请估计该校最喜爱C D27.(12分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象2.C【解析】【分析】【详解】解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.故选C.【点睛】本题考查数据分析.3.A【解析】分析:根据只有符号不同的两个数是互为相反数解答即可.-的相反数是()22,即2.详解:()22故选A.点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.4.A【解析】【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.5.A【解析】【分析】根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.【详解】根据在△ABC中,∠C=90°,那么sinB=B ∠的对边斜边 =AC AB, 故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.6.D【解析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1, ∴a=,故选C.考点:倒数.7.B .【解析】试题分析:设有x 个队,每个队都要赛(x ﹣1)场,但两队之间只有一场比赛,由题意得:1(1)212x x -=,故选B .考点:由实际问题抽象出一元二次方程.8.A【解析】【分析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键 9.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x=图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .10.B【解析】【分析】根据实数与数轴上的点存在一一对应关系解答.【详解】实数与数轴上的点存在一一对应关系,故选:B .【点睛】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.11.A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用12.D【解析】【分析】根据两直线平行,内错角相等计算即可.【详解】因为m ∥n ,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m≥114且m≠1. 【解析】【分析】根据一元二次方程的定义和判别式的意义得到m ﹣1≠0且()()()234510m =---⨯-≥V ,然后求出两个不等式的公共部分即可.【详解】解:根据题意得m ﹣1≠0且()()()234510m =---⨯-≥V , 解得114m ≥且m≠1. 故答案为: 114m ≥且m≠1. 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 14.2n+1【解析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n 个图形的周长.解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n 个图形的周长为:2+n .故答案为2+n .此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解.15.)【解析】分析:连接OC ,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,则有△AOE ≌△OCF ,进而可得出AE=OF 、OE=CF ,根据角平分线的性质可得出2CP CF BCAP AE AB ===,设点A 的坐标为(a ,32a )(a >0),由22OE AE =可求出a 值,进而得到点A 的坐标. 详解:连接OC ,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,如图所示.∵△ABC 为等腰直角三角形,∴OA=OC ,OC ⊥AB ,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF . 在△AOE 和△OCF 中,===AEO OFC AOE OCF OA OC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AOE ≌△OCF (AAS ),∴AE=OF ,OE=CF . ∵BP 平分∠ABC ,∴2CP CF BC AP AE AB ===, ∴22OE AE =. 设点A 的坐标为(a ,32a ), 2232=,解得:33(舍去),∴32a =6, ∴点A 的坐标为(3,6), 故答案为:((3,6)).点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键. 16.【解析】画树状图为:共有20种等可能的结果数,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15. 故答案为15. 17.37【解析】【分析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,∴这个两位数为:37【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.18.1.【解析】试题解析:设俯视图的正方形的边长为a .∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为22,∴(2222a a +=, 解得24a =,∴这个长方体的体积为4×3=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)作图见解析;(2)作图见解析;5π(平方单位).【解析】【分析】(1)连接AO 、BO 、CO 并延长到2AO 、2BO 、2CO 长度找到各点的对应点,顺次连接即可.(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.【详解】解:(1)见图中△A′B′C′(2)见图中△A″B′C″ 扇形的面积()22901242053604S πππ=+=⋅=(平方单位). 【点睛】本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.20.(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答. 详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为180;(2)由题意得:y=(x ﹣40)[200﹣10(x ﹣50)]=﹣10x 2+1100x ﹣28000=﹣10(x ﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.21.23【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 详解:原式=111222x x x x x +---÷++()() =112•21x x x x x ()()()+-++-+ =1x --()=1x - 当13x =时,原式=113-=23. 点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)证明见解析;(2)证明见解析;(1)①32 【解析】分析:(1)由菱形知∠D=∠BEC ,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC ,据此得证;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG=AC=CE=CD ,证△BEF ∽△BGA 得BE BG BF BA =,即BF•BG=BE•AB ,将BF=BC-CF=BC-AC 、BG=BC+CG=BC+AC 代入可得;(1)①设AB=5k 、AC=1k ,由BC 2-AC 2=AB•AC 知k ,连接ED 交BC 于点M ,Rt △DMC 中由DC=AC=1k 、MC=12k 求得,可知k ,在Rt △COM 中,由OM 2+MC 2=OC 2可得答案.②设OM=d ,则MD=1-d ,MC 2=OC 2-OM 2=9-d 2,继而知BC 2=(2MC )2=16-4d 2、AC 2=DC 2=DM 2+CM 2=(1-d )2+9-d 2,由(2)得AB•AC=BC 2-AC 2,据此得出关于d 的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC 为菱形,∴∠D=∠BEC ,∵四边形ABDC 是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC ,∴AC=CE ;(2)以点C 为圆心,CE 长为半径作⊙C ,与BC 交于点F ,于BC 延长线交于点G ,则CF=CG ,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(1)设AB=5k、AC=1k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=1k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=13k,在Rt△COM中,由OM2+MC2=OC2得(13)2+6k)2=12,解得:23或k=0(舍),∴62;②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣34)2+814,∴当d=34,即OM=34时,AB•AC最大,最大值为814,∴DC2=272,∴,∴AB=4,此时32ABAC=.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.23.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx =,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)2222345OA AH OH=+=+=△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.24.(1)见解析;(2)154 DE=.【解析】【分析】(1)根据两角对应相等,两三角形相似即可判定;(2)利用相似三角形的性质即可解决问题.【详解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB2268=+=1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△ACB,∴DE AEBC AC=,∴568DE=,∴DE154=.【点睛】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.25.x≥3 5【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)300;(2)见解析;(3)108°;(4)约有840名.【解析】【分析】(1)根据A种类人数及其占总人数百分比可得答案;(2)用总人数乘以B的百分比得出其人数,即可补全条形图;(3)用360°乘以C类人数占总人数的比例可得;(4)总人数乘以C、D两类人数占样本的比例可得答案.【详解】解:(1)本次被调查的学生的人数为69÷23%=300(人),故答案为:300;(2)喜欢B类校本课程的人数为300×20%=60(人),补全条形图如下:(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×90300=108°,故答案为:108°;(4)∵2000×90+36300=840,∴估计该校喜爱C,D两类校本课程的学生共有840名.【点睛】本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.27.(1)12;(2)34【解析】【分析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率. 【详解】解:(1)(1)第二个孩子是女孩的概率=12;故答案为12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=3 4 .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。
重庆市綦江县2019-2020学年中考数学五模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列手机手势解锁图案中,是轴对称图形的是( )A .B .C .D .2.边长相等的正三角形和正六边形的面积之比为( ) A .1∶3B .2∶3C .1∶6D .1∶63.如图,PB 切⊙O 于点B ,PO 交⊙O 于点E ,延长PO 交⊙O 于点A ,连结AB ,⊙O 的半径OD ⊥AB 于点C ,BP=6,∠P=30°,则CD 的长度是( )A .33B .32C .3D .234.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米5.下列实数为无理数的是 ( ) A .-5B .72C .0D .π6.下列运算正确的( ) A .(b 2)3=b 5B .x 3÷x 3=xC .5y 3•3y 2=15y 5D .a+a 2=a 37.若一次函数=y ax b +的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A .0a b +<B .0a b ->C .0ab >D .0ba< 8.矩形具有而平行四边形不具有的性质是( ) A .对角相等B .对角线互相平分C.对角线相等D.对边相等9.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.210.在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(–1,2)C.(–1,–2)D.(1,–2)11.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户)30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是2112.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k xby k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在ABC∆中,AB AC=,点D、E分别在边BC、AB上,且ADE B∠=∠,如果:2:5DE AD=,3BD=,那么AC=________.14.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.15.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm 216.如果当a≠0,b≠0,且a≠b 时,将直线y=ax+b 和直线y=bx+a 称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.17.如图的三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm.沿过点B 的直线折叠三角形,使点C 落在AB 边的点E 处,折痕为BD.则△AED 的周长为____cm.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是__. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算:(π﹣3.14)0﹣20213cos30()2-+﹣|﹣3|.20.(6分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题: (1)本次抽样调查中的学生人数是多少人; (2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.21.(6分)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的距离.22.(8分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:A.书法比赛,B.绘画比赛,C.乐器比赛,D.象棋比赛,E.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为人;(2)如图1项目D所在扇形的圆心角等于;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.23.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数. 24.(10分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题: (1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数; (3)若该校共有800名学生,请估计“最想去景点B“的学生人数.25.(10分)如图,点A .F 、C .D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且 AB=DE ,∠A=∠D ,AF=DC .