2015-2016学年江苏省无锡市高一(下)期末数学试卷与解析word
- 格式:doc
- 大小:353.50 KB
- 文档页数:18
江苏省无锡市2014-2015学年高一下学期期末数学试卷一、填空题:本大题共14题,每题5分,共70分。
请将答案填在答题卡对应的横线上。
1.不等式x(x﹣1)>0的解集是.2.在△ABC中,a=3,b=2,A=30°,则cosB=.3.△ABC的三边长分别为2,3,,则最大内角为.4.在等比数列{a n}中,若a5=8,a8=1,则a1=.5.某个算法的伪代码如图所示,该算法输出的结果为.6.用系统抽样的方法从某校400名学生中抽取容量为20的一个样本,将400名学生随机编为1﹣400号,按编号顺序平均分为20各组(1﹣20号,21﹣40号,…381﹣400号),若第1组中用抽签的方法确定抽出的号码为12,则第14组抽取的号码为.7.如图是某个学生历次数学小练习的成绩的茎叶图,这组数的平均数为.8.如图,在一个等腰三角形ABC内以A为圆心,腰AC长为半径画弧交底边AB于D,已知AC=1,∠A=30°,现向△ABC内任投一点,该点落在图中阴影部分的概率为.9.如图,一物体在水平面内的三个力F1、F2、F3的作用下保持平衡,如果F1=5N,F2=7N,∠α=120°,则F3=N.10.已知实数x,y满足.则x+3y的最大值是.11.记等差数列{a n}的前n项和为S n,若a6+a7+a8﹣a72=0(a7≠0),则S13=.12.数列{a n}满足a1=,a n+1=a n2+a n(n∈N*),则的整数部分是.13.若正数x,y满足xy+2x+y=8,则x+y的最小值等于.14.在数列{a n}中,a1=2,a6=64,a n a n+2=a n+12(n∈N*),把数列的各项按如下方法进行分组:(a1),(a2,a3,a4),(a5,a6,a7,a8,a9),…,记A(m,n)为第m组的第n个数(从前到后),则当m≥3时,A(m,1)+A(m,2)+…+A(m,n)的值为(用含m的式子表示).二、解答题:本大题共6小题,共90分。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
2023-2024学年江苏省无锡市锡东高级中学高三(下)段考数学试卷(5月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.已知,则()A. B. C. D.3.已知等比数列的前3项和为168,,则()A.14B.12C.6D.34.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了A. B. C. D.5.在平行四边形ABCD中,,若,则()A. B. C. D.6.为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有种.A.40B.24C.20D.127.在中,,的角平分线AD交BC于点D,的面积是面积的3倍,则()A. B. C. D.8.已如A,B,C是半径为1的球O的球面上的三个点,且,,则三棱锥的体积为()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知函数,则()A.是偶函数,也是周期函数B.的最大值为C.的图像关于直线对称D.在上单调递增10.已知点,,点P 为圆C :上的动点,则()A.面积的最小值为B.AP 的最小值为C.的最大值为D.的最大值为11.定义:设是的导函数,是函数的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心,已知函数的对称中心为,则下列说法中正确的有() A.,B.函数既有极大值又有极小值C.函数有三个零点D.过可以作两条直线与图像相切三、填空题:本题共3小题,每小题5分,共15分。
2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。
2015-2016学年某某师大附中高一(上)期末数学试卷(实验班)一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求)1.若直线l的斜率为,则直线l的倾斜角为()A.115°B.120°C.135°D.150°2.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的3.△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为()A.1 B.2 C.D.4.一束光线自点P(﹣1,1,1)发出,被yOz平面反射到达点Q(﹣6,3,3)被吸收,那么光线所走的距离是()A. B. C. D.5.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的母线与底面所称的角为()A.30° B.45° C.60° D.75°6.下列命题正确的是()A.若直线l不平行于平面α,则α内不存在直线平行于直线lB.若直线l不垂直于平面α,则α内不存在直线垂直于直线lC.若平面α不平行于平面β,则β内不存在直线平行于平面αD.若平面α不垂直于平面β,则β内不存在直线垂直于平面α7.已知BC是圆x2+y2=25的动弦,且|BC|=6,则BC的中点的轨迹方程是()A.x2+y2=1 B.x2+y2=9 C.x2+y2=16 D.x2+y2=48.若直线l1:(2m+1)x﹣4y+3m=0与直线l2:x+(m+5)y﹣3m=0平行,则m的值为()A.B.C.D.﹣19.直线l:y=kx﹣1与曲线C:x2+y2﹣4x+3=0有且仅有2个公共点,则实数k的取值X围是()A. B. C.D.10.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.411.过M(1,3)引圆x2+y2=2的切线,切点分别为A、B,则△AMB的面积为()A.B.4 C.D.12.若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为()A.24 B.48 C.72 D.78二、填空题:(本大题共6小题,每小题5分,共30分,把答案填在答卷上)13.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为.14.函数f(x)=的最小值为.15.设点P、Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,线段PQ中点为M(x0,y0),且x0+y0>4,则的取值X围为.16.如右图,三棱锥A﹣BCD的顶点B、C、D在平面α内,CA=AB=BC=CD=DB=2,AD=,若将该三棱锥以BC为轴转动,到点A落到平面α内为止,则A、D两点所经过的路程之和是.17.若直线m被两平行线l1:x+y=0与l2:x+y+=0所截得的线段的长为2,则m的倾斜角可以是①15° ②45° ③60° ④105°⑤120° ⑥165°其中正确答案的序号是.(写出所有正确答案的序号)18.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为.三、解答题:(本大题共5小题,满分60分)19.已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).(Ⅰ)求点A和点B的坐标;(Ⅱ)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.20.如图(1),在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1、G2、G3三点重合于点G.证明:(1)G在平面SEF上的射影为△SEF的垂心;(2)求二面角G﹣SE﹣F的正弦值.21.一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m,)22.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(I)证明:BE∥平面ADP;(II)求直线BE与平面PDB所成角的正弦值.23.如图,已知线段AB长度为a(a为定值),在其上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,⊙P和⊙Q是这两个正方形的外接圆,它们交于点M、N.试以A为坐标原点,建立适当的平面直角坐标系.(1)证明:不论点M如何选取,直线MN都通过一定点S;(2)当时,过A作⊙Q的割线,交⊙Q于G、H两点,在线段GH上取一点K,使=求点K的轨迹.2015-2016学年某某师大附中高一(上)期末数学试卷(实验班)参考答案与试题解析一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求)1.若直线l的斜率为,则直线l的倾斜角为()A.115°B.120°C.135°D.150°【考点】直线的倾斜角.【分析】由倾斜角与斜率的关系和倾斜角的X围,结合题意即可算出直线倾斜角的大小.【解答】解:∵直线的斜率为﹣,∴直线倾斜角α满足tanα=﹣,结合α∈[0°,180°),可得α=150°故选:D.2.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的【考点】棱锥的结构特征.【分析】正三棱锥的棱长都相等,三棱锥的四个面到球心的距离应相等,所以圆心不可能在三棱锥的面上【解答】解:(1)当平行于三棱锥一底面,过球心的截面如(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如(3)图所示;(4)棱长都相等的正三棱锥和球心不可能在同一个面上,所以(4)是错误的.故答案选C.3.△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为()A.1 B.2 C.D.【考点】平面图形的直观图.【分析】将直观图还原成平面图形,根据斜二侧画法原理求出平面图形的边长,计算面积.【解答】解:作出△ABC的平面图形,则∠ACB=2∠A′C′B′=90°,BC=B′C′=2,AC=2A′C′=2,∴△ABC的面积为=2.故选:B.4.一束光线自点P(﹣1,1,1)发出,被yOz平面反射到达点Q(﹣6,3,3)被吸收,那么光线所走的距离是()A. B. C. D.【考点】空间两点间的距离公式;空间中的点的坐标.【分析】求出P关于平面xoy的对称点的M坐标,然后求出MQ的距离即可.【解答】解:点P(﹣1,1,1)平面xoy的对称点的M坐标(﹣1,1,﹣1),一束光线自点P(﹣1,1,1)发出,遇到平面xoy被反射,到达点Q(﹣6,3,3)被吸收,那么光所走的路程是: =.故选D.5.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的母线与底面所称的角为()A.30° B.45° C.60° D.75°【考点】旋转体(圆柱、圆锥、圆台).【分析】设出圆锥的半径与母线长,利用圆锥的底面周长等于侧面展开图的弧长得到圆锥的半径与母线长,进而表示出圆锥的母线与底面所成角的余弦值,也就求出了夹角的度数.【解答】解:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,设母线与底面所成角为θ,则母线与底面所成角的余弦值cosθ==,∴母线与底面所成角是60°.故选:C.6.下列命题正确的是()A.若直线l不平行于平面α,则α内不存在直线平行于直线lB.若直线l不垂直于平面α,则α内不存在直线垂直于直线lC.若平面α不平行于平面β,则β内不存在直线平行于平面αD.若平面α不垂直于平面β,则β内不存在直线垂直于平面α【考点】空间中直线与平面之间的位置关系.【分析】逐个分析选项,举出反例即可.【解答】解:对于A,若l⊂α,则α内存在无数条直线与l平行,故A错误.对于B,若l⊂α,则α内存在无数条直线与l垂直,故B错误.对于C,若α∩β=l,则在α存在无数条直线与l平行,故这无数条直线都与平面β平行,故C错误.对于D,若β内存在直线l垂直于平面α,则α⊥β,即命题D的逆否命题成立,故命题D成立,故D正确.7.已知BC是圆x2+y2=25的动弦,且|BC|=6,则BC的中点的轨迹方程是()A.x2+y2=1 B.x2+y2=9 C.x2+y2=16 D.x2+y2=4【考点】直线与圆的位置关系.【分析】设BC的中点的坐标,由弦长公式和两点间的距离公式列出式子,化简后可得BC的中点的轨迹方程.【解答】解:设BC的中点P的坐标是(x,y),∵BC是圆x2+y2=25的动弦,|BC|=6,且圆心O(0,0),∴|PO|==4,即,化简得x2+y2=16,∴BC的中点的轨迹方程是x2+y2=16,故选:C.8.若直线l1:(2m+1)x﹣4y+3m=0与直线l2:x+(m+5)y﹣3m=0平行,则m的值为()A.B.C.D.﹣1【考点】直线的一般式方程与直线的平行关系.【分析】直线l1的斜率一定存在,所以,当两直线平行时,l2的斜率存在,求出l2的斜率,利用它们的斜率相等解出m的值.【解答】解:直线l1的斜率一定存在,为,但当m=﹣5时,l2的斜率不存在,两直线不平行.当m≠﹣5时,l2的斜率存在且等于=≠=﹣1,解得m=﹣,故选:B.9.直线l:y=kx﹣1与曲线C:x2+y2﹣4x+3=0有且仅有2个公共点,则实数k的取值X围是()A. B. C.D.【考点】直线与圆的位置关系.【分析】求出直线l:y=kx﹣1与曲线C相切时k的值,即可求得实数k的取值X围.【解答】解:如图所示,直线y=kx﹣1过定点A(0,﹣1),直线y=0和圆(x﹣2)2+y2=1相交于B,C两点,,,,∵直线l:y=kx﹣1与曲线C:x2+y2﹣4x+3=0有且仅有2个公共点,∴0,故选A.10.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4【考点】直线与圆的位置关系.【分析】根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案.【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.11.过M(1,3)引圆x2+y2=2的切线,切点分别为A、B,则△AMB的面积为()A.B.4 C.D.【考点】圆的切线方程.【分析】作出图象易得sin∠OMB,进而可得cos∠AMB和sin∠AMB=,代入三角形的面积公式计算可得.【解答】解:如图,由题意可得|OM|==,由勾股定理可得|MA|=|MB|==2,故sin∠OMB===,∴cos∠AMB=cos2∠OMB=2cos2∠OMB﹣1=﹣,故sin∠AMB=,三角形面积S=×|MA|×|MB|×sin∠AMB=,故选:C.12.