盛德数学
- 格式:xls
- 大小:83.50 KB
- 文档页数:2
广东省汕尾市陆丰市碣石中学2024-2025学年上学期九年级数学阶段考试一、单选题1.计算()23a 的结果是( ) A .6aB .5aC .5aD .6a2.我国古代的二十四节气图标诸多呈现对称之美,下列图标是轴对称图形的是( )A .B .C .D .3x 的取值范围是( ) A .23x >B .32x >C .23x ≥D .32x ≥4.下列各式从左边到右边的变形,属于因式分解的是( )A .()22929y y y y -+=-+B .()333x y x y +=+C .()2244121x x x ++=+D .()()25151251x x x +-=-5.从甲、乙、丙、丁中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是90分,方差分别是23S =甲,2 2.6S =乙,22S =丙,2 3.6S =丁,派谁去参赛成绩更稳定( )A .甲B .乙C .丙D .丁6.已知m 是方程220x x --=的一个根,则代数式22022m m -+的值等于( ) A .2024B .2022C .2023D .20217.在平行四边形ABCD 中,∠A 比∠B 大40°,那么∠D 的度数为( ) A .60°B .70°C .80°D .110°8.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(0,3)9.植树节的起源可以追溯到中国古代“孟春之月,盛德在木”的传统观念,这体现了古人对树木的深深敬仰.2024年4月3日上午,习近平总书记参加首都义务植树活动,和少先队员一起植树,说道:“愿小朋友们像小树苗一样,都能长成中华民族的参天大树.”某校在“植树节”期间带领学生开展植树活动,甲、乙两班同时开始植树,甲班比乙班每小时多植4棵树,植树活动结束时,甲、乙两班同时停止植树,甲班共植80棵树,乙班共植60棵树.设乙班每小时植x 棵树,依题意可列方程为( ) A .80604x x=+ B .80604x x=- C .80604x x =- D .806044x x =+- 10.若关于x 的一元二次方程22(21)10k x k x -++=有两个实数根,则k 的取值范围是( )A .14k >-B .14k ≥-C .14k >-且0k ≠D .14k ≥-且0k ≠二、填空题11.关于x 的一元二次方程240x m +-=的一个根是1,则常数m =.12.若a ,b 是一元二次方程2310x x -+=的两个实数根,则代数式11a b+的值为.13.2024年上半年陆丰市GDP 达到21822000000元,将数21822000000用科学记数法表示为.14.如图,在Rt ABC △中,90BAC ∠=︒,6cm AC =,8cm AB =,AD 是ABC V 的角平分线,DE AB ⊥于点E ,则DE 的长是cm .15.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解集为.三、解答题16.用指定方法解方程: (1)248x x -=;(配方法) (2)22310x x +-=.(公式法)17()()()2024231 3.14π⨯-+---18.先化简,再求值:2216222x x x x x-⎛⎫-÷ ⎪--⎝⎭,其中1x =. 19.如图,在由边长为1的小正方形组成的5×6的网格中,△ABC 的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断△ABC 的形状;(2)在图中确定一个格点D ,连接AD 、CD ,使四边形ABCD 为平行四边形,并求出▱ABCD 的面积.20.某家庭农场要建一个长方形的养兔场,兔场的两边靠墙(两堵墙互相垂直,长度不限),另两边用木栏围成,木栏总长20米.(1)兔场的面积能达到100平方米吗?请你给出设计方案;(2)兔场的面积能达到110平方米吗?如能,请给出设计方案,若不能说明理.21.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)通过计算将条形统计图补充完整;(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?22.如图,在ABC∥交DE的V中,点D、E分别是边BC、AC的中点,过点A作AF BC⊥于点G.延长线于F点,连接AD、CF,过点D作DG CF(1)求证:四边形ADCF是平行四边形;(2)若3AB=,5BC=,若四边形ADCF是菱形,求DG的值.23.根据以下素材,探索完成任务1和任务2:24.阅读理解:对于线段MN 和点Q ,定义:若QM QN =,则称点Q 为线段MN 的“等距点”;特别地,若90MQN ∠=︒,则称点Q 是线段MN 的“完美等距点”.解决问题:如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为()4,0,点(),P m n 是直线12y x =-上一动点.(1)已知3个点:()()()2,32,22,2B C D ---、、,则这三点中,可以做线段OA 的“等距点”是,线段OA 的“完美等距点”是;(2)若坐标原点O 为线段AP 的“等距点”,求出点P 的坐标;(3)若OP H 在y 轴上,且H 是线段AP 的“等距点”,求点H 的坐标;(4)当m >0,是否存在这样的点N ,使点N 是线段OA 的“等距点”,也是线段OP 的“完美等距点”,请直接写出所有这样的点P 的坐标.。
