抽屉原理
- 格式:doc
- 大小:255.00 KB
- 文档页数:13
抽屉原理及其应用
抽屉原理(也称鸽笼原理、容斥原理)是离散数学中的一个基本原理,它描述了把若干个物体放入若干个容器中时,如果物体数量多于容器数量,那么至少有一个容器必须放多于一个物体。
抽屉原理可以应用在多个领域,包括:
1. 计算概率:假设有n个鸽巢和m个鸽子,如果将m个鸽子平均放入n个鸽巢中,那么至少有一个鸽巢中会放多于一个鸽子。
2. 计算排列组合:假设将n个物品分成m堆,至少有一堆中包含的物品数量不少于⌈n/m⌉(向上取整)。
3. 求解问题:当问题本身的解法很难找到时,可以利用抽屉原理削减解空间,锁定可能的解,减少求解难度。
4. 数据存储:在计算机程序设计中,抽屉原理可以用来优化数据存储和搜索。
将数据划分多个小区域同时进行搜索,可以减少搜索空间,提高效率。
总之,抽屉原理是一种非常实用的思想工具,可以帮助我们解决各种实际问题。
抽屉原理【知识点与基本方法】抽屉原理1:将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2:将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
1.五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?2.夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?3.把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?4.张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分。
张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同。
那么,这个班最少有多少人?5.任意将若干个小朋友分为五组。
证明:一定有这样的两组,两组中的男孩总数与女孩总数都是偶数。
6.把一个长方形画成3行9列共27个小方格,然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。
是否一定有两列小方格涂色的方式相同?7.在任意的四个自然数中,是否总能找到两个数,它们的差是3的倍数?8.从1,3,5,7,…,47,49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52。
抽屉原理的简介与应用1. 简介抽屉原理,也被称为鸽巢原理,是数学中的一条基本原理。
它由德国数学家戈尔德巴赫于18世纪中期提出,原理的核心思想是:如果有n个物体被放入n个抽屉中,且n大于抽屉的数量,那么至少存在一个抽屉中至少有两个物体。
2. 应用抽屉原理在数学中有广泛的应用,也被其他领域所借鉴和应用。
2.1 计算数学在计算数学中,抽屉原理常用于证明问题的存在性。
例如,在计算图论中,我们可以通过抽屉原理来证明在有限的图中,存在必定长度的路径或环。
这对于优化算法和网络分析非常重要。
2.2 概率与统计抽屉原理在概率和统计学中也有着重要的应用。
例如,假设我们有一个袋子里面有10颗红球和20颗蓝球,我们从袋子中随机抽取了30颗球。
根据抽屉原理,至少会有一个颜色的球抽到的数量将会超过其颜色的球的总数。
这可以用来解决一些概率和统计问题。
2.3 计算机科学在计算机科学中,抽屉原理也有着广泛的应用。
例如,在散列函数中,抽屉原理可以用来解决冲突的问题。
散列函数将一组键映射到一个有限的范围内,当不同的键映射到相同的范围时,就会发生冲突。
根据抽屉原理,当键的数量超过范围时,至少会有一个范围中存在多个键,这样就可以通过其他方法解决冲突。
2.4 数据库管理在数据库管理中,抽屉原理也经常被应用。
例如,在索引管理中,抽屉原理可以被用来解决索引冲突的问题。
当多个记录的索引值相同或非常接近时,就会发生索引冲突。
根据抽屉原理,当记录的数量超过索引的数量时,至少会有一个索引位置存在多个记录,这样就需要采取其他策略来处理冲突。
3. 总结抽屉原理作为一条基本的数学原理,有着广泛的应用。
它在计算数学、概率与统计、计算机科学和数据库管理等领域都扮演着重要的角色。
通过抽屉原理,我们可以解决一些问题的存在性、冲突以及优化等方面的问题。
因此,学习抽屉原理对于理解和应用这些领域的知识是非常有帮助的。
抽屉原理【知识要点】抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。
这个人人皆知的常识就是抽屉原理在日常生活中的体现。
用它可以解决一些相当复杂甚至无从下手的问题。
原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。
原理2:把m个元素任意放入n(n<m)个集合,则一定有一个集合至少要有k个元素。
其中k=商(当n能整除m时)商+1 (当n不能整除m时)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。
【解题步骤】第一步:分析题意。
分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。
第二步:制造抽屉。
这个是关键的一步,这一步就是如何设计抽屉。
根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。
第三步:运用抽屉原理。
