小学五年级数学多边形的面积(组合图形的面积)
- 格式:ppt
- 大小:1.50 MB
- 文档页数:21
多边形的面积一、计算公式注:S表示面积,a表示底,h表示高,底和高必须对应!在梯形的面积公式里,a表示上底,b表示下底,一般来说,短的是上底,长的是下底。
在计算面积时,要找准对应的量。
求三角形和梯形的面积时,不要忘了除以2。
二、其他知识点1、计算多边形的面积,要代入公式计算。
2、推导平行四边形的面积,将平行四边形转化成长方形。
(割补法)3、平行四边形的周长=相邻两边长之和×2 三角形的周长=三条边之和梯形的周长=上底+下底+两条腰4、把一个长方形拉成平行四边形,周长不变,面积变小(平行四边形的高比原来长方形的宽小)。
反之,把平行四边形拉成一个长方形,周长不变,面积变大。
5、两个完全一样的三角形可以拼成一个平行四边形。
(拼摆法)6、等底等高的平行四边形和三角形,平行四边形的面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。
等面积等底的平行四边形和三角形,三角形的高是平行四边形的高的2倍,平行四边形的高是三角形的高的一半。
7、在直角三角形里,两条直角边就是对应的底和高,斜边最长。
8、两个完全一样的梯形可以拼成一个平行四边形。
(拼摆法)9、计算堆成梯形形状的圆木、钢管等的个数,通常用下面的方法:(顶层个数+底层个数)×层数÷2=总个数。
注意:只有下一层物体比上一层物体数多1时,才有“层数=底层个数-顶层个数+1”10、求组合图形的面积时,一定要找准所分成的图形的相关数据。
11、不规则图形的面积可以转化成学过的图形来估算,也可以通过数方格的方法来估算。
三、解答方法1、计算面积时,分清是算哪种图形的面积,直接利用相应的面积公式,一定要找准公式里所需的每个量,注意单位是否一致,算出结果后记得写单位,面积单位有“平方”两个字。
2、计算底、高、上底或下底时,同样看清是哪种图形,直接利用相应面积公式的变式。
(熟记和熟练运用上面表格的计算公式。
)3、计算组合图形的面积时,利用割补法,看清组合图形是由哪几个简单图形(所谓简单图形,就是我们学过的长方形、正方形、平行四边形、三角形、梯形)组成的,分别算出每个简单图形的面积,最后不要忘了再相加(分割法,图形是凸的)或相减(添补法,图形是凹的)。
2022-2023学年五年级数学上册典型例题系列之第二单元多边形的面积组合图形面积部分(解析版)编者的话:《2022-2023学年五年级数学上册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题、专项练习、分层试卷三大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
分层试卷部分是根据试题难度和掌握水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。
本专题是第二单元多边形的面积组合图形面积部分。
本部分内容是组合图形的面积,题目综合性强,难度大,建议根据学生掌握情况选择性进行讲解,一共划分为六个考点,欢迎使用。
【考点一】加法分割思路求图形的面积:S=S1+S2。
【方法点拨】加法分割思路是把所求图形面积分割成几块能用公式计算的规则图形(三角形、正方形、长方形、平行四边形、梯形),然后分别计算出面积,最后相加得出所求图形的面积。
【典型例题】计算组合图形的面积。
(单位:分米)解析:16×6=96(平方分米)(16-8)×(14-6)÷2=8×8÷2=64÷2=32(平方分米)96+32=128(平方分米)【对应练习1】看图求面积(单位:厘米)解析:12×10÷2+(8+12)×10÷2=12×10÷2+20×10÷2=120÷2+200÷10=60+100=160(平方厘米)则面积是160平方厘米。
【对应练习2】计算下面组合图形的面积。
(单位:厘米)解析:(4+2+2+4)×(10-8)÷2+8×(4+2+2)=12×2÷2+8×8=12+64=76(平方厘米)【对应练习3】计算下面图形的面积。
第四单元《多边形的面积》知识点1:长方形的面积=长×宽字母公式:S=ab长方形的周长=(长+宽)×2 字母公式:C=(a+b)×2(长=周长÷2—宽;宽=周长÷2—长)长方形的面积、周长与长和宽之间的变化关系:(1)长方形的长加宽等于长方形周长的一半,即a+b=C÷2(2)长方形框架拉成平行四边形,周长不变,面积变小。