六年级数学《比的应用》听课心得体会六年级数学《比的应用》听课心得体会(通用15篇)当在某些事情上我们有很深的体会时,就十分有必须要写一篇心得体会,这样能够给人努力向前的动力。
但是心得体会有什么要求呢?以下是小编为大家收集的六年级数学《比的应用》听课心得体会,欢迎阅读与收藏。
六年级数学《比的应用》听课心得体会篇1在本次经验性教师有效教学研讨课活动中,范老师所执教的是人教版小学数学六年级上册《比的应用》。
本节课具有以下特点。
1、选材新颖,引人入胜。
本节课中,范老师创造性使用教材,充分利用本土资源,从开封的美食入手,从舌尖上的数学说起,紧紧围绕比的应用展开教学。
皮薄馅多开封灌汤包、麻辣酥脆的兴盛德花生、越嚼越香的马豫兴桶子鸡……一张张色泽鲜艳的图片,一道道极具地方特色的家乡美食,令学生垂涎欲滴,在调动学生感官的同时充分调动了学生的学习热情,让学生学的有滋有味,兴致盎然。
2、层次分明,重点突出。
本节课上,范老师利用开封灌汤包的制作过程组织教学。
和面过程中面与水的比、肉馅中肉与水的比,让学生从中提取信息,计算配料,收获新知。
然后让学生从开封的各色美食中选取自己喜欢的食品加以研究进行巩固练习。
数学与生活息息相关,比的应用也涉及到生活的各个领域,最后一个环节魔幻世界,范老师让学生通过观察,亲自动手,根据今天所学知识变出了晶莹剔透的雪花,学生兴奋地投入到活动中去,将整个课堂推向了高潮。
3、关注细节,培养习惯。
本节课上,范老师关注学生书写、检验、审题等习惯的培养。
首先在教学新授过程中学生独立解决问题,进行板演,教师评讲过程中建议学生要做到列式过程中的每一个数据要有出处,另外在做完题之后要做到及时检验,培养了孩子检验意识。
然后在学生进行选择性练习时发现条件不够提出疑问,这些可不是范老师准备不足,而是刻意设计的一个环节,旨在培养学生搜集信息以及认真审题的习惯。
过程重要、结果重要,细节也绝对不可忽视。
所谓态度比能力重要,这里的态度绝对是孩子们习惯和细节的体现。
课文的基础上,应以学生学过的一定数量的课文作为他们作文的依据,适当地有计划地让他们仿写,仿写可以实践学过的知识。
我讲授《钓鱼的启示》这文章,通过学习这篇文章不仅在思想上受到了深刻的教育,而且学到了一种新的写作方法。
老师讲授之后,请一位同学复述,再请大家仿照写法,比如提出一个富有意义的主题,按一定的次序把这几个小故事连串起来,并添上适当的开头、结尾,写成一篇记叙文。
又如教师列提纲:“刻苦自学,认真教学,以徒为师,一生勤学”。
让学生用简短的话复述,最后让学生按写作要求写成记叙文,仿写成功了,学生们就能有所创新和发展,变知识为自己的能力。
围绕着语文教学尤其是阅读教学中学生学习积极性、主动性的激发展开,仿写具有较强的典型意义。
凭借教材,进行听说读写训练,效果较好,读写结合,学生智能得到发展,学生获得了学习动力与能力,创造性思维得到了发展。
要注重培养学生运用语言去观察事物和表达观察事物的结果。
语言是人们表达思想和交流思想的工具,同样,语言也是学生用以观察事物和表达所观察的事物的结果的工具。
可以这么说,能否应用语言去观察事物和表达观察结果,是学生是否具备观察能力的标志,因为学生要正确地表达出客观事物,就要运用准确的语言;要正确地描述事物和阐明事理,就要运用形象性等语言;要使观察结果表达得叫人一看就明了,并且叫人耳目为之一新,就要应用简洁、通俗、生动的语言。
倘若不会使用这些语言,能说观察事物的任务完成了吗?能说学生已具备观察能力了吗?上述的语言表达技巧的基础在于嚼字、选词、酌句。
实践证明把学生放到观察具体的过程中去训练嚼字、选词、酌句,不但可以促进学生更好地观察事物,而且还可以促进学生观察能力的猛进,在偶然的、无意识的状态下获得某种知识、经验和技能。
生活是学生作文的素材来源,因此,先要教学生学会通过对生活的观察分析,从中选取作文的题材,开拓材料来源。
选取作文材料需要观察力,要注意引导中学生随时细致地观察自己周围的事物,并且出些相应的题目,让题目在观察分析后写成日记或其他形式的文章,在组织题目观察事物(其中包括看图片)时,要引导学生全面地看题目,全面地综合分析,力图认清事物的特征和本质。
座右铭经典句子摘抄
1.学则智,不学则愚;学则治,不学则乱。
自古圣贤,盛德大业,未有不由学
而成者。
2.天行健,君子以自强不息;地势坤,君子以厚德载物。
3.我自横刀向天笑,去留肝胆两昆仑。
4.太阳照亮人生的路,月亮指引心灵的路。
5.智者跌倒在千虑一失、愚者成功在千虑一得。
6.长风破浪会有时,直挂云帆济沧海。
7.积土成山,风雨兴焉;积水成渊,蛟龙生焉;积善成德,而神明自得,圣心
备焉。
8.历史是一面镜子,也是一本深刻的教科书。
9.当现实不能改变,我们要能学会坚强,花开花落,世间万物都有始有终,属
于自然规律,请不要伤心,生活还要继续。
10.莫等闲,白了少年头,空悲切。
11.数学是一门创造性的艺术,因为数学家创造了美丽的新概念。
12.三人行,必有我师也。
择其善者而从之,其不善者而改之。