(1)求证:四边形BCEF 是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF 为何值时,四边形BCEF 是菱形.26.(12分)如图,在Rt ΔABC 中,C 90∠=o ,AD 平分BAC ∠,交BC 于点D ,点O在AB 上,O e 经过A,D 两点,交AB 于点E ,交AC 于点F .求证:BC 是O e 的切线;若O e 的半径是2cm ,F 是弧AD 的中点,求阴影部分的面积(结果保留π和根号). 27.(12分)如图,在平面直角坐标系中,抛物线C 1经过点A(﹣4,0)、B(﹣1,0),其顶点为532D ⎛⎫-- ⎪⎝⎭,. (1)求抛物线C 1的表达式;(2)将抛物线C 1绕点B 旋转180°,得到抛物线C 2,求抛物线C 2的表达式;(3)再将抛物线C 2沿x 轴向右平移得到抛物线C 3,设抛物线C 3与x 轴分别交于点E 、F(E 在F 左侧),顶点为G ,连接AG 、DF 、AD 、GF ,若四边形ADFG 为矩形,求点E 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.2.C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•3=3a,∴S△ABC=12BC•AD=12×1a×3a=3a1.连接OA、OB,过O作OD⊥AB.∵∠AOB=3606=20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•323,∴S△ABO=12BA•OD=12×1a×331,∴正六边形的面积为:3a1,∴边长相等的正三角形和正3a1:31=1:2.故选C.点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.3.C【解析】连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=23,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.【详解】解:如图,连接OB,∵PB切⊙O于点B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×333∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,则OC=123∴3故选:C.【点睛】本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.4.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.5.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、﹣5是整数,是有理数,选项错误;B、72是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确.故选D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.7.D【解析】∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a−b<0,故B错误,ab<0,故C错误,b<0,故D正确.a故选D.8.C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选C.9.C【解析】【分析】先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.10.A【解析】【分析】根据点N(–1,–2)绕点O旋转180°,所得到的对应点与点N关于原点中心对称求解即可.【详解】∵将点N(–1,–2)绕点O旋转180°,∴得到的对应点与点N关于原点中心对称,∵点N (–1,–2),∴得到的对应点的坐标是(1,2). 故选A. 【点睛】本题考查了旋转的性质,由旋转的性质得到的对应点与点N 关于原点中心对称是解答本题的关键. 11.C 【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为110(30+42+42+50+50+50+51+51+51+51)=46.8, 中位数为50;众数为51,极差为51-30=21,方差为110[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故选C .考点:1.方差;2.中位数;3.众数;4.极差. 12.A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.152【解析】 【分析】根据ADE B ∠=∠,EAD DAB ∠=∠,得出AED ABD ∆∆∽,利用相似三角形的性质解答即可. 【详解】∵ADE B ∠=∠,EAD DAB ∠=∠,∴AED ABD ∆∆∽,∴DE BD AD AB =,即325AB =, ∴152AB =,∵AB AC =,∴152AC =, 故答案为:152【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解. 14.3 【解析】解:如图,连接AC ,∵四边形ABCD 为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC 和△ACD 为等边三角形,∴∠4=60°,AC=AB .在△ABE 和△ACF 中,∵∠1=∠3,AC=AC ,∠ABC=∠4,∴△ABE ≌△ACF (ASA ),∴S △ABE =S △ACF ,∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值,作AH ⊥BC 于H 点,则BH=2,∴S 四边形AECF =S △ABC =12BC•AH=12BC•22AB BH -=43,由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短,∴△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,又∵S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大,∴S △CEF =S 四边形AECF ﹣S △AEF =43﹣12×23×22(23)(3)- =3. 故答案为:3.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE ≌△ACF ,得出四边形AECF 的面积是定值是解题的关键. 15.60π 【解析】 【详解】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解. 解:圆锥的侧面积=π×6×10=60πcm 1.16.3,31y x y x =+=+ 【解析】 【分析】把(1,4)代入两函数表达式可得:a+b=4,再根据“对偶直线”的定义,即可确定a 、b 的值. 【详解】把(1,4)代入y ax b =+得:a+b=4 又因为0a ≠,0b ≠,且a b ≠, 所以当a=1是b=3所以“对偶点”为(1,4)的一对“对偶直线”可以是:3,31y x y x =+=+ 故答案为3,31y x y x =+=+ 【点睛】此题为新定义题型,关键是理解新定义,并按照新定义的要求解答. 17.7 【解析】 【分析】根据翻折变换的性质可得BE=BC ,DE=CD ,然后求出AE ,再求出△ADE 的周长=AC+AE . 【详解】∵折叠这个三角形点C 落在AB 边上的点E 处,折痕为BD , ∴BE=BC ,DE=CD ,∴AE=AB-BE=AB-BC=8-6=2cm , ∴△ADE 的周长=AD+DE+AE , =AD+CD+AE , =AC+AE , =5+2, =7cm . 故答案为:7. 【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等. 18. 【解析】 【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】解:列表如下:-2 -1 1 2-2 2 -2 -4-1 2 -1 -21 -2 -1 22 -4 -2 2由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为=,故答案为:.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.﹣1.【解析】【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式31343 =--,=1﹣3+4﹣3,=﹣1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)2 3 .【解析】【分析】(1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;(2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;(3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;(4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.【详解】(1)30÷30%=100,所以本次抽样调查中的学生人数为100人;(2)选”舞蹈”的人数为100×10%=10(人),选“打球”的人数为100﹣30﹣10﹣20=40(人),补全条形统计图为:(3)2000×40100=800,所以估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)画树状图为:共有12种等可能的结果数,其中选到一男一女的结果数为8,所以选到一男一女的概率=82 123.【点睛】本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.21.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则22.(1)200;(2)54°;(3)见解析;(4)1 6【解析】【分析】(1)根据A的人数及所占的百分比即可求出总人数;(2)用D的人数除以总人数再乘360°即可得出答案;(3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.【详解】解:(1)学生报名总人数为5025%200?(人),故答案为:200;(2)项目D所在扇形的圆心角等于3036054200︒⨯=︒,故答案为:54°;(3)项目C的人数为200(50603020)40-+++=,补全图形如下:(4)画树状图得:Q所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴恰好选中甲、乙两名同学的概率为21 126=.【点睛】本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.23.(1) 60,90;(2)见解析;(3) 300人【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人. 【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.24.(1)40;(2)72;(3)1. 【解析】 【分析】(1)用最想去A 景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D 景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数; (3)用800乘以样本中最想去A 景点的人数所占的百分比即可. 【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=1,所以估计“最想去景点B“的学生人数为1人. 25.(1)见解析 (2)当AF=75时,四边形BCEF 是菱形.【解析】 【分析】(1)由AB=DE ,∠A=∠D ,AF=DC ,根据SAS 得△ABC ≌DEF ,即可得BC=EF ,且BC ∥EF ,即可判定四边形BCEF 是平行四边形.(2)由四边形BCEF 是平行四边形,可得当BE ⊥CF 时,四边形BCEF 是菱形,所以连接BE ,交CF 与点G ,证得△ABC ∽△BGC ,由相似三角形的对应边成比例,即可求得AF 的值. 【详解】(1)证明:∵AF=DC ,∴AF+FC=DC+FC ,即AC=DF. ∵在△ABC 和△DEF 中,AC=DF ,∠A=∠D ,AB=DE , ∴△ABC ≌DEF (SAS ).∴BC=EF ,∠ACB=∠DFE ,∴BC ∥EF. ∴四边形BCEF 是平行四边形. (2)解:连接BE ,交CF 与点G ,∵四边形BCEF 是平行四边形, ∴当BE ⊥CF 时,四边形BCEF 是菱形. ∵∠ABC=90°,AB=4,BC=3, ∴2222AB +BC 4+35==.∵∠BGC=∠ABC=90°,∠ACB=∠BCG ,∴△ABC ∽△BGC . ∴BC CG AC BC =,即3CG 53=.∴9CG 5=. ∵FG=CG ,∴FC=2CG=185, ∴AF=AC ﹣FC=5﹣18755=. ∴当AF=75时,四边形BCEF 是菱形. 26.(1)证明见解析;(2)22(23)3cm π【解析】 【分析】(1)连接OD ,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD ,即可证明OD//AC ,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧AF =弧DF =弧DE ,即可证明∠BOD=60°,在Rt ΔBOD 中,利用∠BOD 的正切值可求出BD 的长,利用S 阴影=S △BOD -S 扇形DOE 即可得答案. 【详解】 (1)连接OD ∵AD 平分BAC ∠, ∴BAD CAD ∠∠=, ∵OA OD = , ∴BAD ADO ∠∠=, ∴ADO CAD ∠∠=, ∴OD//AC ,∴ODB C 90o ∠∠==, ∴OD BC ⊥又OD 是O e 的半径, ∴BC 是O e 的切线 (2)由题意得OD 2cm = ∵F 是弧AD 的中点 ∴弧AF =弧DF ∵BAD CAD ∠∠= ∴弧DE =弧DF ∴弧AF =弧DF =弧DE ∴1BOD 180603∠=⨯=o o 在Rt ΔBOD 中 ∵BDtan BOD OD∠=∴BD OD tan BOD 2tan6023cm ∠=⋅==o2ΔBOD DOE 2S S S 23πcm 3阴影扇形⎛⎫=-=- ⎪⎝⎭.【点睛】本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.27.(1)y 242016333x x =++;(2)2448333y x x =-++;(3)E(12,0). 【解析】【分析】 (1)根据抛物线C 1的顶点坐标可设顶点式将点B 坐标代入求解即可;(2)由抛物线C 1绕点B 旋转180°得到抛物线C 2知抛物线C 2的顶点坐标,可设抛物线C 2的顶点式,根据旋转后抛物线C 2开口朝下,且形状不变即可确定其表达式;(3)作GK ⊥x 轴于G ,DH ⊥AB 于H ,由题意GK=DH=3,AH=HB=EK=KF 32=,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK ∽△GFK ,由其对应线段成比例的性质可知AK 长,结合A 、B 点坐标可知BK 、BE 、OE 长,可得点E 坐标.【详解】解:(1)∵抛物线C 1的顶点为532D ⎛⎫-- ⎪⎝⎭,, ∴可设抛物线C 1的表达式为y 25()32a x =+-,将B(﹣1,0)代入抛物线解析式得:250(1)32a =-+-, ∴9304a -=, 解得:a 43=, ∴抛物线C 1的表达式为y 245()332x =+-,即y 242016333x x =++. (2)设抛物线C 2的顶点坐标为(,)m n∵抛物线C 1绕点B 旋转180°,得到抛物线C 2,即点(,)m n 与点532D ⎛⎫-- ⎪⎝⎭,关于点B(﹣1,0)对称 5321,022m n --∴=-= 1,32m n ∴== ∴抛物线C 2的顶点坐标为(132,) 可设抛物线C 2的表达式为y 21()32k x =-+∵抛物线C 2开口朝下,且形状不变 43k ∴=- ∴抛物线C 2的表达式为y 241()332x =--+,即2448333y x x =-++. (3)如图,作GK ⊥x 轴于G ,DH ⊥AB 于H .由题意GK=DH=3,AH=HB=EK=KF32 =,∵四边形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴AK GK GK KF=,∴3332 AK=,∴AK=6,633 BK AK AB=∴=--=,∴BE=BK﹣EK=333 22 -=,∴OE31122 BE OB=-=-=,∴E(12,0).【点睛】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.。