若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为()A.24 B.48 C.72 D.78【考点】异面直线的判定.【分析】可把连接正方体各顶点的所有直线分成3组,棱,面上的对角线,体对角线,分别组合,找出可能的”理想异面直线对”,再相加即可.【解答】解:先把连接正方体各顶点的所有直线有三种形式.分别是正方体的棱,有12条,各面对角线,有12条,体对角线,有4条.分几种情况考虑第一种,各棱之间构成的“理想异面直线对”,每条棱有4条棱和它垂直,∴共有=24对第二种,各面上的对角线之间构成的“理想异面直线对”,每相对两面上有2对互相垂直的异面对角线,∴共有=6对第三种,各棱与面上的对角线之间构成的“理想异面直线对”,每条棱有2条面上的对角线和它垂直,共有2×12=24对第四种,各体对角线与面上的对角线之间构成的“理想异面直线对”,每条体对角线有6条面上的对角线和它垂直,共有6×4=24对最后,把各种情况得到的结果相加,得,24+6+24+24=78对故选D二、填空题:(本大题共6小题,每小题5分,共30分,把答案填在答卷上)13.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为3π.【考点】由三视图求面积、体积;球的体积和表面积.【分析】由三视图得到这是一个四棱锥,底面是一个边长是1的正方形,一条侧棱与底面垂直,根据求与四棱锥的对称性知,外接球的直径是AD,利用勾股定理做出球的直径,得到球的面积.【解答】解:由主视图和左视图是腰长为1的两个全等的等腰直角三角形,得到这是一个四棱锥,底面是一个边长是1的正方形,一条侧棱AE与底面垂直,∴根据求与四棱锥的对称性知,外接球的直径是AC根据直角三角形的勾股定理知AC==,∴外接球的面积是,故答案为:3π14.函数f(x)=的最小值为2.【考点】两点间距离公式的应用;函数的最值及其几何意义.【分析】由配方可得函数表示f(x)表示P(x,0)到两点A(3,2),B(5,2)的距离之和.作出点A关于x轴的对称点A'(3,﹣2),连接A'B,交x轴于P,运用两点之间线段最短,由两点的距离公式计算即可得到.【解答】解:函数f(x)+=+,设点P(x,0),A(3,2),B(5,2),则f(x)表示P到两点A,B的距离之和.作出点A关于x轴的对称点A'(3,﹣2),连接A'B,交x轴于P,则||PA|+|PB|=|PA'|+|PB|≥|A'B|==2,则当A,P,B'三点共线,取得最小值2.故答案为:2.15.设点P、Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,线段PQ中点为M(x0,y0),且x0+y0>4,则的取值X围为[1,3).【考点】中点坐标公式.【分析】设P(x1,y1),Q(x2,y2),则3x1﹣y1﹣5=0,3x2﹣y2﹣13=0,两式相加得3(x1+x2)﹣(y1+y2)﹣8=0,设M(x0,y0),则由中点的坐标公式可得3x0﹣y0﹣4=0,又x0+y0>4即点M在直线x+y=4上或者其右上方区域,画图得到M位于以(2,2)为端点向上的射线上,数形结合可得答案.【解答】解:设P,Q两点的坐标为P(x1,y1),Q(x2,y2),∵点P,Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,∴3x1﹣y1﹣5=0,①3x2﹣y2﹣13=0,②两式相加得3(x1+x2)﹣(y1+y2)﹣8=0.设线段PQ的中点M(x0,y0),则x1+x2=2x0,y1+y2=2y0.∴3x0﹣y0﹣4=0.即y0=3x0﹣4.又M点的坐标满足x0+y0>4,即M恒在直线x+y=4上或者其右上方区域,∴线段PQ的中点M满足,如图.联立,解得M(2,2),∴M位于以(2,2)为端点向上的射线上,当M(2,2)时,k OM=1,∴直线OM斜率的取值X围是[1,3).16.如右图,三棱锥A﹣BCD的顶点B、C、D在平面α内,CA=AB=BC=CD=DB=2,AD=,若将该三棱锥以BC为轴转动,到点A落到平面α内为止,则A、D两点所经过的路程之和是.【考点】多面体和旋转体表面上的最短距离问题.【分析】由题意画出图形,可得∠AOD为直角,求出OA的长度,然后利用圆的周长公式求解.【解答】解:如图,取BC中点O,在△ABC和△BCD中,∵CA=AB=BC=CD=DB=2,∴AO=DO=,在△AOD中,AO=DO=,又AD=,∴=,则,∴将该三棱锥以BC为轴转动,到点A落到平面α内时,A、D两点所经过的路程都是以O 为圆心,以OA为半径的圆周,∴A、D两点所经过的路程之和是.故答案为:.17.若直线m被两平行线l1:x+y=0与l2:x+y+=0所截得的线段的长为2,则m的倾斜角可以是①15° ②45° ③60° ④105°⑤120° ⑥165°其中正确答案的序号是④或⑥.(写出所有正确答案的序号)【考点】直线的倾斜角;直线的一般式方程与直线的平行关系.【分析】由两平行线间的距离=,得直线m和两平行线的夹角为30°.再根据两条平行线的倾斜角为135°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为2,可得直线m和两平行线的夹角为30°.由于两条平行线的倾斜角为135°,故直线m的倾斜角为105°或165°,故答案为:④或⑥.18.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面B DD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为①②④.【考点】命题的真假判断与应用;棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】①利用面面垂直的判定定理去证明EF⊥平面BDD′B′.②四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可.③判断周长的变化情况.④求出四棱锥的体积,进行判断.【解答】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN 长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N 分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.故答案为:①②④.三、解答题:(本大题共5小题,满分60分)19.已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).(Ⅰ)求点A和点B的坐标;(Ⅱ)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.【考点】与直线关于点、直线对称的直线方程.【分析】(I)列方程组求出A点坐标,根据两直线垂直的条件求出BC、AB所在的直线方程,然后解方程组得B的坐标;(II)若直线分别与x轴、y轴的负半轴交于A,B两点,说明直线的斜率小于0,设出斜率根据直线过的C点,写出直线方程,求出△MON面积的表达式,利用基本不等式求出面积的最小值,即可得到面积最小值的直线的方程.【解答】解:(Ⅰ)因为点A在BC边上的高x﹣2y+1=0上,又在∠A的角平分线y=0上,所以解方程组得A(﹣1,0).∵BC边上的高所在的直线方程为x﹣2y+1=0,∴k BC=﹣2,∵点C的坐标为(1,2),所以直线BC的方程为2x+y﹣4=0,∵k AC=﹣1,∴k AB=﹣k AC=1,所以直线AB的方程为x+y+1=0,解方程组得B(5,﹣6),故点A和点B的坐标分别为(﹣1,0),(5,﹣6).(Ⅱ)依题意直线的斜率存在,设直线l的方程为:y﹣2=k(x﹣1)(k<0),则,所以,当且仅当k=﹣2时取等号,所以(S△MON)min=4,此时直线l的方程是2x+y﹣4=0.20.如图(1),在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1、G2、G3三点重合于点G.证明:(1)G在平面SEF上的射影为△SEF的垂心;(2)求二面角G﹣SE﹣F的正弦值.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(1)根据线面垂直的性质定理即可证明G在平面SEF上的射影为△SEF的垂心;(2)根据二面角平面角的定义作出二面角的平面角,结合三角形的边角关系即可求二面角G﹣SE﹣F的正弦值.【解答】证明:(1)设G在平面SEF上的射影为点H,则GH⊥平面SEF.∵折前SG1⊥G1E、SG3⊥G3F,∴折后SG⊥GE、SG⊥GF,∵GE∩GF=G,∴SG⊥平面GEF…∵,,SG∩GH=G,∴EF⊥平面SGH…∵SH⊂平面SGH,∴EF⊥SH,同理,EH⊥SF,∴H为△SEF的垂心.…(2)过G作GO⊥SE交SE于点O,连OH,则∠GOH即为所求二面角G﹣SE﹣F的平面角.…∵,又∵GO⊥SE,GH∩GO=G,∴SE⊥平面GHO∵OH⊂平面GHO,∴SE⊥OH,∴∠GOH为所求二面角G﹣SE﹣F的平面角.…设正方形SG1G2G3的边长为1,则在Rt△SEG中,∴…又,∴sin∠GOH==,∴二面角G﹣SE﹣F的正弦值为.…21.一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m,)【考点】圆方程的综合应用.【分析】(1)在正常水位时,设水面与桥横截面的交线为x轴,过拱桥最高点且与水面垂直的直线为y轴,建立平面直角坐标系建立坐标系,利用|CD|=|CB|,确定圆的方程;(2)令x=4时,求得y≈7.6,即桥拱宽为8m的地方距正常水位时的水面约7.60m,即可求得通过桥洞,船身至少应该降低多少.【解答】解:(1)在正常水位时,设水面与桥横截面的交线为x轴,过拱桥最高点且与水面垂直的直线为y轴,建立平面直角坐标系,如图所示,则A,B,D三点的坐标分别为(﹣16,0),(16,0),(0,8).又圆心C在y轴上,故可设C(0,b).…因为|CD|=|CB|,所以,解得b=﹣12.…所以圆拱所在圆的方程为:x2+(y+12)2=(8+12)2=202=400…(2)当x=4时,求得y≈7.6,即桥拱宽为8m的地方距正常水位时的水面约7.60m,…距涨水后的水面约5.6m,因为船高6.5m,顶宽8m,所以船身至少降低6.5﹣5.6=0.9(m)以上,船才能顺利通过桥洞.…22.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(I)证明:BE∥平面ADP;(II)求直线BE与平面PDB所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)取PD中点M,连接EM,AM,推导出四边形ABEM为平行四边形,由此能证明BE∥平面ADP.(Ⅱ)连接BM,推导出PD⊥EM,PD⊥AM,从而直线BE在平面PBD内的射影为直线BM,∠EBM为直线BE与平面PBD所成的角,由此能求出直线BE与平面PDB所成角的正弦值.【解答】证明:(Ⅰ)如图,取PD中点M,连接EM,AM.∵E,M分别为PC,PD的中点,∴EM∥DC,且EM=DC,又由已知,可得EM∥AB,且EM=AB,∴四边形ABEM为平行四边形,∴BE∥AM.∵AM⊂平面PAD,BE⊄平面PAD,∴BE∥平面ADP.解:(Ⅱ)连接BM,由(Ⅰ)有CD⊥平面PAD,得CD⊥PD,而EM∥CD,∴PD⊥EM.又∵AD=AP,M为PD的中点,∴PD⊥AM,∴PD⊥BE,∴PD⊥平面BEM,∴平面BEM⊥平面PBD.∴直线BE在平面PBD内的射影为直线BM,∵BE⊥EM,∴∠EBM为锐角,∴∠EBM为直线BE与平面PBD所成的角.依题意,有PD=2,而M为PD中点,∴AM=,进而BE=.∴在直角三角形BEM中,sin∠EBM===.∴直线BE与平面PDB所成角的正弦值为.23.如图,已知线段AB长度为a(a为定值),在其上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,⊙P和⊙Q是这两个正方形的外接圆,它们交于点M、N.试以A为坐标原点,建立适当的平面直角坐标系.(1)证明:不论点M如何选取,直线MN都通过一定点S;(2)当时,过A作⊙Q的割线,交⊙Q于G、H两点,在线段GH上取一点K,使=求点K的轨迹.【考点】轨迹方程.【分析】(1)以A为坐标原点,AB为x轴正方向,建立平面直角坐标系,求出圆P、圆Q的方程,由圆系方程求得MN所在直线方程,再由直线系方程可得直线MN都通过一定点;(2)由题意求出M的坐标,得到圆Q的方程,设G(x1,y1),H(x2,y2),K(x,y),GH所在直线斜率为k,由=,可得,整理后代入根与系数的关系可得点K的轨迹是直线2x+y﹣a=0被⊙Q所截的一条线段.【解答】(1)证明:以A为坐标原点,AB为x轴正方向,建立平面直角坐标系.设M(m,0),则:A(0,0),B(a,0),C(m,m),F(m,a﹣m),,,⊙P方程为:,即:x2+y2﹣mx﹣my=0 ①,⊙Q方程为:即:x2+y2﹣(a+m)x﹣(a﹣m)y+am=0 ②.①﹣②得,公共弦MN所在直线方程:ax+(a﹣2m)y﹣am=0.整理得:(ax+ay)+m(﹣2y﹣a)=0,∴MN恒过定点;(2)解:当时,,⊙Q:,即:.设G(x1,y1),H(x2,y2),K(x,y),GH所在直线斜率为k,则:,,,由题意,,即:.把y=kx代入⊙Q方程,得:,由韦达定理得:,,∴,将代入整理,得:2x+y﹣a=0.∴点K的轨迹是直线2x+y﹣a=0被⊙Q所截的一条线段.。
2016年春学期无锡市普通高中期末考试试卷高一数学 2016.06命题单位:滨湖区教研中心 制卷单位:宜兴市教研室注恵事项及说明:本卷考试时间为120分钟,全卷满分为160分。
一、填空题(本大题共14题,每题5分,共70分.请将答案填在答题卡相应的位置上)1. 不等式<2x 2x 的解为 ▲ .2.已知△ABC 的面积为S ,在边AB 上任取一点P ,则△PAC 的面积大于3S 的概率为 ▲ .3. 某人一周5次乘车上班所花的时间(单位:分钟)分别为10,11,9,x ,11,已知这组数据的平均数为10,那么这组数据的方差为 ▲ .4.如右图程序运行后,输出的结果为 ▲ .5.设14,1522-+=+-=a a N a a M ,则 M 、N 的大小关系为 ▲ .6.在等比数列{a n }中,若,30,104231-=+=+a a a a 则=5a ▲ .7.在锐角ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若3,22==b a , 33cos =A ,则角B 等于 ▲ . 8.在等差数列{b n }中,已知113,b b 是方程02=++c bx ax 的两个实数根,若37=b ,则▲ .9.袋中有3个黑球和2个白球,从中任取两个球,则取得的两球中至少有一个白球的概率为 ▲ .10.求和∑=+101)1(2k k k ,其结果为 ▲ . 11.不等式组⎪⎩⎪⎨⎧≤-≥+≥-63,2,0y x y x y x ,所表示的可行域的面积是 ▲ .12.如图所示,客轮由A 至B 再到C 匀速航行,速度为2υ海里/小时;货轮从AC 的中点M 出发,沿某一直线匀速航行,将货物送达客轮,速度为υ海里/小时,已知AB 丄BC,且AB= BC = 20海里,若两船同时出发,恰好在点N 处相遇,则CN 为 ▲ 海里.13.在△ABC 中,若C B A sin 3sin sin 2=+,则角A 的取值范围是 ▲. 14.在数列{a n }中,若)2(11)41(,1-+=⋅=n n n a a a ,则满足不等式<201611 (1111)22321++++++n n a a a a a 的正整数n 的最大值为 ▲ . 二、解答题(本大题共6题,满分90分。