13.如今不起三分早,将来何来万缕香。
14.千沟万壑虽辛苦,吹尽黄沙始到金。
15.生活是一杯热茶,苦涩中仍散逸着清香。
生活并不是天昏地暗,每天告诉自
己一遍:我还活着,而是活在阳光下。
16.旧书不厌百回读,熟读深思子自知。
书山有路勤为径,学海无涯苦作舟。
17.盛年不重来,一日难再晨,及时当勉励,岁月不待人。
18.欲穷千里目,更上一层楼。
19.天将降大任于斯人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行
拂乱其所为。
20.安得广厦千万间,大庇天下寒士俱欢颜。
21.不积跬步,无以至千里;不积小流,无以成江海。
2023-2024学年四川省成都市锦江区八年级(下)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)道路交通标志是用文字和图形符号对车辆、行人传递指示、指路、警告、禁令等信号的标志.下列交通标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列从左到右的变形中,是因式分解的是()A.5ab2=5a•b•b B.a2+4a+4=a(a+4)+4C.m2﹣9=(m+3)(m﹣3)D.(x+3)2=x2+6x+93.(4分)在平面直角坐标系中,将点A(3,﹣2)向右平移4个单位长度后的对应点的坐标是()A.(﹣1,﹣2)B.(7,﹣2)C.(3,﹣6)D.(3,2)4.(4分)若a<b,则下列各式中一定成立的是()A.a﹣b>0B.a﹣5>b﹣5C.ax2<bx2D.2a+1<2b+15.(4分)如图,一次函数y=kx+b与y=mx的图象交于点P(1,2),则关于x的不等式mx<kx+b的解集为()A.x<1B.x>1C.x<2D.x>26.(4分)如图,在▱ABCD中,对角线AC,BD相交于点O.若∠ADB=90°,BD=6,AD=4,则AC 的长为()A.8B.9C.10D.127.(4分)植树节的起源可以追溯到中国古代“孟春之月,盛德在木”的传统观念,这体现了古人对树木的深深敬仰.2024年4月3日上午,习近平总书记参加首都义务植树活动,和少先队员一起植树,说道:“愿小朋友们像小树苗一样,都能长成中华民族的参天大树.”某校在“植树节”期间带领学生开展植树活动,甲、乙两班同时开始植树,甲班比乙班每小时多植4棵树,植树活动结束时,甲、乙两班同时停止植树,甲班共植80棵树,乙班共植60棵树.设乙班每小时植x棵树,依题意可列方程为()A.B.C.D.8.(4分)如图,在△ABC中,∠A=30°,∠B=45°,CD平分∠ACB交AB于点D,作DE⊥AC于E.若cm,则DB的长为()A.1cm B.2cm C.D.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:xy2﹣2xy+x=.10.(4分)分式的值为0,则x=.11.(4分)如图,在正五边形ABCDE中,连接AC、AD,则∠CAD的度数是度.12.(4分)已知,一次函数y=(2k﹣2)x+5的值随x值的增大而减少,则常数k的取值范围是.13.(4分)如图,在Rt△ABC中,∠BAC=90°,分别以点C,B为圆心,以大于为半径画弧,两弧相交于点M,N,作直线MN分别交AB,CB于点D,E,连结CD,AE相交于点P.若∠B=25°,则∠APC的大小为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)解方程:;(2)解不等式组.15.(8分)如图,由若干个小正方形构成的网格中有一个三角形ABC,它的三个顶点都在格点上(网格线的交点).(1)以点O为旋转中心,将△ABC旋转180°得到△A1B1C1,请画出△A1B1C1;(2)若点A的坐标为(﹣3,2),请直接写出点B的坐标;(3)过点O作AB的平行线EF(点E,F在格点上,不与点O重合).16.(8分)依法纳税是每个公民应尽的义务,自2018年10月1日起,个人所得税的起征点是5000元,具体税率如表所示:每月工资(元)个人税率不超过5000免税超过5000至不超过8000的部分3%超过8000至不超过17000的部分10%……(1)某电脑组装公司实行“基础工资+计件工资”制,基础工资为每月3000元,每组装1台电脑10元.请直接写出纳税前月工资y(元)与组装电脑台数x之间的函数关系式;(2)如果小王在6月份组装了电脑700台,那么小王6月份纳税后应领取工资多少元?17.(10分)如图,在△ABC中,点D,E分别是AB,AC的中点,连接DE,CF平分∠ACB交DE于点F,连接AF并延长交BC于G.(1)求证:EF=EC;(2)若∠FGC=α,求∠FCG的大小(用含α的式子表示);(3)用等式表示线段AC,BC,DF的数量关系,并说明理由.18.(10分)如图1,在▱ABCD中,O是对角线AC的中点,过点O的直线EF分别与AD,BC交于点E,F,将四边形ABFE沿EF折叠得到四边形MNFE,点M在AD上方,MN交线段CD于点H,连接OH.(1)求证:EM=FC;(2)求证:OH⊥EF;(3)如图2,若MN⊥CD,∠ABC=60°,,FC=2,求OH的长.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知x+y=6,xy=4,则代数式的值是.20.