重庆市綦江县2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.定义运算“※”为:a※b=()()22ab bab b⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A.B.C.D.3.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数4.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣75.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A.1.23×106B.1.23×107C.0.123×107D.12.3×1056.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.67.如图,在矩形ABCD 中AB =2,BC =1,将矩形ABCD 绕顶点B 旋转得到矩形A'BC'D ,点A 恰好落在矩形ABCD 的边CD 上,则AD 扫过的部分(即阴影部分)面积为( )A .8πB .222π- C .23π- D .6π 8.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A .甲种方案所用铁丝最长B .乙种方案所用铁丝最长C .丙种方案所用铁丝最长D .三种方案所用铁丝一样长:学*科*网] 9.若代数式11x x +-有意义,则实数x 的取值范围是( ) A .x≠1 B .x≥0 C .x≠0 D .x≥0且x≠110.若关于x 、y 的方程组4xy k x y =⎧⎨+=⎩有实数解,则实数k 的取值范围是( ) A .k >4 B .k <4 C .k≤4 D .k≥411.如图,在△ABC 中,AD 是BC 边的中线,∠ADC=30°,将△ADC 沿AD 折叠,使C 点落在C′的位置,若BC=4,则BC′的长为 ( )A .3B .2C .4D .312.如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1是以点P 为位似中心的位似图形,且顶点都在格点上,则点P 的坐标为( )A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.14.一个正多边形的每个内角等于150o,则它的边数是____.15.计算2×32结果等于_____.16.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.17.算术平方根等于本身的实数是__________.18.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,已知扇形MON的半径为2,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.20.(6分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.21.(6分)解不等式组:,并把解集在数轴上表示出来.22.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.753,精确到0.1m)23.(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?24.(10分)已知PA与⊙O相切于点A,B、C是⊙O上的两点(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小25.(10分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣mx>0的解集.26.(12分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.成绩/分120﹣111 110﹣101 100﹣91 90以下成绩等级 A B C D请根据以上信息解答下列问题:(1)这次统计共抽取了名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?27.(12分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.C【解析】【分析】根据定义运算“※” 为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,可得y=2※x 的函数解析式,根据函数解析式,可得函数图象. 【详解】解:y=2※x=()()222020x x x x ⎧>⎪⎨-≤⎪⎩, 当x>0时,图象是y=22x 对称轴右侧的部分;当x <0时,图象是y=22x -对称轴左侧的部分,所以C 选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“※”为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩得出分段函数是解题关键.3.C【解析】【分析】利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【详解】选项A 、标号是2是随机事件;选项B 、该卡标号小于6是必然事件;选项C 、标号为6是不可能事件;选项D 、该卡标号是偶数是随机事件;故选C .【点睛】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.4.B【解析】【分析】【详解】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B .5.A【解析】 分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1230000这个数用科学记数法可以表示为61.2310.⨯ 故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.6.B【解析】【详解】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,∴BD ∥CE , ∴CE AE AC BD AD AB==, ∵OC 是△OAB 的中线, ∴12CE AE AC BD AD AB ===, 设CE=x ,则BD=2x ,∴C 的横坐标为2x,B 的横坐标为1x , ∴OD=1x ,OE=2x, ∴DE=OE-OD=2x ﹣1x =1x, ∴AE=DE=1x, ∴OA=OE+AE=213x x x+=, ∴S △OAB =12OA•BD=12×32x x ⨯=1.故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.7.A【解析】【分析】本题首先利用A 点恰好落在边CD 上,可以求出A´C =BC´=1,又因为A´B△A´BC 为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´ 【详解】先连接BD,首先求得正方形ABCD1,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为245118024=ππ⨯⨯,扇形BDD´的面积为2451318028ππ⨯⨯=,面积ADA´=面积ABCD -面积A´BC -扇形面积ABA´11112424ππ⨯⨯--;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=)3113111182282ππ⨯⨯--=-,阴影部分面积=面积DA´D´+面积ADA´=8π 【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.8.D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b ,乙所用铁丝的长度为:2a+2b ,丙所用铁丝的长度为:2a+2b ,故三种方案所用铁丝一样长.故选D .考点:生活中的平移现象9.D【解析】试题分析:∵代数式11x +-∴10{0x x -≠≥,解得x≥0且x≠1.故选D .考点:二次根式,分式有意义的条件.10.C【解析】【分析】利用根与系数的关系可以构造一个两根分别是x ,y 的一元二次方程,方程有实数根,用根的判别式≥0来确定k 的取值范围.【详解】解:∵xy =k ,x+y =4,∴根据根与系数的关系可以构造一个关于m 的新方程,设x ,y 为方程240m m k -+=的实数根.241640b ac k =-=-≥V ,解不等式1640k -≥得4k ≤.故选:C .【点睛】本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.11.A【解析】连接CC′,∵将△ADC 沿AD 折叠,使C 点落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D ,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等边三角形,∴∠DC′C=60°,∵在△ABC 中,AD 是BC 边的中线,即BD=CD ,∴C′D=BD ,∴∠DBC′=∠DC′B=12∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC•cos∠DBC′=4×3=23,故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.12.A【解析】【分析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.【详解】如图,点P的坐标为(-4,-3).故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50【解析】试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.试题解析:连结EF,如图,∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考点:圆内接四边形的性质.14.十二【解析】【分析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【详解】∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为十二.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.15.1【解析】【分析】根据二次根式的乘法法则进行计算即可.【详解】 ()223223236⨯=⨯=⨯=. 故答案为:1.【点睛】 考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.16.13-1【解析】【分析】设两个正方形的边长是x 、y (x <y ),得出方程x 2=1,y 2=9,求出x =3,y =1,代入阴影部分的面积是(y ﹣x )x 求出即可.【详解】设两个正方形的边长是x 、y (x <y ),则x 2=1,y 2=9,x 3=,y =1,则阴影部分的面积是(y ﹣x )x =(13333-⨯=-)1.故答案为13-1.【点睛】本题考查了二次根式的应用,主要考查学生的计算能力.17.0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.18.2【解析】解:∵OA 的中点是D ,点A 的坐标为(﹣6,4),∴D (﹣1,2),∵双曲线y=经过点D ,∴k=﹣1×2=﹣6,∴△BOC 的面积=|k|=1.又∵△AOB 的面积=×6×4=12, ∴△AOC 的面积=△AOB 的面积﹣△BOC 的面积=12﹣1=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2) 2=+y x 02<≤x 142-=x . 【解析】分析:(1)先判断出∠ABM=∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论;(2)先判断出BD=DM ,进而得出DM ME BD AE =,进而得出AE=122x (),再判断出2OA OC DM OE OD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M ,∴∠ABM=∠DOM .∵∠OAC=∠BAM ,OC=BM ,∴△OAC ≌△BAM ,∴AC=AM .(2)如图2,过点D 作DE ∥AB ,交OM 于点E .∵OB=OM ,OD ⊥BM ,∴BD=DM .∵DE ∥AB ,∴DM ME BD AE =,∴AE=EM .∵2AE=122x (). ∵DE ∥AB ,∴2OA OC DM OE OD OD ==, ∴22DM OA y OD OE x =∴=+,(02x ≤< (3)(i ) 当OA=OC 时.∵111222DM BM OC x ===.在Rt △ODM 中,222124OD OM DM x =-=-. ∵2121224x DM y OD x x ==+-,.解得142x -=,或142x --=. (ii )当AO=AC 时,则∠AOC=∠ACO .∵∠ACO >∠COB ,∠COB=∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在.(ⅲ)当CO=CA 时,则∠COA=∠CAO=α.∵∠CAO >∠M ,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC 为等腰三角形时,x 142-点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y 关于x 的函数关系式是解答本题的关键.20.见解析【解析】【分析】由BE =CF 可得BC =EF ,即可判定()ABC DEF SAS ∆∆≌,再利用全等三角形的性质证明即可.【详解】∵BE =CF ,∴BE EC EC CF ++=,即BC =EF ,又∵AB =DE ,∠B =∠DEF ,∴在ABC ∆与DEF ∆中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ∆∆≌,∴AC =DF .【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.21.无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x <1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.22.通信塔CD 的高度约为15.9cm .【解析】【分析】过点A 作AE ⊥CD 于E ,设CE=xm ,解直角三角形求出AE ,解直角三角形求出BM 、DM ,即可得出关于x 的方程,求出方程的解即可.【详解】过点A 作AE ⊥CD 于E ,则四边形ABDE 是矩形,设CE=xcm ,在Rt △AEC 中,∠AEC=90°,∠CAE=30°,所以AE=330CE tan =︒, 在Rt △CDM 中,CD=CE+DE=CE+AB=(x+6)cm , DM=)36603x CD tan +=︒cm , 在Rt △ABM 中,BM=63737AB tan tan =︒︒cm , ∵AE=BD , )3663373x x tan +=+︒, 解得:x=3337tan ︒+3, ∴33(cm ), 答:通信塔CD 的高度约为15.9cm .【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE 、BM 的长度是解此题的关键.23.(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.24.(1)∠P=50°;(2)∠P=45°.【解析】【分析】(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.【详解】解:(1)如图①,连接OB.∵PA、PB与⊙O相切于A、B点,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如图②,连接AB、AD,∵∠ACB=90°,∴AB是的直径,∠ADB=90·∵PD=DB,∴PA=AB.∵PA与⊙O相切于A点∴AB⊥PA,∴∠P=∠ABP=45°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.25.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.26.(1)1人;补图见解析;(2)10人;(3)610名.【解析】【分析】(1)用总人数乘以A 所占的百分比,即可得到总人数;再用总人数乘以A 等级人数所占比例可得其人数,继而根据各等级人数之和等于总人数可得D 等级人数,据此可补全条形图;(2)用总人数乘以(A 的百分比+B 的百分比),即可解答;(3)先计算出提高后A ,B 所占的百分比,再乘以总人数,即可解答.【详解】解:(1)本次调查抽取的总人数为15÷108360=1(人), 则A 等级人数为1×72360=10(人),D 等级人数为1﹣(10+15+5)=20(人), 补全直方图如下:故答案为1.(2)估计该校九年级此次数学成绩在B 等级以上(含B 等级)的学生有1000×101550=10(人); (3)∵A 级学生数可提高40%,B 级学生数可提高10%,∴B 级学生所占的百分比为:30%×(1+10%)=33%,A 级学生所占的百分比为:20%×(1+40%)=28%, ∴1000×(33%+28%)=610(人),∴估计经过训练后九年级数学成绩在B 以上(含B 级)的学生可达610名.【点睛】考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(1)CD=BE ,理由见解析;(1)证明见解析.【解析】【分析】(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.【详解】解:(1)CD=BE,理由如下:∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB与△CAD中AE ADEAB CAD AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.。