2023-2024学年江苏省无锡市锡山区天一中学高一(上)期末数学试卷一.单选题:本题共8小题,每小题5分,共40分.1.已知集合A={x||x|≤2},B={a,0},且B⊆A,则实数a的取值范围是()A.[﹣2,2]B.[﹣2,0)∪(0,2]C.(﹣2,2)D.(﹣2,0)∪(0,2)2.已知点P(tanθ,sinθ)是第二象限的点,则θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限3.若a,b∈R,则“2a﹣b>1”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知函数f(x)为R上的奇函数,当x<0时,f(x)=2x−18,则f(x)<0的解集为()A.(﹣3,0)∪(0,3)B.(﹣3,3)C.(﹣∞,﹣3)∪(0,3)D.(﹣∞,﹣3)∪(3,+∞)5.已知点(3,19)在幂函数f(x)=xα的图象上,设a=f(log25),b=f(ln2),c=f(tanπ3),则a,b,c 的大小关系为()A.a>b>c B.b>a>c C.a>c>b D.b>c>a6.函数f(x)=x2lg2+x2−x的大致图象是()A.B.C.D.7.若关于x的方程2sin x cos x﹣cos2x=1在[0,π)内有两个不同的解x1,x2,sin(x1+x2)的值为()A.12B.√22C.√32D.√2+√648.已知函数f(x)=sin x,若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12(m ≥2,m ∈N *),则m 的最小值为( ) A .6B .7C .8D .9二.多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的是( )A .若角α与角β不相等,则α与β的终边不可能重合B .若圆心角为π3的扇形的弧长为π,则扇形的面积为3π2C .终边落在直线y =x 上的角的集合是{α|α=π4+kπ,k ∈Z}D .函数y =tan(2x −π6)的定义域为{x|x ≠π3+kπ2,k ∈Z}10.设正实数x ,y 满足x +y =2,则下列说法正确的是( ) A .1x +1y的最小值为2B .xy 的最小值为1C .√x +√y 的最大值为4D .x 2+y 2的最小值为211.主动降噪耳机让我们在嘈杂的环境中享受一丝宁静,它的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与振幅相同的反相位声波来抵消噪声,已知某噪声的声波曲线f(x)=2sin(2π3x +φ)(|φ|<π2),且经过点(1,2).则下列说法正确的是( ) A .函数f(x +14)是奇函数B .函数f (x )在区间(1,2)上单调递减C .∃n ∈N *,使得f (1)+f (2)+f (3)+…+f (n )>2D .∀x ∈R ,存在常数m 使得f (x +1)+f (x +2)+f (x +3)=m12.若n ∈N *时,不等式(nx −6)ln(nx)≥0恒成立,则实数x 可取下面哪些值( )A .1B .2C .3D .4三.填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=√x +4+ln(1−x),则f (2x )的定义域为 .14.在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点(35,45),则tan2α= .15.某杀菌剂每喷洒一次就能杀死某物质上的细菌的80%,要使该物质上的细菌少于原来的0.1%,则至少要喷洒 次.(lg 2≈0.3010)16.已知函数f(x)=sin(2x +π6),g(x)=f(x 2+π4),若对任意的a ,b ∈[π﹣m ,m ],当a >b 时,f (a )﹣f (b )<g (2a )﹣g (2b )恒成立,则实数m 的取值范围是 .四.解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合A={x|x+1x−5>0},B={x|y=√3x−9},C=(﹣∞,2m+1],其中m∈R.(1)若(∁R A)∩B;(2)若A∪C=R,求m的取值范围.18.(12分)(1)已知tanα是关于x的方程2x2+x﹣1=0的一个实根,且α是第一象限角,求3sin2α﹣sinαcosα+2cos2α的值;(2)已知sinα+cosα=12,且α∈(0,π),求1sinα−1cosα的值.19.(12分)已知f(x)=2√3sinxcosx−2sin2x.(1)求函数y=f(x)在R上的单调增区间;(2)将函数y=f(x)的图象向左平移m(m>0)个单位,再对图象上每个点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,若函数y=g(x)的图象关于直线x=π6对称,求m取最小值时的y=g(x)的解析式.20.(12分)已知函数f(x)=log2(2x)⋅log2x4.(1)当x∈[1,4]时,求该函数的值域;(2)若f(x)<m log2x对于x∈[2,8]恒成立,求实数m的取值范围.21.(12分)深圳别称“鹏城”,“深圳之光”摩天轮是中国之眼.游客坐在摩天轮的座舱里慢慢往上转,可以从高处俯瞰四周景色.如图,游乐场中的摩天轮匀速旋转,每转一圈需要12min,其中心O距离地面40.5m,半径40m.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,经过时间t(单位:min)之后,请解答下列问题.(1)求出你与地面的距离h(单位:m)与时间t之间的函数解析式;(2)当你登上摩天轮2min后,你的朋友也在摩天轮最低处登上摩天轮,求两人距离地面的高度差H (单位:m)关于t的函数解析式,并求高度差的最大值.22.(12分)设函数f(x)=ax2﹣|x﹣a|,a∈R.(1)当a=1时,判断f(x)的奇偶性,并说明理由;(2)当﹣1≤a≤2时,若对任意的x∈[1,4],均有f(x)+bx≤0成立,求a2+b的最大值.2023-2024学年江苏省无锡市锡山区天一中学高一(上)期末数学试卷参考答案与试题解析一.单选题:本题共8小题,每小题5分,共40分.1.已知集合A={x||x|≤2},B={a,0},且B⊆A,则实数a的取值范围是()A.[﹣2,2]B.[﹣2,0)∪(0,2]C.(﹣2,2)D.(﹣2,0)∪(0,2)解:集合A={x||x|≤2}={x|﹣2≤x≤2},B={a,0},B⊆A,则实数a的取值范围是[﹣2,0)∪(0,2].故选:B.2.已知点P(tanθ,sinθ)是第二象限的点,则θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解:因为点P(tanθ,sinθ)在第二象限,所以sinθ>0,tanθ<0,所以θ为第二象限角.故选:B.3.若a,b∈R,则“2a﹣b>1”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:根据指数函数y=2x是R上的增函数,可知2a﹣b>1等价于2a﹣b>20,即a﹣b>0,因为“a﹣b>0”是“a>b”的充要条件,所以“2a﹣b>1”是“a>b”的充要条件.故选:C.4.已知函数f(x)为R上的奇函数,当x<0时,f(x)=2x−18,则f(x)<0的解集为()A.(﹣3,0)∪(0,3)B.(﹣3,3)C.(﹣∞,﹣3)∪(0,3)D.(﹣∞,﹣3)∪(3,+∞)解:因为函数f(x)为R上的奇函数,当x<0时,f(x)=2x−1 8,当x>0时,﹣x<0,所以f(﹣x)=2−x−18=−f(x),所以f(x)=18−12x,又f(0)=0,则f(x)<0可转化{x<02x−18<0或{x>018−12x<0,解得,x<﹣3或0<x<3.故选:C.5.已知点(3,19)在幂函数f(x)=xα的图象上,设a=f(log25),b=f(ln2),c=f(tanπ3),则a,b,c的大小关系为( ) A .a >b >cB .b >a >cC .a >c >bD .b >c >a解:∵点(3,19)在幂函数f (x )=x α的图象上,∴3α=19,∴α=﹣2,∴f (x )=x ﹣2,在(0,+∞)上单调递减,∵log 25>log 24=2,0=ln 1<ln 2<lne =1,tan π3=√3, ∴0<ln 2<tan π3<log 25,∴f (ln 2)>f (tan π3)>f (log 25),即b >c >a .故选:D . 6.函数f(x)=x 2lg2+x2−x的大致图象是( )A .B .C .D .解:由2+x 2−x>0解得﹣2<x <2,所以f (x )的定义域为(﹣2,2),f(−x)=x 2lg2−x 2+x =x 2lg(2+x 2−x )−1=−x 2lg 2+x2−x=−f(x), 所以f (x )是奇函数,图象关于原点对称,由此排除BC 选项. f (1)=lg 3>0,由此排除D 选项. 故选:A .7.若关于x 的方程2sin x cos x ﹣cos2x =1在[0,π)内有两个不同的解x 1,x 2,sin (x 1+x 2)的值为( ) A .12B .√22C .√32D .√2+√64解:2sin x cos x ﹣cos2x =sin2x ﹣cos2x =√2sin (2x −π4)=1在[0,π)内有两个不同的解x 1,x 2,等价于sin (2x −π4)=√22在[0,π)内有两个不同的解x 1,x 2,x ∈[0,π)⇒2x −π4∈[−π4,7π4),依题意,得2x 1−π4+2x 2−π4=π,解得x 1+x 2=3π4,sin (x 1+x 2)=sin 3π4=√22.故选:B .8.已知函数f (x )=sin x ,若存在x 1,x 2,…,x m 满足0≤x 1<x 2<…<x m ≤6π,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12(m ≥2,m ∈N *),则m 的最小值为( ) A .6B .7C .8D .9解:∵y =sin x 对任意x i ,x j (i ,j =1,2,3,…,m ), 都有|f (x i )﹣f (x j )|≤f (x )max ﹣f (x )min =2,要使m 取得最小值,尽可能多让x i (i =1,2,3,…,m )取得最高点,考虑0≤x 1<x 2<…<x m ≤6π,|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x m ﹣1)﹣f (x m )|=12, 按下图取值即可满足条件,∴m 的最小值为8. 故选:C .二.多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的是( )A .若角α与角β不相等,则α与β的终边不可能重合B .若圆心角为π3的扇形的弧长为π,则扇形的面积为3π2C .终边落在直线y =x 上的角的集合是{α|α=π4+kπ,k ∈Z}D .函数y =tan(2x −π6)的定义域为{x|x ≠π3+kπ2,k ∈Z}解:对于A ,由任意角的定义可知,若角α与角β不相等,则α与β的终边也可能重合,例如α=π6,β=13π6,故A 错误;对于B,由扇形的面积公式可得,扇形的面积为12×lα×l=12×ππ3×π=32π,故B正确;对于C,终边落在直线y=x上的角的集合是{α|π4+kπ,k∈Z},故C正确;对于D,由正切函数的定义域可得,2x−π6≠π2+kπ,k∈Z,∴x≠π3+kπ2,即函数y=tan(2x−π6)的定义域为{x|x≠π3+kπ2,k∈Z},故D正确.故选:BCD.10.设正实数x,y满足x+y=2,则下列说法正确的是()A.1x+1y的最小值为2B.xy的最小值为1C.√x+√y的最大值为4D.x2+y2的最小值为2解:∵x>0,y>0,x+y=2,∴1x+1y=12(x+y)(1x+1y)=12(2+yx+xy)≥12(2+2√yx⋅xy)=2,当且仅当yx=xy,即x=y=1时等号成立,故选项A正确;∵x+y=2≥2√xy,∴xy≤1,当且仅当x=y=1时,等号成立,故选项B错误;∵2(a2+b2)﹣(a+b)2=a2+b2﹣2ab=(a﹣b)2≥0,则2(a2+b2)≥(a+b)2,∴(a+b)2≤2(a2+b2),∴(√x+√y)2≤2[(√x)2+(√y)2]=4,∴√x+√y≤2,当且仅当x=y=1时等号成立,最大值为2,故选项C错误;x2+y2≥(x+y)22=2,当且仅当x=y=1时等号成立,故选项D正确.故选:AD.11.主动降噪耳机让我们在嘈杂的环境中享受一丝宁静,它的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与振幅相同的反相位声波来抵消噪声,已知某噪声的声波曲线f(x)=2sin(2π3x+φ)(|φ|<π2),且经过点(1,2).则下列说法正确的是()A.函数f(x+14)是奇函数B.函数f(x)在区间(1,2)上单调递减C.∃n∈N*,使得f(1)+f(2)+f(3)+…+f(n)>2 D.∀x∈R,存在常数m使得f(x+1)+f(x+2)+f(x+3)=m解:因为f(x)=2sin(2π3x+φ)(|φ|<π2)经过(1,2),所以sin (2π3+φ)=1,即2π3+φ=2k π+π2,k ∈Z ,解得φ=2k π−π6,k ∈Z ,又|φ|<π2,所以φ=−π6,则f (x )=2sin (2π3x −π6).