(4分)如图,AC是▱ABCD的对角线,延长BA至E,使AE=AB,点O是AC的中点,连接EO,EC.EC与AD相交于点F,若△CDF是等边三角形,CD=2,则OE的长为.21.(4分)已知关于x的不等式组有且仅有4个整数解,关于y的分式方程有增根,则不等式组的整数解x是不等式mx≥x+m的解的概率为.22.(4分)如图,在Rt△ABC中,∠C=90°,AC=2,BC=3.将△ABC沿射线CB 平移得到△A'B'C',将AB绕着点A逆时针旋转90°得到线段AD,连接DA′,DB′.在△ABC的平移过程中,△A′B′D的周长的最小值为.23.(4分)定义:在平面直角坐标系中,如果直线y=kx+b(k≠0)上的点M(m,n)经过一次变换后得到点,那么称这次变换为“逆倍分变换”.如图,直线y=﹣2x+4与x轴、y轴分别相交于点A,B.点P为该直线上一点,若经过一次“逆倍分变换”后,得到的对应点P′与点P重合,则点P的坐标为;点Q为该直线上一点,若经过一次“逆倍分变换”后,得到的对应点Q'使得△ABQ′和△ABO的面积相等,则点Q的坐标为.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)军事演习,简称军演,是在想定情况诱导下进行的近似实战的综合性训练,是军事训练的高级阶段.在一次军事演习中,某军队接到上级指令执行登岛计划,接到指令时,该军队的舰艇A距离该小岛40千米,舰艇B距离该小岛60千米,于是舰艇B加速前进,速度是舰艇A的2倍,结果舰艇B提前10分钟到达,顺利完成了登岛任务.(1)求舰艇A,B的速度;(2)根据情况,每天要派一艘舰艇在小岛周围巡航,巡航需持续一个月(30天),已知舰艇A,B的巡航费用分别为50万元/天,40万元/天.①求巡航总费用W与舰艇A的巡航天数a之间的函数关系式;②若舰艇B巡航天数不能超过舰艇A的2倍,要使巡航的费用最少,舰艇A应巡航多少天?25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴、y轴分别交于A,B两点,∠OAB=45°,点A的坐标为(4,0).点C(m,n)是线段AB上一点,连接OC并延长至D,使DC=OC,连接BD.(1)求直线AB的表达式;(2)若△BCD是直角三角形,求点C的坐标;(3)若直线y=mx+2n﹣18与△BCD的边有两个交点,求m的取值范围.26.(12分)如图,在△ABC下方的直线MN∥AB.(1)P为直线MN上一动点,连接PA,PB.若∠ABC=∠APM,∠CAB=∠BPN.①如图1,求证:四边形APBC是平行四边形;②如图2,∠ACB=90°,AC=2BC,作BD⊥MN于点D,连接CD,若,求PD的长;(2)如图3,∠ACB=90°,BC=1,作BD⊥MN于点D,连接AD,CD,若△ABD的面积始终为3,求CD长的最大值.2023-2024学年四川省成都市锦江区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:选项A、C、D的图形均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形;选项B的图形能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.故选:B.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】将一个多项式化为几个整式的积的形式即为因式分解,据此进行判断即可.【解答】解:5ab2是单项式,则A不符合题意;a2+4a+4=a(a+4)+4,等式的右边不是几个整式的积的形式,不是因式分解,则B不符合题意;m2﹣9=(m+3)(m﹣3),符合因式分解的定义,则C符合题意;(x+3)2=x2+6x+9,是乘法运算,不是因式分解,则D不符合题意;故选:C.【点评】本题考查因式分解的识别,熟练掌握其定义是解题的关键.3.【分析】把点(3,﹣2)的横坐标加4,纵坐标不变得到点(7,﹣2)平移后的对应点的坐标.【解答】解:点(3,﹣2)向右平移4个单位长度后得到的点的坐标为(7,﹣2).故选:B.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.4.【分析】根据不等式的性质逐一判断即可.【解答】解:A.∵a<b,∴a﹣b<0,故本选项不符合题意;B.∵a<b,∴a﹣5<b﹣5,故本选项不符合题意;C.当x2=0时,ax2=bx2,故本选项不符合题意;D.∵a<b,∴2a<2b,∴2a+1<2b+1,故本选项符合题意;故选:D.【点评】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.5.【分析】观察函数图象得到,当x<1时,一次函数y=kx+b的图象都在正比例函数y=mx的图象的上方,由此得到不等式mx<kx+b的解集.【解答】解:∵直线y=kx+b交直线y=mx于点P(1,2),所以,不等式mx<kx+b的解集为x<1.故选:A.【点评】本题主要考查对一次函数与一元一次不等式的理解和掌握,本题的关键在于将不等式mx<kx+b 转化为直线y=mx在直线y=kx+b下方的横坐标x的范围.6.