知识点2:正方形面积=边长×边长字母公式:S=a×a正方形周长=边长×4 字母公式:C=4a(边长=面积÷4)知识点3:平行四边形面积=底×高字母公式:s=ah(平行四边形的底=面积÷高,即a=S÷h;平行四边形的高=面积÷底, 即h=S÷a)平行四边形面积公式的推导过程:剪拼、平移平行四边形的任意一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方形的长就是平行四边形的底,这个长方形的宽就是平行四边形的高。
因为长方形面积=长×宽,所以平行四边形面积=底×高,用字母表示:S=a×h。
等底等高的平行四边形面积相等。
知识点4:三角形面积=底×高÷2 字母公式:S=ah÷2(三角形的底=面积×2÷高,即a=S×÷h;三角形的高=面积×2÷底,即h=S×2÷a)三角形面积公式的推导过程:旋转、平移(将两个完全一样的三角形拼成一个平行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的面积是三角形面积的2倍。
一个三角形面积是这个平行四边形面积的一半。
因为平行四边形的面积=底×高,所以三角形面积=底×高÷2,即S=ah÷2)等底等高的三角形面积相等。
第六单元多边形的面积第4课时—组合图形的面积1 教学内容《义务教育课程标准实验教科书数学》(人教版)五年级上册第99页“组合图形的面积”。
2 教学目标2.1 知识与技能:明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2.2过程与方法:能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2.3 情感态度与价值观:渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
3 教学重点/难点/考点3.1 教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
3.2 教学难点:根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
3.3 考点分析:能判断图形是由那些图形组合而成,并应用相应的公式解决实际问题,4 教学目标依据4.1 课程标准的要求:《新课标》指出:“学生有效的教学活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
要做到把“生活经验数学化,数学问题生活化。
”变“课堂教学”为“课堂生活”,就必须把握教学规律、用活教材。
故而,教师应向学生提供充分从事教学活动的机会,帮助他们在自主探索与合作交流的过程中真正理解和掌握数学知识与技能、数学思想和方法,并获得数学活动经验。
根据这一教学理念,本课采用“主导-主体相结合”为特征的探究性教学模式,让学生在观察、猜想、验证、归纳、交流中获得新知并提高能力。
4.2 教材分析:《组合图形的面积》一课是《义务教育课程标准实验教科书数学》(人教版)五年级上册的教学内容。
在三年级时,学生已经学习了长方形、正方形的面积,在本册本单元也学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这方面知识的发展,也是日常生活中经常需要解决的问题。
本节课让学生经历从多角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,逐步探讨出不同的方法,找到合理解决问题的策略;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
五年级数学(学科)教学设计主备人授课人授课时间课题6、多边形的面积(三角形、平行四边形的面积习题)授课课时第 3 课时总课时共课时教学目标知识与能力使学生通过练习,掌握平行四边形和三角形的面积计算公式。
会计算平行四边形的面积。
能解决日常生活中简单的实际问题。
过程与方法在探索、练习的过程中,进一步体会数形结合的数学思想。
情感态度与价值观通过练习,激发学习兴趣,培养探索的精神,体验将实际问题转化为数学问题的数学化过程。
教学重点通过练习,掌握平行四边形和三角形的面积计算公式。
教学难点在探索、练习的过程中,进一步体会数形结合的数学思想。
教学方法练习法、讲授法教学准备教师习题学生教学过程教学活动二次备课一、求下面图形的面积。
求甲,乙图形的面积。
二、应用题。
1、有两块面积相同的平行四边形地,一块地的的底是6米,高是3米,另一块地的底是9米,高是多少米?2、一个平行四边形的停车场,底是63米,高是25米。
平均每辆车占地15平方米,这个停车场可停车多少辆?3、一个平行四边形, 它的底边减少6分米后还剩余18分米, 面积因此而减少72平方分米, 这个平行四边形原来的面积是多少平方分米?三、判断正误。
拼成的平行四边形的面积是()。
4、小组讨论,总结梯形的面积公式。