对于A ,f (x +14)=2sin[2π3(x +14)−π6]=2sin 2π3x ,故为奇函数,所以A 正确;对于B ,x ∈(1,2)时,结合正弦函数的性质可知x ∈(1,2)时,f (x )单调递减,所以B 正确; 对于D ,f (x +1)+f (x +2)+f (x +3)=2sin (2π3x +π2)+2sin (2π3x +7π6)+2sin (2π3x +2π−π6)=2cos 2π3x﹣2sin (2π3x +π6)+2sin (2π3x −π6)=2cos 2π3x ﹣2(sin 2π3x cos π6+cos 2π3x sin π6)+2(sin 2π3x cos π6−cos 2π3x sin π6)=2cos 2π3x ﹣2cos 2π3x =0,所以f (x +1)+f (x +2)+f (x +3)恒为0,所以D 正确;对于C ,当n =3k ,k ∈N *时,f (1)+f (2)+f (3)+⋯+f (n )=0,当n =3k +1,k ∈N *时,f (1)+f (2)+f (3)+⋯+f (n )=f (n )=2sin (2π3n −π6)≤2,当n =3k +2,k ∈N *时,f (1)+f (2)+f (3)+⋯+f (n )=f (n ﹣1)+f (n )=2sin (2π3n −5π6)+2sin (2π3n −π6)=2(sin 2π3n •cos 5π6−cos 2π3n •sin 5π6)+2(sin 2π3n •cos π6−cos 2π3n •sin π6)=﹣2cos 2π3n ≤2,所以C 错误.故答案为:ABD .12.若n ∈N *时,不等式(nx −6)ln(nx)≥0恒成立,则实数x 可取下面哪些值( )A .1B .2C .3D .4解:当x =1时,n =2时,(n ﹣6)lnn =﹣4ln 2<0,不等式(nx −6)ln(nx )≥0不恒成立,故A 错误;当x =2时,不等式即为(2n ﹣6)ln n2≥0,当n =1,2,3时,原不等式恒成立;n ≥4时,原不等式恒成立,故B 正确;当x =3时,不等式即为(3n ﹣6)ln n3≥0,当n =1,2,3时,原不等式恒成立;n ≥4时,原不等式恒成立,故C 正确;当x =4时,不等式即为(4n ﹣6)ln n 4≥0,当n =2时,8﹣6=2,ln 12<0,原不等式不恒成立,故D 错误. 故选:BC .三.填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=√x +4+ln(1−x),则f (2x )的定义域为 [﹣2,12) .解:由题意得,{x +4≥01−x >0,解得﹣4≤x <1,令﹣4≤2x <1,则﹣2≤x <12,故f (2x )的定义域为[﹣2,12).故答案为:[﹣2,12).14.在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点(35,45),则tan2α= −247 .解:由角终边经过点(35,45),故tanα=4535=43,则tan2α=2tanα1−tan 2α=2×431−(43)2=−247. 故答案为:−247. 15.某杀菌剂每喷洒一次就能杀死某物质上的细菌的80%,要使该物质上的细菌少于原来的0.1%,则至少要喷洒 5 次.(lg 2≈0.3010)解:设喷洒x 次,则:(1﹣0.8)x <0.1%=10﹣3,∴xlg 0.2<﹣3,∴x >31−lg2,且lg 2≈0.3010,∴31−lg2≈4.3,∴x ≥5,即至少喷洒5次. 故答案为:5.16.已知函数f(x)=sin(2x +π6),g(x)=f(x 2+π4),若对任意的a ,b ∈[π﹣m ,m ],当a >b 时,f (a )﹣f (b )<g (2a )﹣g (2b )恒成立,则实数m 的取值范围是 (π2,17π24] .解:g(x)=f(x 2+π4)=sin(x +π2+π6)=cos(x +π6),所以f (a )﹣f (b )<g (2a )﹣g (2b ),所以sin(2a +π6)−sin(2b +π6)<cos(2a +π6)−cos(2b +π6),所以sin(2a +π6)−cos(2a +π6)<sin(2b +π6)−cos(2b +π6),所以√2sin(2a +π6−π4)<√2sin(2b +π6−π4)⇒sin(2a −π12)<sin(2b −π12), 因为对任意的a ,b ∈[π﹣m ,m ],当a >b 时,f (a )﹣f (b )<g (2a )﹣g (2b )恒成立 所以对任意的a ,b ∈[π﹣m ,m ],当a >b 时,2a −π12>2b −π12,sin(2a −π12)<sin(2b −π12)恒成立, x ∈[π−m ,m],2x −π12∈[23π12−2m ,2m −π12]. 不妨设2x −π12=t ,则问题转化成h (t )=sin t 在t ∈(23π12−2m ,2m −π12)单调递减, 所以{23π12−2m ≥π2+2kπ,2m −π12≤3π2+2kπ,2m −π12>23π12−2m其中k ∈Z ,解得π2<m ≤17π24,所以m 的取值范围为(π2,17π24].故答案为:(π2,17π24].四.解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合A={x|x+1x−5>0},B={x|y=√3x−9},C=(﹣∞,2m+1],其中m∈R.(1)若(∁R A)∩B;(2)若A∪C=R,求m的取值范围.解:(1)集合A={x|x+1x−5>0}={x|x<﹣1或x>5},B={x|y=√3x−9}={x|x≥2},∴∁R A={x|﹣1≤x≤5},∴(∁R A)∩B={x|2≤x≤5};(2)∵A∪C=R,C=(﹣∞,2m+1],其中m∈R.∴2m+1≥5,解得m≥2,∴m的取值范围是[2,+∞).18.(12分)(1)已知tanα是关于x的方程2x2+x﹣1=0的一个实根,且α是第一象限角,求3sin2α﹣sinαcosα+2cos2α的值;(2)已知sinα+cosα=12,且α∈(0,π),求1sinα−1cosα的值.解:(1)解方程2x2+x﹣1=0,得x1=﹣1,x2=12,∵tanα是关于x的方程2x2+x﹣1=0的一个实根,且α是第一象限角,∴tanα=1 2,∴3sin2α﹣sinαcosα+2cos2α=3sin2α−sinαcosα+2cos2αsin2α+cos2α=3tan2α−tanα+2tan2α+1=3×14−12+214+1=95.(2)∵sinα+cosα=12,且α∈(0,π),∴(sinα+cosα)2=1+2sinαcosα=1 4,∴2sinαcosα=−3 4,∵α∈(0,π),∴α∈(π2,π),∴cos﹣sinα=−√(cosα−sinα)2=−√1−2sinθcosθ=−√1+34=−√72,∴1sinα−1cosα=cosα−sinαsinαcosα=−√72−38=4√73.19.(12分)已知f(x)=2√3sinxcosx−2sin2x.(1)求函数y=f(x)在R上的单调增区间;(2)将函数y =f (x )的图象向左平移m (m >0)个单位,再对图象上每个点纵坐标不变,横坐标变为原来的2倍,得到函数y =g (x )的图象,若函数y =g (x )的图象关于直线x =π6对称,求m 取最小值时的y =g (x )的解析式.解:(1)由于f(x)=2√3sinxcosx −2sin 2x =√3sin2x ﹣2•1−cos2x 2=2sin (2x +π6)﹣1, 令2k π−π2≤2x +π6≤2k π+π2,k ∈Z ,求得k π−π3≤x ≤k π+π6,k ∈Z , 可得函数的增区间为[k π−π3,k π+π6],k ∈Z . (2)将函数y =f (x )的图象向左平移m (m >0)个单位,可得y =2sin (2x +2m +π6)﹣1的图象; 再对图象上每个点纵坐标不变,横坐标变为原来的2倍,得到函数y =g (x )=2sin (x +2m +π6)﹣1的图象.若函数y =g (x )的图象关于直线x =π6对称,则π6+2m +π6=k π+π2,k ∈Z ,即m =12•k π+π12,k ∈Z . 令k =0,求得m 取最小值为π12,此时,y =g (x )=2sin (x +π3)﹣1. 20.(12分)已知函数f(x)=log 2(2x)⋅log 2x 4. (1)当x ∈[1,4]时,求该函数的值域;(2)若f (x )<m log 2x 对于x ∈[2,8]恒成立,求实数m 的取值范围.解:(1)f (x )=log 2(2x )•log 2x 4=(1+log 2x )(log 2x ﹣2)=log 22x ﹣log 2x ﹣2, 令log 2x =t ,则函数化为y =t 2﹣t ﹣2,t ∈[0,2],因此当t =12时,y =t 2﹣t ﹣2取得最小值−94, 当t =2时,y =t 2﹣t ﹣2,t ∈[0,2]取得最大值0,即当x =√2时,函数f (x )取得最小值−94;当x =4时,函数f (x )取得最大值0, 可得函数的值域为[−94,0]; (2)f (x )<m log 2x ,x ∈[2,8]恒成立,即log 22x ﹣(m +1)log 2x ﹣2<0,x ∈[2,8]恒成立,令log 2x =t ,则t 2﹣(m +1)t ﹣2<0,t ∈[1,3]恒成立,令g (t )=t 2﹣(m +1)t ﹣2<0,t ∈[1,3],则{g(1)=−2−m <0g(3)=4−3m <0,解得m >43, 所以实数m 的取值范围为(43,+∞).21.(12分)深圳别称“鹏城”,“深圳之光”摩天轮是中国之眼.游客坐在摩天轮的座舱里慢慢往上转,可以从高处俯瞰四周景色.如图,游乐场中的摩天轮匀速旋转,每转一圈需要12min ,其中心O 距离地面40.5m ,半径40m .如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,经过时间t (单位:min )之后,请解答下列问题.(1)求出你与地面的距离h (单位:m )与时间t 之间的函数解析式;(2)当你登上摩天轮2min 后,你的朋友也在摩天轮最低处登上摩天轮,求两人距离地面的高度差H (单位:m )关于t 的函数解析式,并求高度差的最大值.解:(1)由已知可设y =40.5﹣40cos ωt ,t ≥0,由周期为12分钟可知,当t =6时,摩天轮第一次到达最高点,即函数第一次取得最大值,所以6ω=π,即ω=π6, 所以y =40.5﹣40cos π6t ,t ≥0; (2)由题意,两人距离地面的高度差H =40.5﹣40cos π6t ﹣[40.5﹣40cos π6(t ﹣2)] =40×[cos π6(t ﹣2)﹣cos π6t ] =40×(−12cos π6t +√32sin π6t ) =40sin (π6t −π6), 令π6t −π6=k π+π2,k ∈Z ,可得t =4+6k ,k ∈Z , 所以当t =4+6k ,k ∈Z 时,高度差的最大值40(米).22.(12分)设函数f (x )=ax 2﹣|x ﹣a |,a ∈R .(1)当a =1时,判断f (x )的奇偶性,并说明理由;(2)当﹣1≤a ≤2时,若对任意的x ∈[1,4],均有f (x )+bx ≤0成立,求a 2+b 的最大值. 解:(1)由题意得当a =1时,函数f (x )=x 2﹣|x ﹣1|,且函数f (x )的定义域为R ,∴f (﹣x )=x 2﹣|﹣x ﹣1|=x 2﹣|x +1|,∵f (﹣x )≠f (x ),f (﹣x )≠﹣f (x ),∴f (x )是非奇非偶函数;(2)因为当﹣1≤a ≤2时,若对任意的x ∈[1,4],均有f (x )+bx =ax 2﹣|x ﹣a |+bx ≤0成立,∴令g (x )=ax 2﹣|x ﹣a |+bx ={ax 2−x +a +bx ,x ≥a ax 2+x −a +bx ,x <a , ①当a =0时,g (x )=bx ﹣x =(b ﹣1)x ≤0,对任意的x ∈[1,3]恒成立,即3(b ﹣1)≤0,解得b ≤1,a 2+b =b 的最大值为1;②当﹣1≤a <0时,g (x )=ax 2﹣(x ﹣a )+bx =ax 2+(b ﹣1)x +a ,x ∈[1,3],对称轴为x =1−b 2a , (i )1−b 2a ≤1,则1﹣b ≥2a ,(a <0不等号方向改变),g (1)≤0即a +b ﹣1+a ≤0,所以b ≤1﹣2a ,则a 2+b ≤a 2﹣2a +1=(a ﹣1)2,a 2+b 的最大值为1;(ii )1−b 2a≥3时,1﹣b ≤6a ,即b ≥1﹣6a ,所以g (3)≤0,即b ≤1−103a ,无解; (iii )1<1−b 2a <3时,1﹣2a <b <1﹣6a ,所以g (1−b 2a)≤0,即a ⋅(1−b 2a )2+(b −1)×1−b 2a +a ≤0, 即4a 2≥(1﹣b )2,所以1+2a ≤b ≤1﹣2a 无解;③当0<a ≤1时,g (x )=ax 2﹣(x ﹣a )+bx =ax 2+(b ﹣1)x +a ,x ∈[1,3],对称轴为x =1−b 2a , (i )1−b 2a ≤1,则1﹣b ≤2a ,g (3)≤0即b ≤1−103a ,无解; (ii )1−b 2a≥3时,1﹣b ≥6a ,即b ≤1﹣6a ,g (1)≤0,b ≤1﹣2a ,则b ≤1﹣6a , 则a 2+b ≤a 2﹣6a +1=(a ﹣3)2﹣8,∵0<a ≤1,∴a 2+b 的最大值为1;(iii )1<1−b 2a <3时,1﹣6a ≤b ≤1﹣2a ,g (3)≤0,g (1)≤0, 则b ≤1−103a 且b ≤1﹣2a , ∴1﹣6a ≤b ≤1−103a ,则a 2+b ≤a 2+1−103a ,a 2+b 的最大值为1;④当1≤a ≤2时,g(x)={ax 2−x +a +bx ,a ≤x ≤3ax 2+x −a +bx ,1≤x ≤a, g (3)≤0,g (1)≤0,g (a )≤0,即{a +1−a +b ≤0a 3+ab ≤09a −3+a +3b ≤0,则{b ≤−1b ≤−a 2b ≤1−10a 3, 而1≤a ≤2,∴b ≤1−10a 3,则a 2+b ≤a 2+1−103a , 令p (a )=a 2+1−103a ,1≤a ≤2, 则p '(a )=2a −103,即p (a )在[1,53]上单调递减,在[53,2]上单调递增, 又p (1)=−43,p (2)=−53, 所以p (a )的最大值为−43. 综上所述,对任意的x ∈[1,3],均有f (x )+bx ≤0成立,则a 2+b 的最大值为−43(所有最大值中的最小值).。