【分析】根据平行四边形对角线互相平分,再根据勾股定理即可求出OA,进而可得AC的长.【解答】解:∵四边形ABCD是平行四边形,BD=6,AD=4,∴,,∵∠ADB=90°,∴,∴AC=2OA=10,故选:C.【点评】本题考查了平行四边形的性质,勾股定理,解决本题的关键是掌握平行四边形的性质.7.【分析】设乙班每小时植x棵树,则甲班每小时植(x+4)棵树,依题意得到=,然后即可判断哪个选项符合题意.【解答】解:设乙班每小时植x棵树,则甲班每小时植(x+4)棵树,依题意得,,故选:A.【点评】本题考查由实际问题抽象出分式方程.解答本题的关键是明确题意,找到等量关系,列出相应的方程.8.【分析】过D作DF⊥BC,垂足为F,利用30°角的直角三角形和等腰直角三角形可求解DE的长度,由角平分线的性质可得DE=DF,再进而可求解.【解答】解:过D作DF⊥BC,垂足为F,在Rt△ADE和Rt△BFD中,∠A=30°,∠B=45°,∴==,解得AD=2cm,∴DE=1cm,∵DE⊥AC,CD平分∠ACB,∴DE=DF=1cm,∵∠B=45°,∴DB=DF=(cm),故选:C.【点评】本题主要考查角平分线的性质,含30度角的直角三角形的性质,等腰直角三角形,求解DE 的长度是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】先提公因式x,再对剩余项利用完全平方公式分解因式.【解答】解:xy2﹣2xy+x,=x(y2﹣2y+1),=x(y﹣1)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,本题要进行二次分解因式,分解因式要彻底.10.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:因为分式值为0,所以有,∴x=3.故答案为3.【点评】此题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为0这个条件.11.【分析】根据正五边形的性质和内角和为540°,得到△ABC≌△AED,AC=AD,AB=BC=AE=ED,先求出∠BAC和∠DAE的度数,再求∠CAD就很容易了.【解答】解:根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°.【点评】本题考查了正五边形的性质:各边相等,各角相等,内角和为540°.12.【分析】由一次函数y=(2k﹣2)x+5中,y值随x值的增大而减少,列出不等式2k﹣2<0,即可求得.【解答】解:∵一次函数y=(2k﹣2)x+5中,y值随x值的增大而减少,∴2k﹣2<0,解得:k<1.故答案为:k<1.【点评】本题考查了一次函数的增减性,来确定自变量系数的取值范围,本题关键是根据增减性列出关于k的不等式.13.【分析】由作图可知AD=BD,可得∠DCB=∠B=25°,根据直角三角形斜边上中线的性质可得AD =BD=AE,然后由角的和差关系可得答案.【解答】解:由作图可知MN是BC的垂直平分线,∴AD=BD,∴∠DCB=∠B=25°,∵∠BAC=90°,∴∠ACB=65°,∠ADC=50°,AE=BE,∴∠CAP=90°﹣∠BAE=90°﹣25°=65°,∴∠ACD=65°﹣25°=40°,∴∠APC=180°﹣∠ACP﹣∠APC,=180°﹣40°﹣65°=75°,故答案为:75°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)根据解分式方程的步骤求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)去分母,得1﹣x+2(x﹣3)=﹣1,去括号,得1﹣x+2x﹣6=﹣1,解得:x=4,当x=4时,分母x﹣3≠0,故原分式方程的解为x=4;(2)解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣7≤1﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4.【点评】本题考查的是解一元一次不等式组,解分式方程,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.【分析】(1)根据旋转的性质作图即可.(2)根据点A的坐标建立平面直角坐标系,即可得出答案.(3)根据平行线的判定画图即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)根据题意建立平面直角坐标系,则点B的坐标为(﹣1,﹣1).(3)如图,EF即为所求.【点评】本题考查作图﹣旋转变换、平行线的判定,熟练掌握旋转的性质、平行线的判定是解答本题的关键.16.【分析】(1)根据总工资=基础工资+计件工资列出函数解析式即可;(2)根据先求出x=700时小王的工资,然后根据税率表求出小王应纳税款,再用总工资﹣税款=实发工资计算即可.【解答】解:(1)根据题意得:y=3000+10x,∴纳税前月工资y(元)与组装电脑台数x之间的函数关系式为y=3000+10x;(2)当x=700时,y=3000+10×700=3000+7000=10000,∴小王6月份纳税前的工资为10000元,∴小王6月份应纳税3000×3%+2000×10%=90+200=290(元),∴小王6月份纳税后应领取工资为10000﹣290=9710(元).