梯形=平行四边形的面积÷2= 底×高÷2 =(上底+下底)×高÷2 用字母表示:S=(a+b)h÷2二、用三角形的面积公式解决问题。
1、出示例3。
A 学生试着自己解决问题。
B 教师订正。
做一做:一辆汽车侧面的两块玻璃的形状是梯形(如下图),他们的面积分别是多少?归纳总结练习。
通过观察,我发现上面三个梯形是(),所以它们的()也是一样的。
布置作业完成练习二十一第1、2、3、4题。
课堂小结师:通过学习,你有什么收获?梯形的面积=(上底+下底)×高÷2 用字母表示:S=(a+b)h÷2板书设计梯形的面积梯形的面积=底(上底+下底)×高÷ 2 S = (a + b ) ×h ÷2课后反思S S三、求下面图形的面积。
多边形的面积计算公式1、长方形的面积=长×宽字母表示:S=ab长方形的长=面积÷宽 a=S÷b长方形的宽=面积÷长b=S÷a2、正方形的面积=边长×边长字母表示: S= a²3平行四边形的面积=底×高字母表示: S=ah平行四边形的高=面积÷底 h=S÷a平行四边形的底=面积÷高 a=S÷h4、三角形的面积=底×高÷2字母表示: S=ah÷2三角形的高= 2×面积÷底h=2S÷a三角形的底= 2×面积÷高a=2S÷h5、梯形的面积=(上底+下底)×高÷2字母表示:S=(a+b)·h ÷2梯形的高=2×面积÷(上底+下底) h=2S÷(a+b)梯形的上底=2×面积÷高—下底 a=2S÷h-b梯形的下底=2×面积÷高—上底 b=2S÷h-a1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方米=10000平方厘米1米==10分米=100厘米《多边形的面积》同步试题一、填空1.完成下表。
考查目的:平行四边形、三角形和梯形的面积计算及变式练习。
答案:解析:直接利用公式计算这三种图形的面积,对于学生来说完成的难度不大。
对于已知平行四边形的面积和高求底、已知三角形的面积和底求高这两个变式练习,可引导学生进行比较,理解并强化三角形和梯形的类似计算中需要先将“面积×2”这一知识点。
2.下图是一个平行四边形,它包含了三个三角形,其中两个空白三角形的面积分别是15平方厘米和25平方厘米。
中间涂色三角形的面积是()。
考查目的:等底等高的三角形和平行四边形的面积之间的关系。
小学数学五年级上册《多边形的面积》说课稿小学数学五年级上册《多边形的面积》说课稿作为一名专为他人授业解惑的人民教师,可能需要进行说课稿编写工作,说课稿有助于提高教师理论素养和驾驭教材的能力。
说课稿应该怎么写呢?以下是WTT为大家整理的小学数学五年级上册《多边形的面积》说课稿,希望能够帮助到大家。
小学数学五年级上册《多边形的面积》说课稿1一、说教材1、教材分析“组合图形的面积”是小学数学人教版第九册第五单元的内容。
教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算时,要把一个组合图形转化成已学过的平面图形再进行计算,这样既可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念并解决一些实际问题。
教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性。
二是针对组合图形的特点强调学生学习的自主探索性。
2、学情分析根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难,所以在探索组合图形面积的计算方法时,我通过自主探索、小组合作交流等方式达到方法的多样化。
二、说教学目标基于以上的分析,我确立本节课的教学目标:1、知识目标:在自主探索过程中,理解计算组合图形面积的多种方法;并能根据组合图形的条件有效地选择合理的计算方法解决问题;能运用所学的知识解决生活中的问题。
2、能力目标:培养运用多种策略解决实际问题的意识,渗透转化的学习思想策略。
3、情感目标、感受数学与生活的密切联系,体会组合图形的面积在实际生活中的应用价值。
三、说教学重点、难点针对五年级学生的年龄特点和认知水平,我确定本节课的教学重难点为:认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
教学难点:引导学生观察组合图形,根据图形的特点,运用不同的方法计算出它的面积。
在这个过程中,培养学生运用多种策略解决实际问题的意识。
四、说教法和学法1、说教法(1)多媒体教学法在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是转化图形的几种方法通过课件的演示,学生一目了然,直观形象,更好的突出了教学重点、突破了教学难点。