2023-2024学年江苏省无锡市锡东高级中学高一(上)期中数学试卷一、单选题(本大题共8小题,每小题5分,共40.0分.在每小题列出的选项中,选出符合题目的一项.) 1.若a ,b ,c ∈R ,且a >b ,则下列不等式中一定成立的是( ) A .1a<1bB .a 2>b 2C .﹣a +c <﹣b +cD .若a >b >c >0,则ab <a+c b+c2.已知集合A ={x ∈Z |x 2+x ﹣2≤0},则集合A 的真子集个数为( ) A .4B .3C .16D .153.当√−x +1有意义时,化简√x 2−8x +16−√x 2−10x +25的结果是( ) A .2x ﹣7B .﹣2x +1C .﹣1D .7﹣2x4.下列函数中,既是偶函数又在(0,+∞)上单调递增的是( ) A .f (x )=x ﹣1B .f (x )=x 2+1C .f(x)=−1xD .f (x )=3x5.二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx 的图象可能是( )A .B .C .D .6.已知函数f (x )=a x ﹣2+1(a >0,且a ≠1)恒过定点M (m ,n ),则函数g (x )=n ﹣m x 不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知集合A ={x|x−4x+1≤0},B ={x |(x ﹣2a )(x ﹣a 2﹣1)<0},若A ∩B =∅,则实数a 的取值范围为( ) A .{a |a >2}B .{a |a ≥2}C .{a |a =1或a ≥2}D .{a |a ≥1}8.已知函数y =f (x )的定义域为(﹣∞,﹣1)∪(﹣1,+∞),且f (x ﹣1)为奇函数,当x <﹣1时,f(x)=﹣2x2﹣8x﹣7,则方程f(x)=−12的所有根之和等于()A.﹣4B.﹣2C.0D.2二.多选题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分).9.使不等式x(x+1)>0成立的一个充分不必要条件是()A.x>0B.x≥0C.x<﹣1或x>2D.﹣1<x<010.设正实数m,n满足m+n=2,则下列说法正确的是()A.√mn的最小值为1B.1m +2n的最小值为32+√2C.√m+√n的最大值为2D.m2+n2的最大值为211.若函数y=a x+b﹣1(a>0,且a≠1)的图象不经过第二象限,则需同时满足()A.a>1B.0<a<1C.b>0D.b≤012.下列说法不正确的是()A.命题“∀x<1,都有x2<1”的否定是“∃x≥1,使得x2≥1”B.集合A={﹣2,1},B={x|ax=2},若A∩B=B,则实数a的取值集合为{﹣1,2}C.方程3x2+a(a﹣6)x﹣3=0有一个根大于1,另一个根小于1的充要条件是0<a<6D.若存在x∈[12,2]使不等式x2﹣2x﹣m<0上能成立,则实数m的取值范围是(0,+∞)三.填空题(本题共4小题,每小题5分,共20分.第16题第一空2分,第二空3分)13.函数f(x)=√4−2x xx−1的定义域为.14.已知幂函数f(x)=(m2+m﹣5)x m在(0,+∞)上单调递减,则m=.15.若f(x)=x+√1−x,则函数f(x)的值域为.16.已知a,b∈R,若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,且对于任意正数x 都有x2﹣ax+t≥bx成立,则a+b=,实数t的最小值是.四.解答题:(本题共6小题,第17题10分,其余每题12分,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知集合P={x|﹣2<x<2},Q={x|0≤x<3},求下列集合:(1)P∩Q;(2)(∁R P)∪(∁R Q).18.(12分)(1)计算:(14)−12−2√(√3−2)2−(32)12×√8+(−3)0;(2)若a+a﹣1=3,求下列式子的值:①a 12−a−12;②a 12+a−12.19.(12分)已知命题p:任意实数x满足x2﹣2x﹣3≥0,命题q:实数x满足(x﹣m)[x﹣(m+1)]≥0.(1)若命题p为假命题,求实数x的取值范围;(2)若命题q是命题p的必要不充分条件,求实数m的取值范围.20.(12分)已知不等式ax2+2ax+1≥0对任意x∈R恒成立,求:(1)a的取值范围.(2)在(1)的条件下解关于x的不等式x2﹣x﹣a2+a<0的解集.21.(12分)金坛某企业为紧抓新能源发展带来的历史性机遇,决定开发一款锂电池生产设备.生产此设备的年固定成本为300万元,且每生产x台(x∈N*)需要另投入成本c(x)(万元),当年产量x不足45台时,c(x)=13x2+40x−450(万元);当年产量x不少于45台时,c(x)=61x+3600x+2−1310(万元).经过市场调查和分析,若每台设备的售价定为60万元时,则该企业生产的锂电池设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量x为多少台时,企业在这款锂电池生产设备的生产中获利最大?最大利润是多少万元?22.(12分)已知定义在R上的函数f(x)=−2x+a2x+1+2是奇函数.(1)求实数a的值;(2)求f(x)的值域;(3)证明f(x)在R上为减函数并解不等式f(t−1)+f(1t)>0.2023-2024学年江苏省无锡市锡东高级中学高一(上)期中数学试卷参考答案与试题解析一、单选题(本大题共8小题,每小题5分,共40.0分.在每小题列出的选项中,选出符合题目的一项.) 1.若a ,b ,c ∈R ,且a >b ,则下列不等式中一定成立的是( ) A .1a<1bB .a 2>b 2C .﹣a +c <﹣b +cD .若a >b >c >0,则ab <a+c b+c解:当a =1,b =﹣1时,A ,B 显然错误; 由a >b 可得﹣a <﹣b ,则﹣a +c <﹣b +c ,C 正确; 若a =3,b =2,c =1时,D 显然错误. 故选:C .2.已知集合A ={x ∈Z |x 2+x ﹣2≤0},则集合A 的真子集个数为( ) A .4B .3C .16D .15解:集合A ={x ∈Z |x 2+x ﹣2≤0}={x ∈Z |﹣2≤x ≤1}={﹣2,﹣1,0,1}, ∴集合A 的真子集个数为24﹣1=15. 故选:D .3.当√−x +1有意义时,化简√x 2−8x +16−√x 2−10x +25的结果是( ) A .2x ﹣7B .﹣2x +1C .﹣1D .7﹣2x解:√−x +1有意义时,x ≤1,√x 2−8x +16−√x 2−10x +25=√(x −4)2−√(x −5)2=4﹣x ﹣(5﹣x )=﹣1. 故选:C .4.下列函数中,既是偶函数又在(0,+∞)上单调递增的是( ) A .f (x )=x ﹣1B .f (x )=x 2+1C .f(x)=−1xD .f (x )=3x解:对于A ,f (x )=x ﹣1为非奇非偶函数,故A 不符合题意;对于B ,f (x )=x 2+1是偶函数,且在(0,+∞)上单调递增,故B 符合题意; 对于C ,f (x )=−1x 为奇函数,故C 不符合题意; 对于D ,f (x )=3x 为非奇非偶函数,故D 不符合题意. 故选:B .5.二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx 的图象可能是( )A.B.C.D.解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过一、三、四图象限,反比例函数y=cx象在二四象限.故选:A.6.已知函数f(x)=a x﹣2+1(a>0,且a≠1)恒过定点M(m,n),则函数g(x)=n﹣m x不经过()A.第一象限B.第二象限C.第三象限D.第四象限解:∵f(x)=a x﹣2+1(a>0,且a≠1)恒过定点(2,2),∴m=n=2,∴g(x)=2﹣2x,∴g(x)为减函数,且过点(0,1),∴g(x)的函数图象不经过第三象限.故选:C.7.已知集合A={x|x−4x+1≤0},B={x|(x﹣2a)(x﹣a2﹣1)<0},若A∩B=∅,则实数a的取值范围为()A.{a|a>2}B.{a|a≥2}C.{a|a=1或a≥2}D.{a|a≥1}解:解分式不等式可得,A={x|﹣1<x≤4},∵a2+1≥2a,∴a=1时,B=∅,满足A∩B=∅,a≠1时,B={x|2a<x<a2+1},∵A∩B=∅,得{2a≥4a≠1,解得a≥2;综上,实数a的取值范围为{a|a=1或a≥2}故选:C.8.已知函数y=f(x)的定义域为(﹣∞,﹣1)∪(﹣1,+∞),且f(x﹣1)为奇函数,当x<﹣1时,f(x )=﹣2x 2﹣8x ﹣7,则方程f(x)=−12的所有根之和等于( ) A .﹣4B .﹣2C .0D .2解:因为f (x ﹣1)为奇函数,所以f (x ﹣1)关于(0,0)对称, 所以f (x )关于(﹣1,0)对称,即f (x )=﹣f (﹣2﹣x ). 当x <﹣1时,f (x )=﹣2x 2﹣8x ﹣7,当x >﹣1时,﹣2﹣x <﹣1,f (x )=﹣f (﹣2﹣x )=2(x +2)2+8(﹣2﹣x )+7=2x 2﹣1, 所以f (x )={−2x 2−8x −7,x <−12x 2−1,x >−1.因为f(x)=−12,所以{x <−1−2x 2−8x −7=−12或{x >−12x 2−1=−12,解得x 1=−2+√32,x 2=−2−√32,x 3=12,x 4=−12,所以x 1+x 2+x 3+x 4=﹣4. 故选:A .二.多选题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分).9.使不等式x (x +1)>0成立的一个充分不必要条件是( ) A .x >0B .x ≥0C .x <﹣1或x >2D .﹣1<x <0解:不等式x (x +1)>0,即x <﹣1或x >0,因此,使不等式x (x +1)>0成立的充分不必要条件对应的集合是{x |x <﹣1或x >0}的真子集, 对照各个选项,可知A 、C 两项符合题意. 故选:AC .10.设正实数m ,n 满足m +n =2,则下列说法正确的是( ) A .√mn 的最小值为1 B .1m+2n的最小值为32+√2C .√m +√n 的最大值为2D .m 2+n 2的最大值为2解:对于A ,因为m >0,n >0,所以√mn ≤m+n 2=22=1, 当且仅当m =n =1时等号成立,故√mn 有最大值1,故A 错; 对于B ,因为m +n =2,所以1m +2n=12(1m+2n)(m+n)=12(3+nm+2mn)≥12(3+2√nm⋅2mn)=32+√2,当且仅当nm =2mn时,即m=2√2−2,n=4﹣2√2时等号成立,故B正确;对于C,(√m+√n)2=m+n+2√mn≤m+n+(m+n)=4,当且仅当m=n=1时等号成立,所以√m+√n≤2,故C正确;对于D,m2+n2=(m+n)2﹣2mn=4﹣2mn,由A有mn≤1,则﹣2mn≥﹣2,所以m2+n2≥2,当且仅当m=n=1时等号成立,故D错.故选:BC.11.若函数y=a x+b﹣1(a>0,且a≠1)的图象不经过第二象限,则需同时满足()A.a>1B.0<a<1C.b>0D.b≤0解:函数y=a x+b﹣1(a>0,a≠1)的图象,由函数y=a x(a>0,a≠1)的图象向上平移(b﹣1)单位得到;若0<a<1,则函数图象经过第二象限;若a>1,b﹣1+1≤0,则函数图象不经过第二象限;所以a>1,b≤0,满足题意.故选:AD.12.下列说法不正确的是()A.命题“∀x<1,都有x2<1”的否定是“∃x≥1,使得x2≥1”B.集合A={﹣2,1},B={x|ax=2},若A∩B=B,则实数a的取值集合为{﹣1,2}C.方程3x2+a(a﹣6)x﹣3=0有一个根大于1,另一个根小于1的充要条件是0<a<6D.若存在x∈[12,2]使不等式x2﹣2x﹣m<0上能成立,则实数m的取值范围是(0,+∞)解:对于A:命题的否定是:“∃x<1,使得x2≥1”,故A不正确;对于B:A∩B=B⇒B⊆A,A={﹣2,1}的子集有ϕ,{﹣2},{1},{﹣2,1},当B=∅时,显然有a=0;当B={﹣2}时,﹣2a=2⇒a=﹣1;当B={1}时,a•1=2⇒a=2;当B={﹣2,1},不存在a,符合题意,∴实数a值集合为{﹣1,0,2},故B不正确;对于C:令f(x)=3x2+a(a﹣6)x﹣3,由f(1)<0得a2﹣6a<0,即0<a<6,故C正确;对于D :若存在x ∈[12,2]使不等式x 2﹣2x ﹣m <0上能成立,则存在x ∈[12,2],使得m >x 2﹣2x , 等价于m >(x 2﹣2x )min ,x ∈[12,2],因为当x =1时(x 2﹣2x )min =﹣1,∴m >﹣1,故D 不正确. 故选:ABD .三.填空题(本题共4小题,每小题5分,共20分.第16题第一空2分,第二空3分) 13.函数f(x)=√4−2x xx−1的定义域为 . 解:f(x)=√4−2xx√x−1,则{4−2x≥0x −1>0,解得1<x ≤2,故函数f (x )的定义域为(1,2]. 故答案为:(1,2].14.已知幂函数f (x )=(m 2+m ﹣5)x m 在(0,+∞)上单调递减,则m = . 解:∵幂函数f (x )=(m 2+m ﹣5)x m 在(0,+∞)上单调递减, ∴{m 2+m −5=1m <0, 解得m =﹣3. 故答案为:﹣3.15.若f(x)=x +√1−x ,则函数f (x )的值域为 . 解:令t =√1−x ,t ≥0,则x =1﹣t 2,所以原函数可转化为g (t )=1﹣t 2+t =﹣(t −12)2+54,t ≥0, 由二次函数的性质可得g (t )≤g (12)=54,所以函数f (x )的值域为(﹣∞,54].故答案为:(﹣∞,54].16.已知a ,b ∈R ,若函数f (x )=(1﹣x 2)(x 2+ax +b )的图象关于直线x =﹣2对称,且对于任意正数x 都有x 2﹣ax +t ≥bx 成立,则a +b = ,实数t 的最小值是 . 解:由f (x )=(1﹣x 2)(x 2+ax +b )=0,可得x =1,或x =﹣1,或x 2+ax +b =0, 因为f (x )的图象关于直线x =﹣2对称,所以f (﹣1)=f (﹣3)=0,f (1)=f (﹣5)=0, 所以﹣3和﹣5是方程x 2+ax +b =0的两个根, 所以{−3+(−5)=−a −3×(−5)=b ,得{a =8b =15,所以a +b =8+15=23,所以不等式x 2﹣ax +t ≥bx 可化为x 2﹣8x +t ≥15x ,所以t ≥﹣x 2+23x ,令y =﹣x 2+23x ,则其对称轴为x =232, 所以当x =232时,y =﹣x 2+23x 取得最大值,其最大值为−(232)2+23×232=5294, 所以t ≥5294,所以实数t 的最小值是5294.故答案为:23;5294.四.解答题:(本题共6小题,第17题10分,其余每题12分,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知集合P ={x |﹣2<x <2},Q ={x |0≤x <3},求下列集合: (1)P ∩Q ;(2)(∁R P )∪(∁R Q ). 