【点评】本题考查一次函数的应用,关键是列出函数解析式.17.【分析】(1)根据角平分线+平行线⇒等腰三角形的“双平模型”即可得出;(2)由EF=EC=EA可推出∠AFC=90°,从而得到∠FCG的度数;(3)根据中位线定理可得BG=2DF,再证AC=CG即可得出结论.【解答】(1)证明:∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠EFC=∠GCF,∵CF平分∠ACB,∴∠ACF=∠GCF,∴∠EFC=∠ACF,∴EF=EC;(2)解:∵E是AC中点,∴AE=EC,∴EF=AE=EC,∴∠AFE=∠EAF,∠EFC=∠ACF,∵∠AFE+∠EAF+∠EFC+∠ACF=180°,∴∠AFE+∠CFE=90°,∴∠AFC=90°,∵∠FGC=α,∴∠FCG=90°﹣α;(3)解:由(2)可知∠CFG=∠AFC=90°,∵CF=CF,∠ACF=∠GCF,∴△ACF≌△GCF(ASA),∴AC=GC,AF=GF,∴F是AG中点,∵D是AB中点,∴DF是△ABG的中位线,∴BG=2DF,∴BC=BG+CG=2DF+AC.【点评】本题主要考查了三角形的中位线定理、角平分线的定义、等腰三角形的判定、平行线的性质以及全等三角形的判定和性质,熟练掌握相关知识是解题关键.18.【分析】(1)利用ASA证明△AOE≌△COF,可得AE=FC,根据折叠得EM=AE,再利用等量代换即可证得结论;(2)延长HM交FE的延长线于K,延长HC交EF的延长线于L,先证得△EMK≌△FCL(ASA),得出EK=FL,∠K=∠L,推出HK=HL,进而推出OK=OL,再运用等腰三角形的性质即可证得结论;(3)过点H作HQ⊥BC,交BC的延长线于Q,过点O作OT⊥BC于T,连接FH,先求得∠PFC=∠CPF=30°,可得FP=2,CP=2,运用含30°角直角三角形的性质可得NH=PN=2,再由勾股定理可得PH===2,得出CH=CP+PH=2+2,进而证得△FHQ是等腰直角三角形,得出∠HFQ=45°,FH=HQ=+3,再得出∠FHO=30°,结合勾股定理即可求得答案.【解答】(1)证明:∵O是对角线AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=FC,∵将四边形ABFE沿EF折叠得到四边形MNFE,∴EM=AE,∴EM=FC;(2)证明:延长HM交FE的延长线于K,延长HC交EF的延长线于L,如图1,∵四边形ABCD是平行四边形,∴AD∥BC,∠BAD=∠BCD,∴∠AEF=∠CFE,∵将四边形ABFE沿EF折叠得到四边形MNFE,∴EM=AE,∠FEM=∠AEF,∠BAD=∠EMN,∴∠FEM=∠CFE,∠EMN=∠BCD,∴180°﹣∠FEM=180°﹣∠CFE,即∠MEK=∠CFL,同理∠EMK=∠FCL,∵EM=FC,∴△EMK≌△FCL(ASA),∴EK=FL,∠K=∠L,∴HK=HL,由(1)知:△AOE≌△COF,∴OE=OF,∴OE+EK=OF+FL,即OK=OL,∴OH⊥EF;(3)解:如图2,过点H作HQ⊥BC,交BC的延长线于Q,过点O作OT⊥BC于T,连接FH,∵∠ABC=60°,∴∠N=60°,∠HCQ=60°,∵MN⊥CD,∴∠CPF=∠NPH=30°,∴∠PFC=∠HCQ﹣∠CPF=30°,∵FC=2,∴FP=2,CP=2,∵NF=BF=4+2,∴PN=NF﹣FP=4,在Rt△PNH中,∵∠NPH=30°,∴NH=PN=2,∴PH===2,∴CH=CP+PH=2+2,∵∠CHQ=90°﹣60°=30°,∠Q=90°,∴CQ=CH=1+,∴HQ===+3,∵FQ=FC+CQ=2+1+=+3,∴FQ=HQ,∴△FHQ是等腰直角三角形,∴∠HFQ=45°,FH=HQ=+3,∵∠BFN=180°﹣∠PFC=150°,∴∠EFN=∠EFB=∠BFN=75°,∴∠HFO=∠EFC﹣∠HFQ=180°﹣75°﹣45°=60°,∵OH⊥EF,∴∠FOH=90°,∠FHO=30°,∴OF=FH=,∴OH===,∴OH的长为.【点评】本题是四边形综合题,考查了平行四边形性质,折叠的性质,直角三角形的性质,等腰直角三角形的判定和性质,勾股定理,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质、直角三角形性质是解题关键.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】首先求出+=,即可得出答案.【解答】解:∵x+y=6,xy=4,∴+===3.故答案为:3.【点评】此题主要考查了分式的化简求值,掌握通分是解决问题的关键.20.【分析】由等边三角形的性质可得CD=CF=DF=2,∠D=∠DCF=60°,由平行四边形的性质AB =CD=2,AB∥CD,可证△AEF是等边三角形,可得AE=EF=AF=2=CF,由勾股定理可求AO,OE 的长.