重庆市綦江县2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是()A.①②B.①③C.①④D.①③④2.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.3.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.4.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=13,将△DAC沿着CD折叠后,点A 落在点E 处,则BE 的长为( )A .5B .42C .7D .525.若ab <0,则正比例函数y=ax 与反比例函数y=b x 在同一坐标系中的大致图象可能是( ) A . B . C . D .6.下面的几何体中,主(正)视图为三角形的是( )A .B .C .D .7.如图,直线y=3x+6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为( )A .(3,3)B .(4,3)C .(﹣1,3)D .(3,4)8.下列各式正确的是( )A .﹣(﹣2018)=2018B .|﹣2018|=±2018C .20180=0D .2018﹣1=﹣201892(3)3b b -=-,则( )A .3b >B .3b <C .3b ≥D .3b ≤ 10.下列运算正确的是( )A .a ﹣3a=2aB .(ab 2)0=ab 2C 822±D 3×27=911.如图,△ABC 纸片中,∠A =56,∠C =88°.沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD .则∠BDE 的度数为( )A .76°B .74°C .72°D .70°12.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.14.如图,在平面直角坐标系中,点P(﹣1,a)在直线y =2x+2与直线y =2x+4之间,则a 的取值范围是_____.15.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为_____.16.分解因式x 2﹣x=_______________________17.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.18.如图,在ABC V 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN V 为等边三角形,④当ABC 45∠=︒时,CN 2PM =.请将正确结论的序号填在横线上__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a 2+b 2=c 2证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-aS 四边形ADCB =21122ADC ABC S S b ab +=-+V V S 四边形ADCB =211()22ADB BCDS S c a b a +=+-V V ∴221111()2222b abc a b a +=+-化简得:a 2+b 2=c 2 请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a 2+b 2=c 2 20.(6分)实践体验:(1)如图1:四边形ABCD 是矩形,试在AD 边上找一点P ,使△BCP 为等腰三角形;(2)如图2:矩形ABCD 中,AB=13,AD=12,点E 在AB 边上,BE=3,点P 是矩形ABCD 内或边上一点,且PE=5,点Q 是CD 边上一点,求PQ 得最值;问题解决:(3)如图3,四边形ABCD 中,AD ∥BC ,∠C=90°,AD=3,BC=6,DC=4,点E 在AB 边上,BE=2,点P 是四边形ABCD 内或边上一点,且PE=2,求四边形PADC 面积的最值.21.(6分)(1)解方程:x 2﹣4x ﹣3=0;(2)解不等式组:22.(8分)解不等式组:()()3x 1x 382x 11x 132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和. 23.(8分)如图,在平行四边形ABCD 中,E 为BC 边上一点,连结AE 、BD 且AE=AB .求证:∠ABE=∠EAD ;若∠AEB=2∠ADB ,求证:四边形ABCD 是菱形.24.(10分)如图,抛物线y =﹣x 2+5x+n 经过点A (1,0),与y 轴交于点B .(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.25.(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.26.(12分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=27,AC=22,求AD的长.27.(12分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据倒数的定义,分别进行判断即可得出答案.【详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【点睛】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.A【解析】【分析】当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F在MD上运动时,0≤x<2,则:y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则:y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.3.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。
重庆綦江县联考2019-2020学年中考数学模拟检测试题一、选择题1.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )A.0.96a 元B.0.972a 元C.1.08a 元D.a 元2有意义,则实数m 的取值范围是( ) A .m >﹣2B .m >﹣2且m≠1C .m≥﹣2D .m≥﹣2且m≠1 3.如图,A ,B 是半径为1的O 上两点,且60AOB ∠=︒.点P 从A 出发,在O 上以每秒3π个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,则下面图象中可能..表示y 与x 的函数关系的是( )A.①或②B.②或③C.③或④D.①或④4.某小学为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误的是( )A.平均数是15B.众数是10C.中位数是17D.方差是4435.如图,在△AEF 中,尺规作图如下:分别以点E 、点F 为圆心,大于12EF 的长为半径作弧,两弧相交于G 、H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( )A.AO 平分∠EAFB.AO 垂直EFC.GH 垂直平分EFD.AO=OF6.已知锐角A 满足关系式22sin 7sin 30A A -+=,则sin A 的值为( )A .12或3B .3C .12D .47.港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道. 其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨. 将数76000用科学记数法表示为( )A .47.610⨯B .37610⨯C .50.7610⨯D .57.610⨯8.某书店4月份营业额为2.2万元,5月份营业额为2.42万元。
如果保持同样的增长率,6月份应完成营业额( )A .2.64万元B .2.662万元C .2.724万元D .2.86万元9.如图,在平面直角坐标系xO 1y 中,点A 的坐标为(1,1).如果将x 轴向上平移3个单位长度,将y 轴向左平移2个单位长度,交于点O 2,点A 的位置不变,那么在平面直角坐标系xO 2y 中,点A 的坐标是( )A .(3,﹣2)B .(﹣3,2)C .(﹣2,﹣3)D .(3,4) 10.如图所示,二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的图象的一部分与x 轴的交点A 在(2,0)与(3,0)之间,对称轴为直线1x =.下列结论:①0ab <;②20a b +=;③30a c +>;④()a b m am b +≥+(m 为实数);⑤当13x -<<时,0y >.其中,正确结论的个数是( )A .2B .3C .4D .511.如图,等腰△OAB 的底边OB 恰好在x 轴上,反比例函数y =k x的图象经过AB 的中点M ,若等腰△OAB 的面积为24,则k =( )A .24B .18C .12D .912.一组数1,1,2,3,5,8,13是“斐波那契数列”的一部分,若去掉其中的两个数后这组数的中位数、众数保持不变,则去掉的两个数可能是( )A .2,5B .1,5C .2,3D .5,8 二、填空题13.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率是14.计算:-3)0-2-1=______.15.已知一粒大米的质量约为0.000021㎏,这个数用科学记数法表示为____kg .16.如图,点A 在双曲线2x 上,点B 在双曲线k y x=上,且AB ∥x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,且面积为3,则k=__________.17.如图,在4×5的正方形网格中点A ,B ,C 都在格点上,则tan ∠ABC =_____.18.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,CO =2,则阴影部分的面积为_____.三、解答题19.如图,某大楼的顶部竖有一块宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为63°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1AB =10米,CD =2米.(1)求点B 距地面的高度;(2)求大楼DE 的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据tan63°≈2,20.计算011|1|2019()3tan 303-+---21.解分式方程:7422x x x =---. 22.某校为了解七年级学生体育课足球运球的掌握情况,随机抽取部分七年级学生足球运球的测试成绩作为一个样本,按A 、B 、C 、D 四个等级进行统计,制成了如图所示的不完整的统计图:根据所给信息,解答以下问题:(1)在扇形统计图中,求等级C对应的扇形圆心角的度数,并补全条形统计图;(2)该校七年级有300名学生,请估计足球运球测试成绩达到A等级的学生有多少人?23.某商场将进价为1800元的电冰箱以每台2400元售出,平均每天能售出8台,为了配合国家"家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台(1)设每台冰箱降价x元,商场每天销售这种冰箱的利润为y元,求y与x之间的函数关系式(不要求写自变量的取值范围)(2)商场想在这种冰箱的销售中每天盈利8000元,同时又要使顾客得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少元?24.如图,四边形ABCD中,CD∥AB,∠ABC=90°,AB=BC,将△BCD绕点B逆时针旋转90°得到△BAE,连接CE,过点B作BG⊥CE于点F,交AD于点G.(1)如图1,CD=AB.①求证:四边形ABCD是正方形;②求证:G是AD中点;(2)如图2,若CD<AB,请判断G是否仍然是AD的中点?若是,请证明:若不是,请说理由.25.先化简,再求值:2(2x2y-xy2)-(4x2y-xy2),其中x=-4,12y=.【参考答案】*** 一、选择题13.14.1 215.1×10-5 16.517.1 218.2 3π三、解答题19.(1)5(2)大楼DE的高度约为23.3米【解析】【分析】(1)过B作AE的垂线交于点G,在Rt△ABG,通过解直角三角形求出BG即可;(2)由(1)可求AG的值,作BF⊥DE交DE于点F,设DE=x米,在Rt△ADE中,表示出AE,然后再根据等腰直角三角形的性质求解x,即可得到大楼DE的高度.【详解】解:(1)作BG⊥AE于点G,由山坡AB的坡度i=1设BG=x,则,∵AB=10,∴x2+)2=102,解得x=5,即BG=5,∴点B距地面的高度为:5米;(2)由(1)可得AG BG=BF⊥DE交DE于点F,设DE=x米,在Rt△ADE中,∵tan∠DAE=DE AE,∴AE=tan DEDAE∠≈12x,∴EF=BG=5,BF=AG+AE=12 x,∵∠CBF=45°,∴CF=BF,∴CD+DE﹣EF=BF,∴2+x﹣5=12 x,解得:x=≈23.3(米)答:大楼DE的高度约为23.3米.【点睛】此题考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化为解直角三角形的问题是解答此类题的关键.20.3【解析】【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【详解】1+1+3﹣3×31+1+33.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.21.x =3【解析】【分析】方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:﹣x =4x ﹣8﹣7,移项合并得:5x =15,解得:x =3,经检验x =3是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)117°;补图见解析;(2)30人.【解析】【分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得,根据以上所求结果即可补全图形;(2)总人数乘以样本中A 等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人,∴C 等级人数为40﹣(4+18+5)=13人,则C 对应的扇形的圆心角是360°×1340=117°, 补全条形图如下:(2)估计足球运球测试成绩达到A 级的学生有300×440=30人. 【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)y=-2240480025x x ++(2)400(3)每台冰箱降价250元时,商场利润最高.最高利润是9800元 【解析】【分析】(1)根据升降价问题,表示出每台冰箱的利润=(2400-1800-x)与总的销量(8+50x ⨯4),两者之积,即可求出, (2)结合函数解析式y=8000,即可表示出,然后解方程求出,(3)二次函数最值问题,求出结果【详解】(1) 设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元则y=(2400-1800-x) (8+50x ⨯4)=-2240480025x x ++ (2)由题意得:- 2240480025x x ++=8000 解得:x 1 =100,x 2 =400要使顾客得到实惠,取x=400答: 每台冰箱应降价400元 (3)y=2240480025x x ++=22(250)980025x -+ ∵a=2025< ∴y 有最大值・∴当x=250时y 最大=9800 ∴每台冰箱降价250元时,商场利润最高.最高利润是9800元【点睛】此题考查二次函数的应用,解题关键在于列出方程24.(1)①见解析;②见解析;(2)是,证明见解析.【解析】【分析】(1)①由旋转的性质可得:AB=BC ,进而得到AB 与CD 平行且相等,判定四边形ABCD 为平行四边形,再根据有一组邻边相等及有一个内角是90°,判定其为正方形.②设AB 与EC 交于P 点,证△PAE ≌△PBC ≌△GAB ,即可证明.(2)延长CD 、BG ,相交于点M ,延长EA 交CM 于点N.证△BCM ≌△CNE 与△ABG ≌△DMG 即可得证.【详解】(1)①由旋转的性质可得:AB=BC∵CD=AB∴AB=BC=CD又∵CD ∥AB ,∴四边形ABCD 是平行四边形因为∠ABC=90°,AB=BC∴平行四边形ABCD 是正方形.②设AB 与EC 交于P 点,∵BG ⊥CE ,∠ABC=90°,∴∠PCB+∠BPC=90°,∠ABG+∠BPC=90°∴∠PCB=∠ABG又∵BC=AB,∠ABC=∠BAG=90°∴△PBC ≌△GAB∴AG=AP又∵AE=BC,∠ABC=∠EAB=90°,ED∥BC∴∠BCP=∠AEP∴△PAE ≌△PBC∴AP=PB=12 AB ∴AG=12AD即G是AD中点(2)G仍然是AD的中点;证明:延长CD、BG,相交于点M,延长EA交CM于点N.由旋转可知,AB⊥EN,AE=CD∴四边形ABCN是正方形.∴AN=CN=BC,AN⊥CM易证:△BCM≌△CNE∴CM=NE, CM-CD=NE-AE,即:DM=AN∴AB=AN=DM.∴△ABG≌△DMG∴AG=DG.【点睛】本题考查的是正方形的性质及判定,掌握旋转的性质及正方形的性质与判定是关键. 25.【解析】【分析】根据乘法分配律去括号,合并同类项,代入求值即可【详解】解:原式=4x2y-2xy2-4x2y+xy2=-xy2,当x=-4,12y=时,原式=-(-4)×212⎛⎫⎪⎝⎭=1.【点睛】此题考查整式的加减-化简求值,掌握运算法则是解题关键。