解:(1)P ∩Q ={x |0≤x <2};(2)∁R P ={x |x ≤﹣2或x ≥2},∁R Q ={x |x <0或x ≥3},(∁R P )∪(∁R Q )={x |x <0或x ≥2}.18.(12分)(1)计算:(14)−12−2√(√3−2)2−(32)12×√8+(−3)0;(2)若a +a ﹣1=3,求下列式子的值:①a 12−a−12; ②a 12+a −12.解:(1)(14)−12−2√(√3−2)2−(32)12×√8+(−3)0=2﹣2(2−√3)−√62×2√2+1=﹣2+2√3−2√3+1=﹣1; (2)若a +a ﹣1=3,①(a 12−a −12)2=a +a ﹣1﹣2=1,故a 12−a−12=±1;②(a 12+a−12)2=a +a ﹣1+2=5,又a 12+a −12>0, 故a 12+a −12=√5.19.(12分)已知命题p :任意实数x 满足x 2﹣2x ﹣3≥0,命题q :实数x 满足(x ﹣m )[x ﹣(m +1)]≥0. (1)若命题p 为假命题,求实数x 的取值范围;(2)若命题q 是命题p 的必要不充分条件,求实数m 的取值范围.解:(1)若命题p 为假命题,则x 2﹣2x ﹣3<0,解得﹣1<x <3,故实数x 的取值范围为(﹣1,3); (2)若命题p 为真命题,则x ≥3或x ≤﹣1,其对应的集合为A ={x |x ≥3或x ≤﹣1}, 若命题q 为真命题,则x ≥m +1或x ≤m ,其对应的集合为B ={x |x ≥m +1或x ≤m }, 因为命题q 是命题p 的必要不充分条件,所以A ⫋B ,可得{m ≥−1m +1≤3(不同时取等号),解得﹣1≤m ≤2,即实数m 的取值范围为[﹣1,2].20.(12分)已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,求: (1)a 的取值范围.(2)在(1)的条件下解关于x 的不等式x 2﹣x ﹣a 2+a <0的解集. 解:(1)当a =0时,不等式ax 2+2ax +1=1≥0恒成立, 当a ≠0时,若不等式ax 2+2ax +1≥0对于∀x ∈R 恒成立, 则{a >04a 2−4a ≤0,得0<a ≤1,综上,a 的取值范围为[0,1]. (2)∵x 2﹣x ﹣a 2+a <0,且0≤a ≤1, ∴(x ﹣a )[x ﹣(1﹣a )]<0, 又0≤a ≤1,①当1﹣a >a ,即0≤a <12时,则a <x <1﹣a , ②当1﹣a =a ,即a =12时,(a ﹣1)2<0,无解, ③当1﹣a <a ,即12<a ≤1时,则1﹣a <x <a ,综上所述,当0≤a <12时,解集为{x |a <x <1﹣a }, 当a =12时,解集为∅,当12<a ≤1时,解集为{x |1﹣a <x <a }.21.(12分)金坛某企业为紧抓新能源发展带来的历史性机遇,决定开发一款锂电池生产设备.生产此设备的年固定成本为300万元,且每生产x 台(x ∈N *)需要另投入成本c (x )(万元),当年产量x 不足45台时,c(x)=13x 2+40x −450(万元);当年产量x 不少于45台时,c(x)=61x +3600x+2−1310(万元).经过市场调查和分析,若每台设备的售价定为60万元时,则该企业生产的锂电池设备能全部售完. (1)求年利润y (万元)关于年产量x (台)的函数关系式;(2)年产量x 为多少台时,企业在这款锂电池生产设备的生产中获利最大?最大利润是多少万元?解:(1)当0<x <45,x ∈N *时,y =60x −300−(13x 2+40x −450)=−13x 2+20x +150, 当x ≥45,x ∈N *时,y =60x −300−(61x +3600x+2−1310)=−x −3600x+2+1010,综上可得y ={−13x 2+20x +15,0<x <45,x ∈N ∗−x −3600x+2+1010,x ≥45,x ∈N ∗. (2)当0<x <45,x ∈N *时,y =−13x 2+20x +150=−13(x −30)2+450,当x =30时,y max =450,当x ≥45,x ∈N *时,y =−x −3600x+2+1010=−[(x +2)+3600x+2]+1012≤−2√(x +2)⋅3600x+2+1012=892,当且仅当x +2=3600x+2时,即x =58时,上式取等号,即y max =892. 综上,即当年生产58(台)时,该企业年利润的最大值为892(万元).22.(12分)已知定义在R 上的函数f(x)=−2x+a 2x+1+2是奇函数. (1)求实数a 的值;(2)求f (x )的值域;(3)证明f (x )在R 上为减函数并解不等式f(t −1)+f(1t)>0.解:(1)因为定义在R 上的函数f(x)=−2x +a 2x+1+2是奇函数, 所以f (0)=0,即−1+a 2+2=0,解得a =1, 所以f (x )=−2x +12(2x +1), f (﹣x )=−2−x +12(2−x +1)=2x−12(1+2x )=−f (x ),符合题意, 故a 的值为1.(2)f (x )=−2x +12(2x +1)=−(2x+1)+22(2x +1)=−12+12x +1, 因为2x >0,所以2x +1>1,0<12x +1<1,−12<−12+12x +1<12, 所以f (x )的值域为(−12,12).(3)证明:在R 上任取x 1<x 2,则f (x 1)﹣f (x 2)=−12+12x 1+1−(−12+12x 2+1)=12x 1+1−12x 2+1=2x 2−2x1(2x 1+1)(2x 2+1), 因为x 1<x 2,所以2x 2−2x 1>0,2x 2+1>0,2x 1+1>0,所以f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2),所以f(x)在R上为减函数,因为f(x)为奇函数,所以f(t−1)+f(1t)>0等价于f(t﹣1)>﹣f(1t)=f(−1t),所以t﹣1<−1t,解得t<0,即不等式的解集为(﹣∞,0).。
2015-2016学年江苏省泰州市高一(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={0,1,2},B={1,2,3},则集合A∪B中元素个数为.2.若幂函数y=x a的图象过点(2,),则a=.3.因式分解:x3﹣2x2+x﹣2=.4.将函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是.5.若函数f(x)=x3+2x﹣1的零点在区间(k,k+1)(k∈Z)内,则k=.6.化简:+=.7.||=1,||=2,,且,则与的夹角为.8.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+=.9.已知O为坐标原点,A(1,2),B(﹣2,1),若与共线,且⊥(+2),则点C的坐标为.10.若点P(1,﹣1)在角φ(﹣π<φ<0)终边上,则函数y=3cos(x+φ),x∈[0,π]的单调减区间为.11.当x∈{x|(log2x)2﹣log2x﹣2≤0}时,函数y=4x﹣2x+3的最小值是.12.已知定义在R上的奇函数y=f(x)满足:①当x∈(0,1]时,f(x)=()x;②f(x)的图象关于直线x=1对称,则f(﹣log224)=.13.已知函数f(x)=x2+bx,g(x)=|x﹣1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为.14.已知函数f(x)=sin(πx﹣),若函数y=f(asinx+1),x∈R没有零点,则实数a的取值范围是.二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤)15.已知集合A={x|2x>8},B={x|x2﹣3x﹣4<0}.(1)求A,B;(2)设全集U=R,求(∁U A)∩B.16.直线y=1分别与函数f(x)=log2(x+2),g(x)=log a x的图象交于A,B两点,且AB=2.(1)求a的值;(2)解关于x的方程,f(x)+g(x)=3.17.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),且其相邻两对称轴之间的距离为π.(1)求函数f(x)的解析式;(2)设若sinα+f(α)=,α∈(0,π),求的值.18.现代人对食品安全的要求越来越高,无污染,无化肥农药等残留的有机蔬菜更受市民喜爱,为了适应市场需求,我市决定对有机蔬菜实行政府补贴,规定每种植一亩有机蔬菜性补贴农民x元,经调查,种植亩数与补贴金额x之间的函数关系式为f(x)=8x+800(x≥0),每亩有机蔬菜的收益(元)与补贴金额x之间的函数关系式为g(x)=.(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为多少元?(2)求出政府补贴政策实施后,我市有机蔬菜的总收益W(元)与政府补贴数额x之间的函数关系式;(3)要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为多少元?19.四边形ABCD中,E,F分别为BD,DC的中点,AE=DC=3,BC=2,BD=4.(1)试求,表示;(2)求2+2的值;(3)求的最大值.20.对于函数y=f(x),若x0满足f(x0)=x0,则称x0位函数f(x)的一阶不动点,若x0满足f(f(x0))=x0,则称x0位函数f(x)的二阶不动点,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为函数f (x)的二阶周期点.(1)设f(x)=kx+1.①当k=2时,求函数f(x)的二阶不动点,并判断它是否是函数f(x)的二阶周期点;②已知函数f(x)存在二阶周期点,求k的值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,求实数c的取值范围.2015-2016学年江苏省泰州市高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={0,1,2},B={1,2,3},则集合A∪B中元素个数为4.【考点】并集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】由A与B,求出两集合的并集,找出并集中元素个数即可.【解答】解:∵A={0,1,2},B={1,2,3},∴A∪B={0,1,2,3},则集合A∪B中元素个数为4,故答案为:4.【点评】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.若幂函数y=x a的图象过点(2,),则a=﹣1.【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;圆锥曲线的定义、性质与方程.【分析】根据题意,将点(2,)的坐标代入y=x a中,可得=2a,解可得a的值,即可得答案.【解答】解:根据题意,点(2,)在幂函数y=x a的图象上,则有=2a,解可得a=﹣1;故答案为:﹣1.【点评】本题考查幂函数解析式的计算,注意幂函数与指数函数的区别.3.因式分解:x3﹣2x2+x﹣2=(x﹣2)(x2+1).【考点】因式分解定理.【专题】计算题;转化思想;函数的性质及应用.【分析】分组提取公因式即可得出.【解答】解:原式=x2(x﹣2)+(x﹣2)=(x﹣2)(x2+1).故答案为:(x﹣2)(x2+1).【点评】本题考查了分组提取公因式法,考查了推理能力与计算能力,属于基础题.4.将函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是y=sin(x﹣).【考点】函数y=Asin(ωx+φ)的图象变换.【专题】转化思想.【分析】由函数图象的平移法则,“左加右减,上加下减”,我们可得函数f(x)的图象向右平移a个单位得到函数f(x﹣a)的图象,再根据原函数的解析式为y=sinx,向右平移量为个单位,易得平移后的图象对应的函数解析式.【解答】解:根据函数图象的平移变换的法则故函数y=sinx的图象向右平移个单位后得到的图象对应的函数解析式是y=sin(x﹣)故答案为:y=sin(x﹣)【点评】本题考查的知识点函数y=Asin(ωx+φ)的图象变换,其中熟练掌握函数图象的平移法则,“左加右减,上加下减”,是解答本题的关键.5.若函数f(x)=x3+2x﹣1的零点在区间(k,k+1)(k∈Z)内,则k=0.【考点】二分法求方程的近似解.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】利用根的存在性确定函数零点所在的区间,然后确定k的值.【解答】解;∵f(x)=x3+2x﹣1,∴f′(x)=3x2+2>0,∴f(x)在R上单调递增,∵f(0)=﹣1<0,f(1)=1+2﹣1>0,∴f(0)f(1)<0,∴函数零点所在的区间为(0,1),∴k=0.故答案为:0.【点评】本题考查函数零点的判定定理的应用,属基础知识、基本运算的考查.6.化简:+=2.【考点】有理数指数幂的化简求值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂互化公式、性质、运算法则、平方差公式、立方差公式求解.【解答】解:+=+=2.故答案为:2.【点评】本题考查有理数指数幂化简求值,是基础题,解题时要注意根式与分数指数幂互化公式、性质、运算法则、平方差公式、立方差公式的合理运用.7.||=1,||=2,,且,则与的夹角为120°.【考点】数量积表示两个向量的夹角.【专题】计算题.【分析】根据,且可得进而求出=﹣1然后再代入向量的夹角公式cos<>=再结合<>∈[0,π]即可求出<>.【解答】解:∵,且∴∵||=1∴=﹣1∵||=2∴cos<>==﹣∵<>∈[0,π]∴<>=120°故答案为120°【点评】本题主要考查了利用数量积求向量的夹角,属常考题,较易.解题的关键是熟记向量的夹角公式cos<>=同时要注意<>∈[0,π]这一隐含条件!8.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+=﹣1.【考点】函数的图象.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】联立方程组得,化简得到x2﹣2x﹣2=0,根据韦达定理得到x1+x2=2,x1x2=﹣2,即可求出答案.【解答】解:联立方程组得,∴x2﹣x﹣1=x+1,∴x2﹣2x﹣2=0,∴x1+x2=2,x1x2=﹣2,∴+===﹣1,故答案为:﹣1.【点评】本题考查了函数图象的交点问题,以及韦达定理的应用,属于基础题.9.已知O为坐标原点,A(1,2),B(﹣2,1),若与共线,且⊥(+2),则点C的坐标为(﹣4,﹣3).