【解答】解:∵△CDF是等边三角形,∴CD=CF=DF=2,∠D=∠DCF=60°,∵四边形ABCD是平行四边形,∴AB=CD=2,AB∥CD,∴∠EAD=∠D=60°,∠AEF=∠DCF=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵AE=AB,∴AE=EF=AF=2,∴AF=EF=CF=2,∴EC=4,∠FAC=∠FCA=30°,∴∠EAC=90°,∴AC===2,∵点O是AC的中点,∴AO=,∴EO===,故答案为:.【点评】本题考查了平行四边形的性质,等边三角形的判定与性质,勾股定理,掌握平行四边形的性质是解题的关键.21.【分析】根据不等式组有且仅有4个整数解,可得整数解为0,1,2,3,根据分式方程有增根,可得m=2,所以不等式mx≥x+m为2x≥x+2,解得x≥2,x=2和3是不等式的解,再根据概率公式计算即可.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x>﹣2,得:x>﹣1,∵该不等式组有且仅有4个整数解,∴整数解为0,1,2,3,,方程两边同乘以(y+3),得2﹣y﹣3=m,解得y=﹣m﹣1,∵关于x的分式方程有增根,∴﹣m﹣1=﹣3,解得m=2,∴不等式mx≥x+m为2x≥x+2,解得x≥2,∴x=2和3是不等式的解,∴不等式组的整数解x是不等式mx≥x+m的解的概率为=.故答案为:.【点评】本题考查了概率公式,分式方程的增根,解一元一次不等式方程(组)和一元一次不等式组的整数解,正确掌握概率公式和解分式方程的步骤和解一元一次不等式组的方法是解题的关键.22.【分析】将△A'B'D的周长转化△ABD'的周长,因为AB是定值,所以要求周长最小就转化成求AD'+BD',也就是我们熟悉的最短路线问题,做对称点再利用勾股定理求解即可.【解答】解:如图,作DD'∥AA',使AA'=DD',则易得四边形AA'DD'是平行四边形,∴AD'=A'D,∵AA'∥BB',AA'=BB',∴DD'∥BB',DD'=BB',∴四边形BB'DD'是平行四边形,∴B'D=BD',∴△A'B'D的周长=△ABD'的周长=AD'+BD'+AB,在Rt△ABC中,AB==,∴要求△ABD'的周长最小值,就是求AD'+BD'的最小值,作A关于DD'的对称点A“,连接A“B,则AD'+BD'≥A“B,延长DD'交CA延长线于M,∵AB=AD,∠DAM=∠ABC=90°﹣∠BAC,∠C=∠AMD=90°,∴△ABC≌△BDM(AAS),∴AM=BC=3,∴AA“=6,∴CA“=8,在Rt△A“CB中,A“B==,∴△A'B'D的周长=△ABD'的周长=AD'+BD'+AB≥+,即△A′B′D的周长的最小值是+,故答案为:+.【点评】本题主要考查平移的性质、平行四边形的判定和性质、勾股定理、全等三角形的判定和性质、轴对称最短路径问题等内容,熟练掌握相关知识和线段转化是解题关键.23.【分析】依据题意,设P为(t,﹣2t+4),可得P'为(﹣4t+8,t),又P与P'重合,进而建立方程计算可以得解;依据题意,△ABQ′和△ABO的面积相等,画出图象可得Q'在过O且平行于AB的直线上或在AB上方4个单位且平行于AB,故Q'所在直线为y=﹣2x或y=﹣2x+8,进而可设Q'为(t,﹣2t)或(t,﹣2t+8),则Q为(﹣4t,t)或(﹣4t+16,t),又Q在y=﹣2x+4上,求出t即可得解.【解答】解:由题意,设P为(t,﹣2t+4),∴P'为(﹣4t+8,t).又P与P'重合,∴t=﹣4t+8.∴t=.∴P(,).如图,△ABQ′和△ABO的面积相等,∴Q'在过O且平行于AB的直线上或在AB上方4个单位且平行于AB.∴Q'所在直线为y=﹣2x或y=﹣2x+8.故可设Q'为(t,﹣2t)或(t,﹣2t+8).∴Q为(﹣4t,t)或(﹣4t+16,t).又Q在y=﹣2x+4上,∴8t+4=t或8t﹣32+4=t.∴t=﹣或t=.∴Q(,)或(,).故答案为:(,);(,﹣)或(,).【点评】本题主要考查了一次函数图象上的点的坐标特征、一次函数的性质,解题时要熟练掌握并能灵活运用是关键.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)设舰艇A的速度的速度为x千米/小时,则舰艇B的速度的速度为2x千米/小时,根据“舰艇B比舰艇B提前10分钟到达”列出方程,解方程即可;(2)①根据总费用=A,B两种舰艇的费用之和列出函数解析式;②根据舰艇B巡航天数不能超过舰艇A的2倍,求出a的取值范围,再根据函数的性质求最值.【解答】解:(1)设舰艇A的速度的速度为x千米/小时,则舰艇B的速度的速度为2x千米/小时,根据题意得:﹣=,解得x=60,此时2x=120,答:舰艇A的速度的速度为60千米/小时,则舰艇B的速度的速度为120千米/小时;(2)①根据题意得:W=50a+40(30﹣a)=10a+1200,∴总费用W与舰艇A的巡航天数a之间的函数关系式为W=10a+1200;②∵30﹣a≤2a,解得a≥10,在W=10a+1200中,∵10>0,∴W随x的增大而增大,∴当a=10时,W最小,最小值为1300,答:舰艇A应巡航10天,巡航的费用最少.【点评】本题考查一次函数、分式方程和一元一次不等式的应用,关键是找到等量关系列出方程和函数解析式.25.【分析】(1)由待定系数法即可求解;(2)当CD为斜边时,列出等式,即可求解;当BD或BC为斜边时,同理可解;(3)当直线y=mx+2n﹣18过点B时,将点B的坐标代入函数表达式得:4=m(0﹣2)﹣10,解得:m=﹣7,当直线y=mx+2n﹣18过点D时,同理可解m值,进而求解.