重庆綦江县联考2019-2020学年中考数学模拟试卷一、选择题1.如图,A ,B 是半径为1的O 上两点,且60AOB ∠=︒.点P 从A 出发,在O 上以每秒3π个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为x ,弦BP 的长度为y ,则下面图象中可能..表示y 与x 的函数关系的是( )A.①或②B.②或③C.③或④D.①或④2.一个塑料袋丢弃在地上的面积约占0.023m 2,如果100万个旅客每人丢一个塑料袋,那么会污染的最大面积用科学记数法表示是( ) A .2.3×104m 2B .2.3×106m 2C .2.3×103m 2D .2.3×10﹣2m 23.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在ky x=的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-4.某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的中位数是( )5.如图,在Rt △ABC 中,∠ACB=90°,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,已知AB=5,AC=3,则△ACE 的周长为( )A.5B.6C.7D.86.将抛物线21y x =+先向左平移1个单位长,再向上平移1个单位长,得到新抛物线( ) A.2(1)y x =+B.2(1)2y x =++C.2(1)y x =-D.2(1)2y x =-+7.如图,正方形ABCD ,对角线AC 和BD 交于点E ,点F 是BC 边上一动点(不与点B ,C 重合),过点E 作EF 的垂线交CD 于点G ,连接FG 交EC 于点H .设BF =x ,CH =y ,则y 与x 的函数关系的图象大致是( )A. B. C. D.8.如图,在长方形ABCD 中,AB=8,BC=4,将长方形沿AC 折叠,则重叠部分△AFC 的面积为( )A.12B.10C.8D.69.已知抛物线2y ax bx c =++(,,a b c 为常数,0a <),其对称轴是1x =,与x 轴的一个交点在()2,0,()3,0之间.有下列结论:①0abc <;②0a b c -+=;③若此抛物线过()12,y -和()23,y 两点,则12y y <,其中,正确结论的个数为( ) A.0B.1C.2D.310.如图,菱形ABCD 的边AB=5,面积为20,∠BAD <90°,⊙O 与边AB 、AD 都相切,AO=2,则⊙O 的半径长等于( )A B C D11.若关于x 的不等式组12x x k+≤⎧⎨≥⎩无解,则k 的值可以是( )A .-1B .0C .1D .212.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC=8,BD=6,点E 是AB 边的中点,点M 是线段OB 上的一动点,点N 在线段OA 上,且∠MEN =90°,则cos ∠MNE 为( )A .35B .45C D .5二、填空题 13.已知函数123m y x-=+的图像是一条抛物线,则m=_______ .14.如图,在平面直角坐标系中,△DEF 是由△ABC 旋转得到的,则旋转的角度是_____°.15.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是_____千米.16.在△ABC 中,AB=6cm ,点P 在AB 上,且∠ACP=∠B ,若点P 是AB 的三等分点,则AC 的长是_____. 17.分解因式:221x x ++=_____________.18.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为3:4,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为_____.三、解答题19.如图,在正方形ABCD 中,E 是CD 上一点,连接AE .过点D 作DM ⊥AE ,垂足为M ,⊙O 经过点A ,B ,M ,与AD 相交于点F . (1)求证:△ABM ∽△DFM ;(2)若正方形ABCD 的边长为5,⊙O DE 的长.20.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.21.已知,在△ABC中,∠ACB=90°,∠B=30°,点D是直线AB上的动点,连接CD,以CD为边,在CD 的左侧作等边△CDE,连接EB(1)问题发现:如图(1),当CD⊥AB时,ED和EB的数量关系是_____.(2)规律论证:如图(2)当点D在线段AB上运动时,(1)中ED,EB的数量关系是否仍然成立?若成立,请仅就图(2)加以证明;若不成立,请写出新的数量关系,并说明理由.(3)拓展应用:如图(3)当点D在直线AB上运动时,若,且△BCE恰好为等腰直角三角形时,请直接写出符合条件的AD的长.22.某校九(1)班开展数学活动,李明和张华两位同学合作用测角仪测量学校旗杆的高度,李明站在B 点测得旗杆顶端E点的仰角为45°,张华站在D(D点在直线FB上)测得旗杆顶端E点仰角为15°,已知李明和张华相距(BD)30米,李明的身高(AB)1.6米,张华的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)23.(本题满分8分)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有__________种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种主案用、、、…或①、②、③、…等符号来代表可简化解答过程)A B C24.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.⑴在图1中画出一个以AB为一边面积为 5的等腰RtABC,且点C在小正方形顶点上;⑵在图2中画出一个以AB为一边面积为 4的平行四边形ABDE,且点D和点E均在小正方形的顶点上;写出所画四边形周长= .25.如图,在等腰△ABC 中,AB =BC ,点D 是AC 边的中点,延长BD 至点E ,使得DE =BD ,连结CE .(1)求证:△ABD ≌△CED .(2)当BC =5,CD =3时,求△BCE 的周长.【参考答案】*** 一、选择题13.m=3 14. 15.496×10816. 或 17.2(1)x + 18.2425三、解答题19.(1)见解析;(2) 253【解析】 【分析】(1)由四边形ABCD 为正方形,可得∠BAM =∠ADM ,再由四边形BAFM 为圆内接四边形,可得∠ABM =∠MFD ,可以求证;(2)连接BF ,得BF 为直径,由勾股定理可得到AF 的长,从而得FD =3,因为△ABM ∽△DFM ,所以有53AB AM DF DM ==,而易证△ADM ∽△DEM ,可得DE AMAD DM=,即可得DE 的长度. 【详解】(1)证明:∵四边形ABCD 为正方形, ∴∠BAD =90°, ∴∠BAM+∠MAF =90°, ∵DM ⊥AE ,∴∠MAD+∠ADM=90°,∴∠BAM=∠ADM,∵四边形BAFM为圆内接四边形∴∠ABM+∠AFM=180°∴∠ABM=∠MFD∴△ABM∽△DFM(2)如图,连接BF,∵∠BAF=90°,BF为直径∴在Rt△ABF中,由勾股定理得AF2,∴FD=3,∵△ABM∽△DFM,∴53 AB AMDF DM==,∵∠DEM=∠ADM,∠AMD=∠DME=90°,∴△ADM∽△DEM,∴DE AM AD DM=,∴DE=53•AD=553⨯=253【点睛】此题主要考查相似三角形的判定及性质,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.20.(1)详见解析;(2)26.【解析】【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB =∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=6,于是得到结论.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.21.(1)EB=ED;(2)成立,证明见解析;(3)符合条件的AD.【解析】【分析】(1)利用等边三角形的性质以及等腰三角形的判定解答即可;(2)取AB中点F,连接EF、CF,由直角三角形斜边中线的性质可得CF=AF=BF,由∠A=60°可得△CFA是等边三角形,可证明AC=BF,根据等边三角形的性质可得∠ECF=∠DCA,利用SAS可证明△ECF≌△DCA,可得EF=AD,∠EFC=∠A=60°,根据平角定义可得∠EFB=60°,可得∠EFB=∠A,利用SAS可证明△BEF≌△CDA,可得BE=CD,进而可得DE=BE;(3)过点C作CF⊥AB于F,根据含30°角的直角三角形的性质及勾股定理可求出BC、CF、AF 的长,分别讨论点D在线段AB上、AB延长线上和BA延长线上三种情况,根据等腰直角三角形的性质可求出CE的长,利用勾股定理可求出FD的长,进而根据线段的和差关系即可求出AD的长.【详解】(1)∵CD⊥AB,∴∠EDB=30°,∵∠B=30°,∴∠EDB=∠B,∴ED=EB.故答案为:ED=EB.(2)成立,如图,取AB中点F,连接EF、CF,∵∠ACB=90°,∠ABC=30°,BF=AF , ∴CF=BF=AF ,∠A=60°, ∴△CFA 是等边三角形, ∴AC=BF ,∠ACF=∠CFA=60°, ∵△CDE 是等边三角形,∴∠ECF+∠FCD=∠ACD+∠FC D=60°, ∴∠EFC=∠ACD , 又∵CE=CD ,CF=CA , ∴△ECF ≌△DCA ,∴EF=AD ,∠EFC=∠A=60°, ∴∠EFB=180°-∠EFC-∠CFA=60°, ∴∠EFB=∠A , 又∵EF=AD ,AC=BF , ∴△BEF ≌△CDA , ∴EB=CD , ∵CD=ED , ∴EB=ED.(3)过点C 作CF ⊥AB 于F ,∵,∠ABC=30°,∠ACB=90°,∴,,∴CF=12,, 有三种情况:①如图,当点D 在线段AB 上时,∵△BCE 是等腰直角三角形,,∴CE=∴CD=CE=∴,∴.②如图,当点D 在BA 的延长线上时,同理可得CD=,∴.③当点D在AB延长线上时,CD左面不存在等腰直角三角形BCE,故此种情况不存在,综上所述:符合条件的AD.【点睛】此题综合考查等边三角形的性质,三角形全等的判定与性质,等腰三角形的判定与性质,含30°角的直角三角形的性质等知识点.30°角所对的直角边等于斜边的一半;直角三角形斜边的中线等于斜边的一半;灵活运用分类讨论的思想是解题关键.22.旗杆的高EF为12.9米.【解析】【分析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.15m.由李明站在B点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+30)m,EN=(x-0.15)m.在Rt△CEN中,由tan∠ECN=ENCN,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.【详解】过点A作AM⊥EF于M,过点C作CN⊥EF于N,∵AB=1.6,CD=1.75,∴MN=0.15m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+30)m,EN=(x-0.15)m,∵∠ECN=15°,∴tan∠ECN=ENCN=0.1530xx-+,即0.1530xx-+≈0.27,解得:x≈11.3,则EF=EM+MF≈11.3+1.6=12.9(m),答:旗杆的高EF为12.9米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.23.(1)4.(2)1 4【解析】【分析】(1)先列举出毎位考生可选择所有方案:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.(2)利用数形图展示所有16种等可能的结果,其中选择两种方案有12种,根据概率的概念计算即可.【详解】(1)毎位考生可选择:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.故答案为4.(2)用A、B、C、D代表四种选择方案.(其他表示方法也可)解法一:用树状图分析如下:解法二:用列表法分析如下:所以小明与小刚选择同种方案的概率=41= 164.【点睛】本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=mn.24.(1)详见解析;(2)2.【解析】【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案.【详解】(1)如图1所示:三角形ABC即为所求,;(2)如图2所示:四边形ABDE即为所求.四边形ABDE的周长为:22=【点睛】此题主要考查了平行四边形的性质、勾股定理等知识,正确应用勾股定理是解题关键.25.(1)见解析;(2)△BCE的周长为18.【解析】【分析】(1)利用全等三角形的判定定理SAS证得结论;(2)利用勾股定理求得BD=4,然后利用三角形的周长公式解答.【详解】(1)证明:∵AB=BC,点D是AC边的中点,∴AD=CD,∠ADB=∠CDE=90°.又∵DE=BD,∴△ABD≌△CED(SAS);(2)解:∵BD===4,∴BE=2BD=8.又∵CE=AB=BC=5,∴BC+CE+BE=5+5+8=18,即△BCE的周长为18.【点睛】本题考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边、公共角或对顶角,必要时添加适当辅助线构造三角形.。
重庆市綦江县名校2019-2020学年中考数学模拟考试试题一、选择题1.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A.8% B.9% C.10% D.11%2.已知抛物线y=﹣x2+bx+2﹣b在自变量x的值满足﹣1≤x≤2的情况下,若对应的函数值y的最大值为6,则b的值为()A.﹣1或2 B.2或6 C.﹣1或4 D.﹣2.5或83.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.55°4.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴一定在y轴的左侧;②a-b+c≥0;③关于x的方程ax2+bx+c=2一定无实数根;④a b cb a++-的最小值是3,其中正确结论的个数是()A.1B.2C.3D.45.如图,在菱形ABCD中,AC与BD相交于点O.将菱形沿EF折叠,使点C与点O重合.若在菱形ABCD 内任取一点,则此点取自阴影部分的概率为()A.23B.35C.34D.586.如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数8yx=,在第二象限的图像经过点E,则正方形AOBC与正方形CDEF的面积之差为()A.6B.8C.10D.127.如图,在锐角ABC V 中,延长BC 到点D ,点O 是AC 边上的一个动点,过点O 作直线MN BC P ,MN 分别交ACB ∠、ACD ∠的平分线于E ,F 两点,连接AE 、AF .在下列结论中.①OE OF =;②CE CF =;③若12CE =,5CF =,则OC 的长为6;④当AO CO =时,四边形AECF 是矩形.其中正确的是( )A .①④B .①②C .①②③D .②③④8.在数轴上点M 表示的数为2-,与点M 距离等于3个单位长度的点表示的数为( ) A.1 B.5- C.5-或1 D.1-或5 9.已知m 是方程好x 2-2x -1=0的一个根,则代数式2m 2-4m +2019的值为( )A .2022B .2021C .2020D .201910.如图,在△ABC 中,∠B =70°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A.40°B.45°C.50°D.60°11.下列运算正确的是( ) A .235a a a +=B .235(2)2a a -=- C .236a a a ⋅=D .624a a a ÷=12.如图,在⊙O 中,∠BOD =120°,则∠BCD 的度数是( )A .60°B .80°C .120°D .150°二、填空题13.定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB >BC ,M 是弧ABC 的中点,MF ⊥AB 于F ,则AF =FB+BC .如图2,△ABC 中,∠ABC =60°,AB =8,BC =6,D 是AB 上一点,BD =1,作DE ⊥AB 交△ABC 的外接圆于E ,连接EA ,则∠EAC =_____°.14.在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin 2A=_____. 15.﹣13的绝对值等于_____. 16.比较大小:________2.(填“>”“=”或“<”)17.因式分解:224a a -=___.18.如图,∠APB=30°,圆心在PB 上的⊙O 的半径为1cm ,OP=3cm ,若⊙O 沿BP 方向平移,当⊙O 与PA 相切时,圆心O 平移的距离为_____cm .三、解答题19.某报社为了解市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A .非常了解;B .比较了解;C .基本了解;D .不了解,根据调查统计结果,绘了不完整的两种统计图表.