【考点】平面向量数量积的运算.【专题】计算题;对应思想;向量法;平面向量及应用.【分析】设C的坐标为(x,y),向量的坐标运算和向量共线垂直的条件得到关于x,y的方程组,解得即可.【解答】解:设C的坐标为(x,y),O为坐标原点,A(1,2),B(﹣2,1),∴=(x+2,y﹣1),=(x,y),=(1,2),=(﹣2,1),+2=(﹣3,4),∵与共线,且⊥(+2),解得x=﹣4,y=﹣3,∴点C的坐标为(﹣4,﹣3),故答案为:(﹣4,﹣3)【点评】本题考查了向量的坐标运算和向量共线垂直的条件,属于基础题.10.若点P(1,﹣1)在角φ(﹣π<φ<0)终边上,则函数y=3cos(x+φ),x∈[0,π]的单调减区间为[,π].【考点】余弦函数的图象.【专题】综合题;转化思想;综合法;三角函数的图像与性质.【分析】由条件利用余弦函数的单调性,求得函数y=3cos(x+φ),x∈[0,π]的单调减区间.【解答】解:∵点P(1,﹣1)在角φ(﹣π<φ<0)终边上,∴φ=﹣,函数y=3cos(x+φ)=3cos(x﹣),令2kπ≤x﹣≤2kπ+π,求得2kπ+≤x﹣≤2kπ+.可得函数的减区间为[2kπ+,2kπ+],k∈Z.再结合x∈[0,π],可得函数y=3cos(x+φ)的单调减区间为[,π],故答案为:[,π].【点评】本题主要考查余弦函数的单调性,属于基础题.11.当x∈{x|(log2x)2﹣log2x﹣2≤0}时,函数y=4x﹣2x+3的最小值是5﹣.【考点】指、对数不等式的解法;函数的最值及其几何意义.【专题】函数思想;转化法;函数的性质及应用.【分析】化简集合{x|(log2x)2﹣log2x﹣2≤0},求出x的取值范围,再求函数y的最小值即可.【解答】解:因为{x|(log2x)2﹣log2x﹣2≤0}={x|(log2x+1)(log2x﹣2)≤0}={x|﹣1≤log2x≤2}={x|≤x≤4},且函数y=4x﹣2x+3=22x﹣2x+3=+,所以,当x=时,函数y取得最小值是+=5﹣.故答案为:5﹣.【点评】本题考查了指数与对数不等式的解法与应用问题,解题的关键是转化为等价的不等式,是基础题目.12.已知定义在R上的奇函数y=f(x)满足:①当x∈(0,1]时,f(x)=()x;②f(x)的图象关于直线x=1对称,则f(﹣log224)=.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】由f(x)的图象关于x=1对称可以得出f(x)=f(x﹣4),从而可以得到f(﹣log224)=﹣f(log224﹣4)=﹣f(log23﹣1),可判断log23﹣1∈(0,1),从而可以求出,这样根据指数式和对数式的互化及指数的运算即可求得答案.【解答】解:f(x)的图象关于x=1对称;∴f(x)=f(2﹣x)=﹣f(x﹣2)=f(x﹣4);即f(x)=f(x﹣4);∴f(﹣log224)=﹣f(log224)=﹣f(log224﹣4)=﹣f(log23﹣1);∵log23﹣1∈(0,1);∴==;∴.故答案为:.【点评】考查奇函数的定义,f(x)关于x=a对称时有f(x)=f(2a﹣x),以及对数的运算,指数的运算,对数式和指数式的互化.13.已知函数f(x)=x2+bx,g(x)=|x﹣1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),则实数b的最小值为﹣1.【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】令h(x)=f(x)﹣g(x),问题转化为满足h(x)在[0,2]上是增函数即可,结合二次函数的性质通过讨论对称轴的位置,解出即可.【解答】解:当x1<x2时都有f(x1)﹣f(x2)<g(x1)﹣g(x2),即x1<x2时都有f(x1)﹣g(x1)<f(x2)﹣g(x2),令h(x)=f(x)﹣g(x)=x2+bx﹣|x﹣1|,故需满足h(x)在[0,2]上是增函数即可,①当0≤x<1时,h(x)=x2+(b+1)x﹣1,对称轴x=﹣≤0,解得:b≥﹣1,②当1≤x≤2时,h(x)=x2+(b﹣1)x+1,对称轴x=﹣≤1,解得:b≥﹣1,综上:b≥﹣1,故答案为:﹣1.【点评】本题考察了二次函数的性质、考察转化思想,是一道中档题.14.已知函数f(x)=sin(πx﹣),若函数y=f(asinx+1),x∈R没有零点,则实数a的取值范围是(﹣,).【考点】正弦函数的图象;函数零点的判定定理.【专题】分类讨论;综合法;三角函数的图像与性质.【分析】由f(x)没有零点求得x的范围,再根据f(asinx+1)没有零点可得asinx+1的范围,根据正弦【解答】解:若函数f(x)=sin(πx﹣)=sinπ(x﹣)没有零点,故0<(x﹣)π<π,或﹣π<(x﹣)π<0,即0<(x﹣)<1,或﹣1<(x﹣)<0,即<x<或﹣<x<.由于函数y=f(asinx+1),x∈R没有零点,则<asinx+1<,或﹣<asinx+1<,当a>0时,∵1﹣a≤asinx+1≤1+a,或,解得0<a<.当a<0时,1+a≤asinx+1≤1﹣a,∴或,求得﹣<a<0.当a=0时,函数y=f(asinx+1)=f(1)=sin=≠0,满足条件.综上可得,a的范围为(﹣,).故答案为:(﹣,).【点评】本题主要考查正弦函数的图象特征,函数的零点的定义,属于中档题.二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤) 15.已知集合A={x|2x>8},B={x|x2﹣3x﹣4<0}.(1)求A,B;(2)设全集U=R,求(∁U A)∩B.【考点】交、并、补集的混合运算;集合的表示法.【专题】转化思想;定义法;集合.【分析】(1)根据指数函数的图象与性质,求出集合A,再解一元二次不等式求出集合B;(2)根据补集与交集的定义,求出(∁U A)∩B.【解答】解:(1)∵2x>8=23,且函数y=2x在R上是单调递增,∴x>3,∴A=(3,+∞);又x2﹣3x﹣4<0可化为(x﹣4)(x+1)<0,解得﹣1<x<4,∴B=(﹣1,4);(2)∵全集U=R,A=(3,+∞),A=∞3∴(∁U A)∩B=(﹣1,3].【点评】本题考查了不等式的解法与应用问题,也考查了集合的化简与运算问题,是基础题目.16.直线y=1分别与函数f(x)=log2(x+2),g(x)=log a x的图象交于A,B两点,且AB=2.(1)求a的值;(2)解关于x的方程,f(x)+g(x)=3.【考点】对数函数的图象与性质;函数的图象.【专题】函数思想;综合法;函数的性质及应用.【分析】(1)令f(x)=1解出A点坐标,利用AB=2得出B点坐标,把B点坐标代入g(x)解出a;(2)利用对数的运算性质去掉对数符号列出方程解出x,结合函数的定义域得出x的值.【解答】解:(1)解log2(x+2)=1得x=0,∴A(0,1),∵AB=2,∴B(2,1).把B(2,1)代入g(x)得log a2=1,∴a=2.(2)∵f(x)+g(x)=3,∴log2(x+2)+log2x=log2[x(x+2)]=3,∴x(x+2)=8,解得x=﹣4或x=2.由函数有意义得,解得x>0.∴方程f(x)+g(x)=3的解为x=2.【点评】本题考查了对数函数的图象与性质,对数方程的解法,属于基础题.17.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),且其相邻两对称轴之间的距离为π.(1)求函数f(x)的解析式;(2)设若sinα+f(α)=,α∈(0,π),求的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的化简求值;正弦函数的图象.【专题】转化思想;综合法;三角函数的求值.【分析】(1)根据函数的图象经过点(0,1),求得φ的值,再根据周期性求得ω,可得函数f(x)的解析式.(2)由条件求得sinα+cosα=,平方可得sinαcosα的值,从而求得sinα﹣cosα的值,再利用诱导公式化简要求的式子,可得结果.【解答】解:(1)根据函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),可得sinφ=1,∴φ=,.∵其相邻两对称轴之间的距离为π,∴=π,求得ω=1,∴f(x)=sin(x+)=cosx.(2)∵sinα+f(α)=,α∈(0,π),即sinα+cosα=,平方可得sinαcosα═﹣,∴α为钝角,sinα﹣cosα==,∴====﹣.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,三角函数的化简求值,属于基础题.18.现代人对食品安全的要求越来越高,无污染,无化肥农药等残留的有机蔬菜更受市民喜爱,为了适应市场需求,我市决定对有机蔬菜实行政府补贴,规定每种植一亩有机蔬菜性补贴农民x元,经调查,种植亩数与补贴金额x之间的函数关系式为f(x)=8x+800(x≥0),每亩有机蔬菜的收益(元)与补贴金额x之间的函数关系式为g(x)=.(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为多少元?(2)求出政府补贴政策实施后,我市有机蔬菜的总收益W(元)与政府补贴数额x之间的函数关系式;(3)要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为多少元?【考点】分段函数的应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为800×2850=2280000元;(2)政府补贴政策实施后,我市有机蔬菜的总收益W=f(x)g(x);(3)分段求最大值,即可得出结论.【解答】解:(1)在政府未出台补贴措施时,我市种植这种蔬菜的总收益为800×2850=2280000元;(2)政府补贴政策实施后,我市有机蔬菜的总收益W=f(x)g(x)=;(3)x>50,W=﹣24(x+100)(x﹣1050)=﹣24(x﹣475)2+7935000,∴x=475时,W max=7935000;0≤x≤50,W═24(x+100)(x+950)单调递增,∴x=50时,W max=3600000;综上所述,要使我市有机蔬菜的总收益W(元)最大,政府应将每亩补贴金额x定为475元.【点评】本题主要考查了二次函数的应用,二次函数的性质,考查利用数学知识解决实际问题,属于中档题.19.四边形ABCD中,E,F分别为BD,DC的中点,AE=DC=3,BC=2,BD=4.(1)试求,表示;(2)求2+2的值;(3)求的最大值.【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】(1)由已知结合共线向量基本定理得答案;(2)由已知结合向量加法、减法的运算法则求解;(3)由向量加法、减法及向量的数量积运算得答案.【解答】解:(1)∵E,F分别为BD,DC的中点,∴,则;(2)=;(3)=,∵=10﹣6cos∠AEF.∴当∠AEF=π时,取得最大值16.∴的最大值为.【点评】本题考查平面向量的数量积运算,考查了向量加法与减法的三角形法则,是中档题.20.对于函数y=f(x),若x0满足f(x0)=x0,则称x0位函数f(x)的一阶不动点,若x0满足f(f(x0))=x0,则称x0位函数f(x)的二阶不动点,若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为函数f (x)的二阶周期点.(1)设f(x)=kx+1.①当k=2时,求函数f(x)的二阶不动点,并判断它是否是函数f(x)的二阶周期点;②已知函数f(x)存在二阶周期点,求k的值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,求实数c的取值范围.【考点】函数恒成立问题;函数的值.【专题】新定义;转化思想;函数的性质及应用.【分析】(1)①当k=2时,f(x)=2x+1,结合二阶不动点和二阶周期点的定义,可得答案;②由二阶周期点的定义,结合f(x)=kx+1,可求出满足条件的k值;(2)若对任意实数b,函数g(x)=x2+bx+c都存在二阶周期点,则函数g(x)=x2+bx+c=x恒有两个不等的实数根,解得答案.【解答】解:(1)①当k=2时,f(x)=2x+1,f(f(x))=2(2x+1)+1=4x+3,解4x+3=x得:x=﹣1,即﹣1为函数f(x)的二阶不动点,时f(﹣1)=﹣1,即﹣1不是函数f(x)的二阶周期点;②∵f(x)=kx+1,∴f(f(x))=k2x+k+1,令f(f(x))=x,则x==,(k≠±1),或x=0,k=﹣1,令f(x)=x,则x=,若函数f(x)存在二阶周期点,则k=﹣1,(2)若x0为函数f(x)的二阶周期点.则f(f(x0))=x0,且f(x0)≠x0,若x1为函数f(x)的二阶不动点,则f(f(x1))=x1,且f(x1)=x1,则f(x0)=f(x1),则x0≠x1,且f(x0)+f(x1)=﹣b,即函数g(x)=x2+bx+c=x恒有两个不等的实数根,故△=(b﹣1)2﹣4c>0恒成立,解得:c<0.【点评】本题以二阶不动点和二阶周期点为载体,考查了二次函数的基本性质,正确理解二阶不动点和二阶周期点的概念是解答的关键.。
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
2015-2016学年江苏省无锡市高一(下)期末数学试卷一、填空题:本大题共14题,每题5分,共70分。
请将答案填在答题卡相应的位置上1.(5分)不等式x2<2x的解集为.2.(5分)已知△ABC的面积为S,在边AB上任取一点P,则△PAC的面积大于的概率为.3.(5分)某人一周5次乘车上班的时间(单位:分钟)分别为10,11,9,x,11,已知这组数据的平均数为10,那么这组数据的方差为.4.(5分)如图程序运行后,输出的结果为.5.(5分)设M=5a2﹣a+1,N=4a2+a﹣1,则M,N的大小关系为.6.(5分)在等比数列{a n}中,若a1+a3=10,a2+a4=﹣30,则a5=.7.(5分)在锐角△ABC中,三个内角A,B,C的对边分别为a,b,c,若a=2,b=3,cosA=,则角B等于.8.(5分)在等差数列{b n}中,已知b3,b11是方程ax2+bx+c=0的两个实数根,若b7=3,则=.9.(5分)袋中有3个黑球和2个白球,从中任取两个球,则取得的两球中至少有一个白球的概率为.10.(5分)求和,其结果为.11.(5分)不等式组,所表示的可行域的面积是.12.(5分)如图所示,客轮由A至B再到C匀速航行,速度为2v海里/小时;货轮从AC的中点M出发,沿某一直线匀速航行,将货物送达客轮,速度为v海里/小时.已知AB⊥BC,且AB=BC=20海里.若两船同时出发,恰好在点N处相遇,则CN为海里.13.(5分)在△ABC中,若2sinA+sinB=sinC,则角A的取值范围是.14.(5分)在数列{a n}中,若a1=1,a n•a n+1=()n﹣2,则满足不等式+++…++<2016的正整数n的最大值为.二、解答题:本大题共6小题,满分90分。