【解答】解:(1)∵∠OAB=45°,点A的坐标为(4,0),则点B(0,4),即b=4,则AB的表达式为:y=kx+4,将点A的坐标代入上式得:0=4k+4,则k=﹣1,故直线AB的表达式为:y=﹣x+4;(2)设点C(m,﹣m+4),∵DC=OC,则点D(2m,8﹣2m),由B、C、D的坐标得,CD2=2m2﹣8m+16,BD2=8m2﹣16m+16,BC2=2m2,当CD为斜边时,则2m2﹣8m+16=8m2﹣16m+16+2m2,解得:m=0(舍去)或1,即点C(1,3);当BD或BC为斜边时,同理可得:8m2﹣16m+16=2m2+2m2﹣8m+16或2m2﹣8m+16+8m2﹣16m+16=2m2,解得:m=0(舍去)或2,即点C(2,2);综上,点C(1,3)或(2,2);(3)∵点C(m,n)是线段AB上一点,直线AB的表达式为y=﹣x+4,∴n=﹣m+4,0≤m≤4,∴y=mx+2n﹣18=m(x﹣2)﹣10,即直线故点(2,﹣10),∵由(2)可知C是OD的中点,∴D点坐标为(2m,2n),∴D点坐标为(2m,8﹣2m),代入函数表达式得:8﹣2m=m•(2m)+2(﹣m+4)﹣18,解得:m=﹣3(舍去)或3,∵0≤m≤4,∴3<m≤4.【点评】本题考查的是一次函数综合运用,涉及到直角三角形的性质、勾股定理的运用等,分类求解和确定临界点是解题的关键.26.【分析】(1)①通过等角转化即可证出两组对边平行;②根据边的关系AC=2BC,设BC和AC,用勾股定理求出AB,再用等面积即可得出CG,然后用未知数把△CDH的边长用未知数表示出来,再利用勾股定理建立方程即可求解.(2)解直角三角形斜边往外作直角,优先考虑取斜边中点构造三角形.由前述思路可以构造一个矩形ACBQ和一个直角三角形BDP,再利用斜边中点构造三角形,最后用三边关系求最值即可.【解答】(1)①证明:∵MN∥AB,∴∠APM=∠BAP,∠BPN=∠ABP,∵∠ABC=∠APM,∠CAB=∠BPN,∴∠ABC=∠BAP,∠CAB=∠ABP,∴BC∥AP,AC∥BP,∴四边形APBC是平行四边形.②解:过C作CH⊥MN于点H,交AB于点G,则四边形BDHG是矩形,设BC=x,则AC=2x,∴AB==5x,根据等面积可得:CG==2x,BG==x,=S△ABP,∵S△ACB∴CG=GH=2x,∴CH=CG+GH=4x,∵DH=BG=x,∴CD2=DH2+CH2,即17=x2+16x2,解得x=1,∴BP=AC=2,BD=GH=2,∴PD==4.(3)解:如图,过P作BP∥AC交MN于点P,作AQ⊥BP交BP于点Q,则四边形ACBQ是矩形,∴AQ=BC=1,∵MN∥AB,=S△ABD=3,∴S△ABP∴BP•AQ=3,∵BP=6,取BP中点O,连接OC、OD,则OB=BP=3,在Rt△OBC中,OC ==,∵△BDP是直角三角形,O是BP中点,∴OD =BP=3,根据三角形三边关系可得,CD≤OC+OD=3+,∴CD最大值为3+.【点评】本题本题主要考查了平行线的性质和判定、平行四边形的判定、勾股定理、矩形的判定和性质、直角三角形的性质等内容,熟练掌握相关知识和添加合适的辅助线是解题关键。
n阶勒让德多项式的值勒让德多项式,这个名字听起来是不是有点拗口?别担心,今天咱们就来聊聊这个看似高大上的数学玩意儿,其实也没那么复杂。
想象一下,你在阳光明媚的日子里,坐在公园的长椅上,喝着冰凉的饮料,和朋友们随便聊聊,这种感觉就是我们今天讨论这个话题的氛围。
勒让德多项式是一种在数学上非常有用的东西。
它像一位老朋友,时不时就会在你需要的时候冒出来,帮助你解决一些棘手的问题。
比如,物理学中的一些问题,或者在工程计算中,勒让德多项式可谓是个好帮手。
就像你在厨房里找不到开罐器,突然想起了旁边的朋友给你递过来,这种感觉一样,瞬间轻松了不少。
你知道吗?勒让德多项式其实是从一种叫做正交的概念衍生出来的。
听起来好像很复杂,但简单来说,就是这些多项式之间的关系有点像打麻将的朋友,互不干扰,各自发挥自己的作用。
这个特性让它们在很多地方都大显身手,真是让人不得不佩服。
它们有时像个魔术师,能把复杂的问题简单化,简直是数学界的超级英雄。
它们的值是什么呢?好吧,这里就要说到计算勒让德多项式的具体值了。
简单点说,就是在给定的点上,你把这个多项式“召唤”出来,让它给你一个结果。
这个过程就像你点了个外卖,选了你最爱的菜,然后耐心等待。
等啊等,终于外卖小哥来了,你打开一看,哇,简直美味无比。
就是这样,勒让德多项式给出的值,有时候也会让你眼前一亮。
你要知道,勒让德多项式的定义并不是一成不变的。
它们就像生活中的潮起潮落,有些情况需要用不同的方式去描述。
比如,当你需要第n阶的勒让德多项式的时候,其实就是在做一种“数的游戏”。
像玩积木一样,把不同的数拼在一起,最后得出一个公式。
听起来是不是很有趣?说到这里,我想起我小时候玩拼图的情景。
每当我找到一块合适的拼图,心里的那种成就感真是无与伦比。
勒让德多项式也有这种感觉,你把各个参数、数值组合在一起,最终得出的结果,让你有种“我终于搞定了”的喜悦。
无论是计算出某个具体值,还是在某个问题中找到它的应用,这种满足感让人乐此不疲。