请结合统计图表,回答下列问题:(1)本次参与调查的市民共有 人,m = ,n = ; (2)统计图中扇形D 的圆心角是 度,并补全条形统计图;(3)某中学准备开展关于雾霾的知识竞赛,九(3)班班主任欲从2名男生和3名女生中任选2人参加比赛,求恰好选中“1男1女“的概率.(要求列表或画树状图)20302272)﹣121.如图:一次函数y =kx+b (k≠0)的图象与反比例函数(0)ay a x=≠的图象分别交于点A 、C ,点A 的横坐标为﹣3,与x 轴交于点E (﹣1,0).过点A 作AB ⊥x 轴于点B ,过点C 作CD ⊥x 轴于点D ,△ABE 的面积是2.(1)求一次函数和反比例函数的表达式; (2)求四边形ABCD 的面积.22.太阳能热水器的玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最佳.如图,某户根据本地区冬至时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光与玻璃吸热管垂直).已知:支架CF=100 cm ,CD=20 cm ,FE ⊥AD 于E ,若θ=37°,求EF 的长.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34)23.只用直尺(无刻度)完成下列作图:(1)如图1,过正方形ABCD 的顶点A 作一条直线平分这个正方形的面积; (2)如图2,不过正方形EFGH 的顶点作直线l 平分这个正方形的面积;(3)如图3,五个边长相等的正方形组成了一个“L 型”图形,作直线m 平分这个“L 型”图形的面积.24.在四边形ABCD 中,AB =AD ,请利用尺规在CD 边上求作一点P ,使得S △PAB =S △PAD ,(保留作图痕迹,不写作法).25.抛物线2()2(0)y x m m =--+>的顶点为A ,与直线2m x =相交于点B ,点A 关于直线2mx =的对称点为C .(Ⅰ)若抛物线2()2(0)y x m m =--+>经过原点,求m 的值;(Ⅱ)是否存在m 的值,使得点B 到x 轴距离等于点B 到直线AC 距离的一半,若存在,请直接写出m 的值;若不存在,请说明理由;(Ⅲ)将2()2(0)2my x m m x =--+>≥且的函数图象记为图象G ,图象G 关于直线2m x =的对称图象记为图象H ,图象G 与图象H 组合成的图象记为M . ①当M 与x 轴恰好有三个交点时,求m 的值:②当ABC ∆为等边三角形时,直接写出M 所对应的函数值小于0时,自变量x 的取值范围.【参考答案】*** 一、选择题13.60°.14.12 15.1316.< 17.2a (a-2) 18.1或5 三、解答题19.(1)400,15,35;(2)126;(3)35. 【解析】 【分析】(1)先由C 等级人数及其所占百分比求得总人数,再根据百分比概念求解可得; (2)用360°乘以D 选项的百分比可得;(3)列表得出所有等可能结果,再找到符合条件的结果,继而根据概率公式求解可得. 【详解】(1)被调查的总人数为180÷45%=400, m%=60400×100%=15%,即m =15; A 等级人数为400×5%=20,D 等级人数为400﹣(20+60+180)=140, 则n%=140400×100%=35%,即n =35, 故答案为:400,15,35;(2)统计图中扇形D 的圆心角是360°×35%=126°, 补全图形如下:故答案为:126.(3)列表得:女女女男男女女,女女,女女,男女,男女女,女女,女女,男女,男女女,女女,女女,男女,男男男,女男,女男,女男,男男男,女男,女男,女男,男∴P(恰好选中“1男1女”)═1220=35.【点睛】此题考查了条形统计图,扇形统计图,列表法与树状图法,弄清题意是解本题的关键.203【解析】【分析】将原式中每一项分别化为121332+再进行化简.【详解】解:原式=12133233+=【点睛】本题考查实数的运算;熟练掌握运算性质,绝对值的意义,负整数指数幂,零指数幂是解题的关键.21.(1)y=﹣6x,y=﹣x﹣1;(2)252.【解析】【分析】(1)由△ABE的面积是2可得出点A的坐标,由点A、E的坐标利用反比例函数图象上点的坐标特征以及待定系数法,即可求出一次函数和反比例函数的解析式;(2)联立方程出点C的坐标,进而可得出BD、CD的长度,再利用S四边形ABCD=S△ABD+S△BCD即可求出四边形ABCD的面积.【详解】解:(1)∵AB⊥x轴于点B,点A的横坐标为﹣3,∴OB=3.∵点E(﹣1,0),∴BE =2, ∵S △ABE =12AB•BE=2, ∴AB =2, ∴A (﹣3,2), ∵点A 在反比例函数(0)ay a x=≠的图象上, ∴a =﹣3×2=﹣6,∴反比例函数的解析式为y =6x-. 将A (﹣3,2)、E (﹣1,0)代入y =kx+b ,得:320k b k b -+=⎧⎨-+=⎩,解得:11k b =-⎧⎨=-⎩,∴一次函数的解析式为y =﹣x ﹣1.(2)解16y x y x =--⎧⎪⎨=⎪⎩得3{2x y =-=或2{3x y ==-, ∴C (2,﹣3), ∵CD ⊥x 轴于点D , ∴OD =2,CD =3, ∴BD =5,∴S 四边形ABCD =S △ABD +S △BCD =12BD•AB+12BD•CD=12×5×2+12×5×3=252.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是求出点A 、C 点的坐标. 22.EF 的长为76 cm . 【解析】 【分析】地面水平线与吸热管夹角∠1与θ互余,延长ED 交BC 的延长线于点H ,则∠H=θ=37°,然后根据锐角三角函数的定义即可求出答案. 【详解】解:如图,依题意知,地面水平线与吸热管夹角∠1与θ互余, 延长ED 交BC 的延长线于点H .则 ∠H=θ=37°.在Rt △CDH 中, HC=tan37CD︒. ∴ HF=HC+CF=tan37CD︒+ CF . 在Rt △EFM 中, EF=(tan37CD ︒+ CF) sin37°≈3803×35=76(cm ). 答: EF 的长为76 cm . 【点睛】题考查解直角三角形,熟练运用是解题的关键.23.(1)如图直线l 如图所示.见解析;(2)如图直线l 如图所示.见解析;(3)直线m 如图所示.见解析. 【解析】 【分析】(1)作正方形对角线所在的直线即为所求. (2)过正方形的中心作直线即可.(3)利用分割,补形,调整的策略解决问题即可. 【详解】(1)如图直线l 如图所示. (2)如图直线l 如图所示.(3)直线m 如图所示.【点睛】本题考查作图﹣应用与设计,解题的关键是学会利用分割,补形,调整的策略解决问题. 24.见解析 【解析】 【分析】作∠P 的平分线交CD 边于点P ,则点P 即为所求.【详解】解:如图,点P 即为所求.【点睛】本题考查的是作图﹣复杂作图,熟知三角形的面积公式及角平分线的性质是解答此题的关键. 25.2 ;(2) m=2;(3)①m=22x <-22x 23-2<<x >23+2 【解析】 【分析】(1)将原点代入表达式,即可求出m;(2)利用使得点B 到x 轴距离等于点B 到直线AC 距离的一半,给出等量关系即可求出结果, (3):①当M 与x 轴恰好有三个交点时,则抛物线与直线2m x =相交于点B 为(02m,); ②,利用ABC ∆为等边三角形,算出m 的值,然后求函数M 的零点,即可给出答案, 【详解】 解:(1)将原点代入表达式得0=-m²+2,∵ m >0,∴2 ;(2) m 2x =时,2m 24y =-+,B(m 2,2m24-+), 点A (m,2),则C (0,2),点B 到直线AC 距离为22m m -+2-2=44点B 到x 轴距离为2m24-+,∴22m 1m 2=424-+⨯, ∵ 43m =43m =4m =或4m =-(舍). ∴33m =或4m =. (3)①∵M 与x 轴恰好有三个交点,∴抛物线与直线2m x =相交于点B 为(02m ,),将B 代入表达式2()2y x m =--+,得2m 024=-+,则m=22或 m=-22.②∵ABC ∆为等边三角形,AC=m ,AC 边上的高为B 点到AC 3可列方程2m 3=m 42,可得m=3当y=0时,202x =-+,解得x=2±,当y=0时, 20(3)2x =--+,解得x=232223-2<<<或x>23+2. ∴B点在x轴下方,则此时M函数的小于0的范围为x<-2或2x23-2【点睛】第一问考查求二次函数的参数,第二问考察解一元二次方程,第三问考查不等式第三问一定要注意B点是在x轴的上,还是下方,这决定最后取值范围是2个还是3个,当B点在x轴上方,只有2个范围,当B点在x轴下方有3个范围。
重庆市綦江县2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直角三角形ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为( )A .2π﹣3B .π+3C .π+23D .2π﹣232.下列图形中为正方体的平面展开图的是( )A .B .C .D .3.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米4.如图所示,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 25.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.一元二次方程2240x x ++=的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根7.下列各数中,比﹣1大1的是( )A .0B .1C .2D .﹣38.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.9.下列事件是必然事件的是()A.任意作一个平行四边形其对角线互相垂直B.任意作一个矩形其对角线相等C.任意作一个三角形其内角和为360︒D.任意作一个菱形其对角线相等且互相垂直平分10.下列计算正确的是()A.B.C.D.11.若代数式23x-有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0D.x≠312.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A.60°B.50°C.40°D.30°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.14.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.15.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________16.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.17.如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连结DQ .给出如下结论:①DQ =1;②;③S △PDQ =;④cos ∠ADQ=.其中正确结论是_________.(填写序号)18.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b .请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b 的图象经过一、二、四象限的概率.20.(6分)实践:如图△ABC 是直角三角形,∠ACB =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC 的平分线,交BC 于点O.以O 为圆心,OC 为半径作圆.综合运用:在你所作的图中,AB 与⊙O 的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.21.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.(8分)如图,一次函数y 1=﹣x ﹣1的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数2k y x=图象的一个交点为M (﹣2,m ).(1)求反比例函数的解析式;(2)求点B 到直线OM 的距离.23.(8分)菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.24.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.25.(10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移5个单位长度得到点B,判断四边形OABC的形状并证明你的结论.26.(12分)先化简再求值:a ba-÷(a﹣22ab ba-),其中a=2cos30°+1,b=tan45°.27.(12分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴2242-3.∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC=2211113223 222ππ⨯+⨯-⨯⨯=323 22ππ+-223π=-.故选:D.点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.2.C【解析】【分析】利用正方体及其表面展开图的特点依次判断解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.3.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B【解析】【分析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则AB BD DF DC设DF=xcm,得到:68 = x6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.5.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.6.D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.7.A【解析】【分析】用-1加上1,求出比-1大1的是多少即可.【详解】∵-1+1=1,∴比-1大1的是1.故选:A.【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握:“先符号,后绝对值”.8.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.9.B【解析】【分析】必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.【详解】解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;C、三角形的内角和为180°,所以任意作一个三角形其内角和为360 是不可能事件,故本选项错误;D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.10.D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确.故选D.11.D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.12.C【解析】【分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】【分析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.【详解】解:∵方程3x1-5x+1=0的一个根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14.(2,3)【解析】【分析】作AC ⊥x 轴于C ,作A′C′⊥x 轴,垂足分别为C 、C′,证明△ABC ≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.【详解】如图,作AC ⊥x 轴于C ,作A′C′⊥x 轴,垂足分别为C 、C′,∵点A 、B 的坐标分别为(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC ≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.15.1【解析】分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a),然后利用三角形面积公式得到12•a•(k a -2k a)=1,最后解方程即可. 详解:设D (a ,k a ), ∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a), ∴E (2a ,2k a ),∵△BDE的面积为1,∴12•a•(ka-2ka)=1,解得k=1.故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.16.1.【解析】【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【详解】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数.∵14岁的有1人,1岁的有21人,∴这个班同学年龄的中位数是1岁.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.17.