解答应写出文字说明,证明过程或演算步骤.15.(14分)从某学校高三年级共800名男生中随机抽取50人测量身高.数据表明,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组比第七组少1人.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x,y,求满足“|x﹣y|≤5”的事件的概率.16.(14分)已知函数f(x)=(a∈R).(1)若不等式f(x)<1的解集为(﹣1,4),求a的值;(2)设a≤0,解关于x的不等式f(x)>0.17.(14分)设△ABC的内角A,B,C的对边分别为a,b,c,已知4sinA=4cosBsinC+bsin2C,且C≠.(1)求c;(2)若C=,求△ABC周长的取值范围.18.(16分)政府鼓励创新、创业,银行给予低息贷款.一位大学毕业生向自主创业,经过市场调研、测算,有两个方案可供选择.方案1:开设一个科技小微企业,需要一次性贷款40万元,第一年获利是贷款额的10%,以后每年比上一年增加25%的利润.方案2:开设一家食品小店,需要一次性贷款20万元,第一年获利是贷款额的15%,以后每年比上一年增加利润1.5万元.两种方案使用期限都是10年,到期一次性还本付息.两种方案均按年息2%的复利计算(参考数据:1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).(1)10年后,方案1,方案2的总收入分别有多少万元?(2)10年后,哪一种方案的利润较大?19.(16分)设函数f(x)=a2x+(a,b,c为常数,且a>0,c>0).(1)当a=1,b=0时,求证:|f(x)|≥2c;(2)当b=1时,如果对任意的x>1都有f(x)>a恒成立,求证:a+2c>1.20.(16分)已知数列{a n}的前n项和S n满足2S n=3a n﹣3,数列{b n}的前n项和T n满足=+1且b1=1.(1)求数列{a n},{b n}的通项公式;(2)设c n=,求数列{c n}的前n项和P n;(3)数列{S n}中是否存在不同的三项S p,S q,S r,使这三项恰好构成等差数列?若存在,求出p,q,r的关系;若不存在,请说明理由.2015-2016学年江苏省无锡市高一(下)期末数学试卷参考答案与试题解析一、填空题:本大题共14题,每题5分,共70分。
请将答案填在答题卡相应的位置上1.(5分)不等式x2<2x的解集为(0,2).【解答】解:不等式x2<2x化为:x2﹣2x<0,可因式分解为x(x﹣2)<0,对应方程的实数根为:x1=0,x2=2,不等式x2<2x的解集为:(0,2).故答案为:(0,2).2.(5分)已知△ABC的面积为S,在边AB上任取一点P,则△PAC的面积大于的概率为.【解答】解:记事件Ω={△PAC的面积大于},基本事件空间是线段AB的长度,(如图因为S△PAC≥,则有;化简记得到:,因为PE∥BD,则由三角形的相似性;所以,事件Ω的几何度量为线段BP的长度,因为AP=AB,所以P(Ω)==;故答案为:.3.(5分)某人一周5次乘车上班的时间(单位:分钟)分别为10,11,9,x,11,已知这组数据的平均数为10,那么这组数据的方差为0.8.【解答】解:∵这组数据10,11,9,x,11的平均数为10,∴(10+11+9+x+11)=10,解得x=9;∴这组数据的方差为s2=[(10﹣10)2+(11﹣10)2+(9﹣10)2+(9﹣10)2+(11﹣10)2]=0.8.故答案为:0.8.4.(5分)如图程序运行后,输出的结果为22.【解答】解:由题意,若x<0,则将y+2赋给x;若x≥0,则将y﹣2赋给x;∴x=﹣1,y=20时,x=y+2=20+2=22;即输出x=22.故答案为:22.5.(5分)设M=5a2﹣a+1,N=4a2+a﹣1,则M,N的大小关系为M>N.【解答】解:M﹣N=5a2﹣a+1﹣(4a2+a﹣1)=a2﹣2a+2=(a﹣1)2+1≥1>0,∴M>N.故答案为:M>N.6.(5分)在等比数列{a n}中,若a1+a3=10,a2+a4=﹣30,则a5=81.【解答】解:∵在等比数列{a n}中,a1+a3=10,a2+a4=﹣30,∴,解得a1=1,q=﹣3,∴a5==1×(﹣3)4=81.故答案为:81.7.(5分)在锐角△ABC中,三个内角A,B,C的对边分别为a,b,c,若a=2,b=3,cosA=,则角B等于.【解答】解:在锐角△ABC中,∵a=2,b=3,cosA=,∴sinA==,∴由正弦定理可得:sinB===,∵B为锐角,可得:B=.故答案为:.8.(5分)在等差数列{b n}中,已知b3,b11是方程ax2+bx+c=0的两个实数根,若b7=3,则=﹣6.【解答】解:∵在等差数列{b n}中,b3,b11是方程ax2+bx+c=0的两个实数根,b7=3,∴b3+b11=2b7=﹣=6,∴=﹣6.故答案为:﹣6.9.(5分)袋中有3个黑球和2个白球,从中任取两个球,则取得的两球中至少有一个白球的概率为.【解答】解:∵口袋中装有大小相同的3个红球,2个白球,分别计为A,B,C,1,2,取两个球计为(a,b)则共有:(A,B),(A,C),(A,1),(A,2)(B,C),(B,1),(B,2),(C,1),(C,2),(1,2)共10种其中至少有一个白球共有(A,1),(A,2),(B,1),(B,2),(C,1),(C,2),(1,2)共7种故取出的两个球中至少有一个白球的概率P=故答案为:.10.(5分)求和,其结果为.【解答】解:∵=2(),∴=2(1﹣+)=2(1﹣)=.故答案为:.11.(5分)不等式组,所表示的可行域的面积是2.【解答】解:作出不等式组对应的平面区域如图△ABC,由得,即B(1,1),由得,即A(3,3),由得,即C(2,0),则△ABC的面积S=S△OAC ﹣S△OBC==3﹣1=2,故答案为:2.12.(5分)如图所示,客轮由A至B再到C匀速航行,速度为2v海里/小时;货轮从AC的中点M出发,沿某一直线匀速航行,将货物送达客轮,速度为v海里/小时.已知AB⊥BC,且AB=BC=20海里.若两船同时出发,恰好在点N处相遇,则CN为海里.【解答】解:∵AB=BC=20,AB⊥BC,M为AC的中点,∴CM=AC=10.∠C=.设CN=x,则MN==.AB+BN=40﹣x.∴,解得x=.故答案为:.13.(5分)在△ABC中,若2sinA+sinB=sinC,则角A的取值范围是(0,] .【解答】解:【解法一】△ABC中,2sinA+sinB=sinC,∴2a+b=c,∴4a2=b2+3c2﹣2bc,利用余弦定理,cosA===≥=,当且仅当c=b时等号成立,又A∈(0,π),∴A∈(0,].【解法二】】△ABC中,2sinA+sinB=sinC,∴2sinA=sinC﹣sinB=sinC﹣sin(A+C)=sinC﹣sinAcosC﹣cosAsinC,∴=,令=,则msinC=2+cosC,可得m2sin2C=4+2cosC+cos2C,∴(1+m2)cos2C+4cosC+4﹣m2=0,关于cosC的方程有解,可得△=16﹣4(1+m2)(4﹣m2)≥0,解得:m≥;∴≤,即sin(A+)≤,又A是三角形的内角,∴0<A+≤,可得A∈(0,].故答案为:(0,].14.(5分)在数列{a n}中,若a1=1,a n•a n+1=()n﹣2,则满足不等式+++…++<2016的正整数n的最大值为5.【解答】解:∵a n•a n+1=()n﹣2,∴a n•a n+2=()n﹣1.+1∴==.∴数列{a n}的奇数项和偶数项均组成公比为的等比数列.∵a1=1,a2=4,∴{}是以1为首项,以4为公比的等比数列,{}是以为首项,以4为公比的等比数列.∴+++…+==.+++…+==.∴+++…++=+=.∴<2016,解得4n<≈1423.4.∵45=1024,46=4096.∴n的最大正整数解为5.故答案为5.二、解答题:本大题共6小题,满分90分。
解答应写出文字说明,证明过程或演算步骤.15.(14分)从某学校高三年级共800名男生中随机抽取50人测量身高.数据表明,被测学生身高全部介于155cm到195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组比第七组少1人.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x,y,求满足“|x﹣y|≤5”的事件的概率.【解答】解:(I)由频率分布直方图得身高在180cm以上(含180cm)为最后三组,则最后三组频率为(0.016+0.012+0.008)×5=0.18,这所学校高三年级全体男生身高在180cm以上(含180cm)的人数为800×0.18=144.(II)由已知得身高在[180,185)内的人数为4,设为a、b、c、d,身高在[190,195]内的人数为2,设为A、B,若x,y∈[180,185)时,有ab、ac、ad、bc、bd、cd共6种情况;若x,y∈[190,195]时,有AB共1种情况;若x,y分别在[180,185)和[190,195]内时,有aA、bA、cA、dA、aB、bB、cB、dB,共8种情况.所以,基本事件总数为6+1+8=15,事件“|x﹣y|≤5”即取出两人在同一组,其所包含的基本事件个数有6+1=7,所以P(|x﹣y|≤5)=16.(14分)已知函数f(x)=(a∈R).(1)若不等式f(x)<1的解集为(﹣1,4),求a的值;(2)设a≤0,解关于x的不等式f(x)>0.【解答】解:(1)∵f(x)<1,∴<1,∴<0,而不等式的解集是(﹣1,4),故a﹣1=1,即a=2;(2)①a=0时,>0,解得:x<﹣1,②﹣3<a<0时,>﹣1,∴或,解得:﹣1<x<,③a=﹣3时,>0,不成立,④a<﹣3时,<﹣1,∴或,解得:<x<﹣1.17.(14分)设△ABC的内角A,B,C的对边分别为a,b,c,已知4sinA=4cosBsinC+bsin2C,且C≠.(1)求c;(2)若C=,求△ABC周长的取值范围.【解答】(本题满分为14分)解:(1)4sinA=4cosBsinC+bsin2C,⇒4sin(B+C)=4cosBsinC+2bsinCcosC,⇒4sinBcosC+4cosBsinC=4cosBsinC+2bsinCcosC,⇒4sinBcosC=2bsinCcosC,⇒4sinB=2bsinC,(C≠,cosB≠0)⇒4b=2bc,()⇒c=2…(7分)(2)∵C=,,∴△ABC周长l=a+b+c=2+sinA+sinB=2+sinA+sin(﹣A)=2+sin(A+),∵0,<A+<,∴sin(A+)∈(,1],∴△ABC周长l=2+sin(A+)∈(4,2+]…(14分)18.(16分)政府鼓励创新、创业,银行给予低息贷款.一位大学毕业生向自主创业,经过市场调研、测算,有两个方案可供选择.方案1:开设一个科技小微企业,需要一次性贷款40万元,第一年获利是贷款额的10%,以后每年比上一年增加25%的利润.方案2:开设一家食品小店,需要一次性贷款20万元,第一年获利是贷款额的15%,以后每年比上一年增加利润1.5万元.两种方案使用期限都是10年,到期一次性还本付息.两种方案均按年息2%的复利计算(参考数据:1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).(1)10年后,方案1,方案2的总收入分别有多少万元?(2)10年后,哪一种方案的利润较大?【解答】解:(1)方案1是等比数列,方案2是等差数列,①方案1,一次性贷款40万元,第一年获利是贷款额的10%,即4万元获利:4[1+(1+25%)+(1+25%)2+…+(1+25%)9]=4×=132.8(万元),银行贷款本息:40(1+2%)10≈48.8(万元),方案2,一次性贷款20万元,第一年获利是贷款额的15%,即3万元获利:3+(3+1.5)+(3+2×1.5)+…+(3+9×1.5)=10×3+=97.50(万元);(2)方案1,银行贷款本息:40(1+2%)10≈12.2(万元),故方案1纯利:132.8﹣48.8=84(万元).方案2,银行贷款本息:20(1+2%)10≈24.4(万元),故方案2纯利:97.50﹣24.4=73.1(万元).∴方案1的利润较大.19.(16分)设函数f(x)=a2x+(a,b,c为常数,且a>0,c>0).(1)当a=1,b=0时,求证:|f(x)|≥2c;(2)当b=1时,如果对任意的x>1都有f(x)>a恒成立,求证:a+2c>1.【解答】解:(1)a=1,b=0时,f(x)=x+,x>0时,f(x)≥2=2c,x<0时,f(x)≤﹣2=﹣2c,综上:|f(x)|≥2c;(2)a>0,b>0,b=1,x>1时,x﹣1>0,∴f(x)=a2x+=a2(x﹣1)++a2≥2ac+a2=a(2c+a)>a,∴a+2c>1.20.(16分)已知数列{a n}的前n项和S n满足2S n=3a n﹣3,数列{b n}的前n项和T n满足=+1且b1=1.(1)求数列{a n},{b n}的通项公式;(2)设c n=,求数列{c n}的前n项和P n;(3)数列{S n}中是否存在不同的三项S p,S q,S r,使这三项恰好构成等差数列?若存在,求出p,q,r的关系;若不存在,请说明理由.【解答】解:(1)∵2S n=3a n﹣3,当n=1时,2a1=3a1﹣3,∴a1=3.当n≥2时,2a n=2S n﹣2S n﹣1=(3a n﹣3)﹣(3a n﹣1﹣3),∴a n=3a n﹣1.∴{a n}是以3为首项,以3为公比的等比数列.∴a n=3n.∵=+1,∴﹣=1,∴{}是以1为首项,以1为公差的等差数列,∴=n.即T n=n2.当n≥2时,b n=T n﹣T n﹣1=n2﹣(n﹣1)2=2n﹣1.当n=1时,上式仍成立,∴b n=2n﹣1.(2)由(1)知c n=.∴P n=c1+c2+c3+…+c n=+++…+.①∴P n=+++…++.②①﹣②得:P n=+2•+2•+2•+…+2•﹣=+2•﹣=﹣.∴P n=1﹣.(3)由(1)知{a n}是以3为首项,以3为公比的等比数列,∴S n==.假设数列{S n}中存在不同的三项S p,S q,S r,使这三项恰好构成等差数列,∴S p+S r=2S q.即+=3q+1﹣3.∴.即3p+3r=2•3q.∴3p﹣q+3r﹣q=2,∵p,q,r互不相同,不妨设p<q<r,则r﹣q≥1,∴3p﹣q+3r﹣q≥3≠2,与3p﹣q+3r﹣q=2矛盾,∴数列{S n}中不存在不同的三项S p,S q,S r,使这三项恰好构成等差数列.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。