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,BP=22151()22+=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=5,则PQ=5535-=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,则有3 12 DNDN=-,解得:DN=35.由DQ=1,得cos∠ADQ=35 DNDQ=.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.18.3×1【解析】因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:600×50=30 000,用科学记数法表示为3×1立方米.故答案为3×1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)答案见解析;(2)13.【解析】【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.20.(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为10 3.【解析】【分析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切;(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【详解】(1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.AB与⊙O的位置关系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,22512=13,∴DB=AB-AD=13-5=8,设半径为x ,则OC=OD=x ,BO=(12-x )x 2+82=(12-x )2,解得:x=103. 答:⊙O 的半径为103. 【点睛】本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定.21.(1)袋子中白球有2个;(2)见解析,59 . 【解析】【分析】(1)首先设袋子中白球有x 个,利用概率公式求即可得方程:213x x =+,解此方程即可求得答案; (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+, 解得:x =2,经检验,x =2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59. 【点睛】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.22.(1)22y x =-(2255【解析】【分析】(1)根据一次函数解析式求出M 点的坐标,再把M 点的坐标代入反比例函数解析式即可;(2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C ,根据一次函数解析式表示出B 点坐标,利用△OMB 的面积=12×BO×MC 算出面积,利用勾股定理算出MO 的长,再次利用三角形的面积公式可得12OM•h ,根据前面算的三角形面积可算出h 的值. 【详解】 解:(1)∵一次函数y 1=﹣x ﹣1过M (﹣2,m ),∴m=1.∴M (﹣2,1).把M (﹣2,1)代入2k y x =得:k=﹣2. ∴反比列函数为22y x=-. (2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C .∵一次函数y 1=﹣x ﹣1与y 轴交于点B ,∴点B 的坐标是(0,﹣1).∴OMB 1S 1212∆=⨯⨯=. 在Rt △OMC 中,2222OM=OC +CM 1+25==∵OMB 15S OM h h=122∆=⋅⋅=,∴2555=. ∴点B 到直线OM 的距离为255 23.3m =-.【解析】【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.【详解】解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根, 设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∴AC BD ⊥,在Rt AOB V 中:由勾股定理得:222OA OB AB +=,∴222125+=x x ,则()21212225x x x x +-=, 由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∴[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵>0∆,∴()22(21)430--+>m m ,解得114m <-, ∴3m =-.【点睛】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.24.(1)15人;(2)补图见解析.(3)12. 【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A 1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人; (2)A 2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A 1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 =.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.25.(1)2 yx =(2)﹣1<x<0或x>1.(3)四边形OABC是平行四边形;理由见解析.【解析】【分析】(1)设反比例函数的解析式为kyx=(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且5OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为kyx=(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵点A在kyx=上,∴k21-=-,解得k=2.,∴反比例函数的解析式为2yx =.(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.(3)四边形OABC是菱形.证明如下:∵A(﹣1,﹣2),∴22OA125+=.由题意知:CB∥OA且5CB=OA.∴四边形OABC是平行四边形.∵C(2,n)在2yx=上,∴2n12==.∴C(2,1).∴22OC 215=+=.∴OC=OA . ∴平行四边形OABC 是菱形. 26.1a b -;33【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a 和b 的值,代入计算可得.【详解】原式=a b a -÷(2a a ﹣22ab b a-) =222a b a ab b a a--+÷ =()2•a b a a a b -- =1a b-, 当a =2cos30°+1=2×32+1=3+1,b =tan45°=1时, 原式311=+-=3. 【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.27.(1)详见解析;(2)tan ∠ADP =.【解析】【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH ⊥AD 于H ,根据四边形ABEF 是菱形,∠ABC =60°,AB =4,得到AB =AF =4,∠ABF =∠ADB =30°,AP ⊥BF ,从而得到PH =,DH =5,然后利用锐角三角函数的定义求解即可. 【详解】(1)证明:∵AE 垂直平分BF ,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.。
重庆市綦江县2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( )A .B .C .D .2.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,则DE 的长为( )A .6B .8C .10D .123.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =k x 的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .334.已知圆心在原点O ,半径为5的⊙O ,则点P (-3,4)与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .不能确定5.如图,PA 和PB 是⊙O 的切线,点A 和B 是切点,AC 是⊙O 的直径,已知∠P =40°,则∠ACB 的大小是( )A .60°B .65°C .70°D .75°6.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--7.下列各式中正确的是( )A . =±3B . =﹣3C . =3D .8.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .221x =B .1(1)212x x -=C .21212x = D .(1)21x x -= 9.如图,△ABC 内接于⊙O ,BC 为直径,AB=8,AC=6,D 是弧AB 的中点,CD 与AB 的交点为E ,则CE :DE 等于( )A .3:1B .4:1C .5:2D .7:210.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )A .12B .23C .25D .71011.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )A .1.35×106B .1.35×105C .13.5×104D .135×10312.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A .80°B .50°C .30°D .20°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点E 在正方形ABCD 的外部,∠DCE=∠DEC ,连接AE 交CD 于点F ,∠CDE 的平分线交EF 于点G ,AE=2DG .若BC=8,则AF=_____.14.若两个关于 x ,y 的二元一次方程组3136mx ny x y +=⎧⎨-=⎩与52428x ny n x y -=-⎧⎨+=⎩有相同的解, 则 mn 的值为_____. 15.如图1,在R t △ABC 中,∠ACB=90°,点P 以每秒2cm 的速度从点A 出发,沿折线AC ﹣CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长的值为_____.16.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE AB=_.17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.18.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(3,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y=-x 2-5x+c 经过点B 、C ,则菱形ABCD 的面积为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.20.(6分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?21.(6分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?22.(8分)P 是C e 外一点,若射线PC 交C e 于点A ,B 两点,则给出如下定义:若0PA PB 3<⋅≤,则点P 为C e 的“特征点”.()1当O e 的半径为1时.①在点()1P 2,0、()2P 0,2、()3P 4,0中,O e 的“特征点”是______; ②点P 在直线y x b =+上,若点P 为O e 的“特征点”.求b 的取值范围;()2C e 的圆心在x 轴上,半径为1,直线y x 1=+与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是C e 的“特征点”,直接写出点C 的横坐标的取值范围.23.(8分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题: 分组分数段(分)频数 A36≤x <41 22 B41≤x <46 5 C46≤x <51 15 D51≤x <56 m E 56≤x <61 10。
重庆市綦江县2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为()A.50035030x x=-B.50035030x x=-C.500350+30x x=D.500350+30x x=2.下列图形中既是中心对称图形又是轴对称图形的是A.B.C.D.3.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x-对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差4.下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.(ab)3=ab3D.a2•a4=a65.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=86.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是()A.B.C.D.7.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac <0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有().A.1个B.2个C.3个D.4个9.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是()A.B.C.D.10.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)11.如图,在Y ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:2512.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A .40°B .60°C .80°D .100°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,O e 的半径为3,点A ,B ,C ,D 都在O e 上,30AOB ∠=︒,将扇形AOB 绕点O 顺时针旋转120︒后恰好与扇形COD 重合,则»AD 的长为_____.(结果保留π)14.如图所示,点C 在反比例函数ky (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB V 的面积为1,则k 的值为______.15.如图,在△ABC 中,∠ACB=90°,∠B=60°,AB=12,若以点A 为圆心, AC 为半径的弧交AB 于点E ,以点B 为圆心,BC 为半径的弧交AB 于点D ,则图中阴影部分图形的面积为__(保留根号和π)16.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt △BCD 沿射线BD 方向平移,在平移的过程中,当点B 的移动距离为 时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC 1D 1为菱形.17.分解因:22424x xy y x y --++=______________________.18.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.20.(6分)如图,抛物线l :y=(x ﹣h )2﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),将抛物线ι在x 轴下方部分沿轴翻折,x 轴上方的图象保持不变,就组成了函数ƒ的图象. (1)若点A 的坐标为(1,0).①求抛物线l 的表达式,并直接写出当x 为何值时,函数ƒ的值y 随x 的增大而增大;②如图2,若过A 点的直线交函数ƒ的图象于另外两点P ,Q ,且S △ABQ =2S △ABP ,求点P 的坐标; (2)当2<x <3时,若函数f 的值随x 的增大而增大,直接写出h 的取值范围.21.(6分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y ).(1)如图2,ω=45°,矩形OAB C 中的一边OA 在x 轴上,BC 与y 轴交于点D ,OA =2,OC =l . ①点A 、B 、C 在此斜坐标系内的坐标分别为A ,B ,C . ②设点P (x ,y )在经过O 、B 两点的直线上,则y 与x 之间满足的关系为 . ③设点Q (x ,y )在经过A 、D 两点的直线上,则y 与x 之间满足的关系为 .(2)若ω=120°,O 为坐标原点.①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =43 ,求圆M 的半径及圆心M 的斜坐标. ②如图4,圆M 的圆心斜坐标为M (2,2),若圆上恰有两个点到y 轴的距离为1,则圆M 的半径r 的取值范围是 .22.(8分)先化简后求值:已知:x=3﹣2,求2284111[(1)()]442x x x x+--÷--的值.23.(8分)如图,在平面直角坐标系xOy 中,函数(0)ky x x=>的图象与直线2y x =-交于点A(3,m).求k 、m 的值;已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)ky x x=> 的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN≥PM ,结合函数的图象,直接写出n 的取值范围.24.(10分)计算:2344(1)11x x x x x ++-+÷++. 25.(10分)如图,已知抛物线过点A (4,0),B (﹣2,0),C (0,﹣4). (1)求抛物线的解析式;(2)在图甲中,点M 是抛物线AC 段上的一个动点,当图中阴影部分的面积最小值时,求点M 的坐标; (3)在图乙中,点C 和点C 1关于抛物线的对称轴对称,点P 在抛物线上,且∠PAB=∠CAC 1,求点P 的横坐标.26.(12分)如图,已知一次函数y=12x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=12x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.27.(12分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A 【解析】 【分析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间. 【详解】现在每天生产x 台机器,则原计划每天生产(x ﹣30)台机器. 依题意得:500350x x 30=-, 故选A . 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 2.B 【解析】 【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 【详解】A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,是中心对称图形,不符合题意. 故选B . 3.A 【解析】 【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A. 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键. 4.D 【解析】 【分析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答. 【详解】∵3a ﹣2a =a ,∴选项A 不正确; ∵a 2+a 5≠a 7,∴选项B 不正确; ∵(ab )3=a 3b 3,∴选项C 不正确; ∵a 2•a 4=a 6,∴选项D 正确. 故选D . 【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键. 5.D 【解析】 【分析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D . 【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D . 【点睛】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xSn-+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 6.D 【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.7.B【解析】【分析】【详解】设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B . 8.C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0. ∴abc <0, ①正确; 2a+b=0,②正确;由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故③错误;由对称性可知,抛物线与x 轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误; 观察图象得当x=-2时,y <0, 即4a-2b+c <0 ∵b=-2a , ∴4a+4a+c <0 即8a+c <0,故⑤正确. 正确的结论有①②⑤, 故选:C 【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 9.B 【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.故选B 考点:三视图 10.D 【解析】 【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.11.D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.12.D【解析】【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.52π. 【解析】【分析】根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.【详解】解:∵扇形AOB 绕点O 顺时针旋转120°后恰好与扇形COD 重合,∴∠BOD=120°,∴∠AOD=∠AOB+∠BOD=30°+120°=150°,∴»AD 的长=150351802ππ⋅⋅=. 故答案为:52π.【点睛】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=180n R π⋅⋅(弧长为l ,圆心角度数为n ,圆的半径为R )是解题的关键.14.1【解析】【分析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB V 的面积为1,即可求得k 的值.【详解】解:设点A 的坐标为()a,0-, Q 过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB V 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭, ∴点B 的坐标为k 0,2a ⎛⎫ ⎪⎝⎭, 1k a 122a∴⋅⋅=, 解得,k 4=,故答案为:1.本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.15π−183.【解析】【分析】根据扇形的面积公式:S=2360n Rπ分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.【详解】S阴影部分=S扇形ACE+S扇形BCD-S△ABC,∵S扇形ACE=60362360π⨯⨯=12π,S扇形BCD=3036360π⨯=3π,S△ABC=12×6×63=183,∴S阴影部分=12π+3π−183=15π−183.故答案为15π−183.【点睛】本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.16.3,3.【解析】试题分析:当点B的移动距离为3时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为3时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.试题解析:如图:当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,∵B1C1=1,∴BB1=11tan60B C==︒,当点BABC1D1为矩形;当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,∵B1C1=1,∴BB1=11tan30B C==︒,当点BABC1D1为菱形.考点:1.菱形的判定;2.矩形的判定;3.平移的性质.17.(x-2y)(x-2y+1)【解析】【分析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】22424x xy y x y--++=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)18.3.1或4.32或4.2【解析】【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴,S△ABC=12AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=APAC•S△ABC=35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=·342.45AB BCAC⨯==,∴AD=DP=223 2.4-=1.2,∴AP=2AD=3.1,∴S等腰△ABP=APAC•S△ABC=3.65×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=CPAC•S△ABC=45×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.【解析】【分析】先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.【详解】原式==1+=1+=当x=2cos30°+tan45°=2×+1=+1时.=【点睛】本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.20.(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【解析】试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P 的坐标;(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.21.(1)①(2,0),(12),(﹣12);②2x;③2x,y=﹣222;(2)①半径为4,M 83,433)31<r3+1.【解析】【分析】(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M 的半径即可解决问题.【详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为(2,0),(1,2),(﹣1,2);②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴BEPM=OEOM,∴21y x,∴2;③如图2﹣3中,作QM∥OA交OD于M,则有MQ DM OA DO=,∴222x y-=,∴y=﹣22x+2,故答案为y=2x,y=﹣22x+2;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=43,∴OF=FA=23,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴43,83,∴M(33,33);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK ∥x 轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO 是等边三角形,∴3当FN=1时,31,当EN=1时,3,观察图象可知当⊙M 的半径r 31<r 3. 3﹣1<r 3.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.22.3433- 【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式=1﹣()()8x 2x 2+-•(2444x x x +-÷x 22x -)=1﹣()()8x 2x 2+-•()224x x -•2x 2x -=1﹣42x +=x 22x -+, 当32时,原式322322-+﹣﹣343﹣343-.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=kx,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=3x,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M (n+2,n ),∴PM=2,∵PN≥PM ,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.24.22x x -+ 【解析】【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式=()22311112x x x x x ⎛⎫-+-⨯ ⎪+++⎝⎭ =()()()2x 22112x x x x +-+⨯++ =22x x -+. 【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.25. (1)y =x 2-x -4(2)点M 的坐标为(2,-4)(3)-或-【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C 点坐标代入求出a 即可得到抛物线解析式;(2) 连接OM ,设点M 的坐标为.由题意知,当四边形OAMC 面积最大时,阴影部分的面积最小.S 四边形OAMC =S △OAM +S △OCM -(m -2)2+12. 当m =2时,四边形OAMC 面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x =1,点C 与点C 1关于抛物线的对称轴对称,所以C 1(2,-4).连接CC 1,过C 1作C 1D ⊥AC 于D ,则CC 1=2.先求AC =4,CD =C 1D =,AD =4-=3;设点P ,过P 作PQ 垂直于x 轴,垂足为Q. 证△PAQ ∽△C 1AD ,得,即,解得解得n =-,或n =-,或n =4(舍去).【详解】(1)抛物线的解析式为y = (x -4)(x +2)=x 2-x -4.(2)连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM=× 4m+× 4=-m2+4m+8=-(m-2)2+12.当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=4,CD=C 1D=,AD=4-=3,设点P,过P作PQ垂直于x轴,垂足为Q.∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴,即,化简得=(8-2n),即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-,或n=-,或n=4(舍去),∴点P的横坐标为-或-.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.26.(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】【分析】(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x ﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.【详解】(1)∵y=12x+1交x 轴于点A (﹣4,0), ∴0=12×(﹣4)+m , ∴m=1,与y 轴交于点B ,∵x=0,∴y=1∴B 点坐标为:(0,1),(1)∵二次函数y=ax 1+bx+c 的图象与x 轴只有唯一的交点C ,且OC=1∴可设二次函数y=a (x ﹣1)1把B (0,1)代入得:a=0.5∴二次函数的解析式:y=0.5x 1﹣1x+1;(3)(Ⅰ)当B 为直角顶点时,过B 作BP 1⊥AD 交x 轴于P 1点由Rt △AOB ∽Rt △BOP 1 ∴1AO BO BO OP =, ∴1422OP =, 得:OP 1=1,∴P 1(1,0),(Ⅱ)作P 1D ⊥BD ,连接BP 1,将y=0.5x+1与y=0.5x 1﹣1x+1联立求出两函数交点坐标:D 点坐标为:(5,4.5),则AD=2, 当D 为直角顶点时∵∠DAP 1=∠BAO ,∠BOA=∠ADP 1,∴△ABO ∽△AP 1D , ∴2AB AO AP AD =,2AP = , 解得:AP 1=11.15,则OP1=11.15﹣4=7.15,故P1点坐标为(7.15,0);∴点P的坐标为:P1(1,0)和P1(7.15,0).【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.27.(1)相切;(2)1643 3π-【解析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.试题解析:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,3∴S阴=S扇形OAC﹣S△OAC=2120411642343 36023ππ-⨯⨯=-g考点:直线与圆的位置关系;扇形面积的计算.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。