观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。
【例题讲解】例1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业。
求证:这5名学生中,至少有两个人在做同一科作业。
证明:将5名学生看作5个苹果,将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉。
由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果,即至少有两名学生在做同一科的作业。
例2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?分析与解答:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3大于3的最小数字是4。
故至少取出4个小球才能符合要求。
例3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
一.第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。
原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
二.第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
例1:400人中至少有2个人的生日相同.例2:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.例3: 从任意5双手套中任取6只,其中至少有2只恰为一双手套。
例4:从任意5双手套中任取6只,其中至少有2只恰为一双手套。
例5:从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。
三.抽屉原理与整除问题整除问题:把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。
(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。
例1 证明:任取8个自然数,必有两个数的差是7的倍数。
四.经典练习:1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色不相同,则最少要取出多少个球?解析:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于7,故至少取出8个小球才能符合要求。
抽屉原理是什么意思抽屉原理(也称为鸽巢原理)是数学中的一个重要原理,它描述的是一种概率现象。
抽屉原理可以简单地概括为:如果有n+1个物体要放进n个抽屉中,那么无论如何放置,至少有一个抽屉中必然会有两个或更多物体。
抽屉原理最早可以追溯到古希腊数学家彼得·建设者(Peter C. D)在1939年提出的鸽巢定理,后来由是美国数学家罗森(R. R*) 在1964年将其普及并以抽屉原理的名字命名。
这个原理的简单解释是很容易理解的。
假设有5个苹果和4个抽屉,我们需要将这些苹果放入抽屉中去。
无论如何摆放,必然会有至少一个抽屉中放入了两个或更多的苹果。
这是因为若将5个苹果放入4个抽屉,我们只能在某一个抽屉中放2个苹果,而按照抽屉原理的规定,至少会有一个抽屉中放入了两个或更多的物体。
抽屉原理的应用非常广泛,不仅仅局限于数学领域。
它可以应用于各个领域,如计算机科学、生物学、物理学等。
在计算机科学中,抽屉原理可以用于解决许多问题。
例如,在散列函数中,如果我们将 n个关键字映射到 m个槽位中(假设 n>m),那么至少会有一个槽位中有多个关键字映射。
这是因为抽屉原理告诉我们,无论以何种方式映射,始终会有两个关键字映射到同一个槽位上。
生物学中,抽屉原理可以用于解释遗传学中的基因频率。
在一个种群中,如果有 n 个个体,而有 m 种不同的基因,则至少会有个体携带相同的基因,而原因也是抽屉原理的应用。
物理学中,抽屉原理可以类比于波动理论。
例如,如果我们在一条线上有 n 个波峰,而只有 m 个波谷(n>m),则必然会有至少两个波峰在同一个波谷之间。
抽屉原理指导我们认识到,波动现象中特定的波峰和波谷的存在不能无限地隔离。
在生活中,我们也可以看到抽屉原理的应用。
例如,如果我们参加一个聚会,那么如果参与人数超过了场地的容纳能力,那么至少会有两个人被安排坐在同一张桌子上。
总结一下,抽屉原理是一种重要的概率现象,可以简单地概括为:在一定条件下,将多个物体放置到较少的容器中,必然会出现某个容器放入了两个或更多物体。
抽屉原理的定义是什么1. 引言抽屉原理(也被称为鸽笼原理)是一种基本的数学原理,它在各个领域都有广泛的应用。
在数学、计算机科学和其他一些领域,抽屉原理用于解决众多问题,特别是计数和概率问题。
本文将讨论抽屉原理的定义、原理以及其应用。
2. 抽屉原理的定义抽屉原理是指,当将n+1个物体放入n个抽屉中时,至少有一个抽屉里面会放有两个或两个以上的物体。
换句话说,如果有更多的物体要放入比抽屉数更少的抽屉中,那么至少会有一个抽屉中会有多个物体。
具体来说,假设有n个抽屉和m个物体,如果m > n,那么至少会有一个抽屉中有两个或两个以上的物体。
3. 抽屉原理的证明为了证明抽屉原理,我们可以采用反证法。
假设没有任何一个抽屉中放有两个或两个以上的物体,那么每个抽屉最多只能放一个物体。
如果有n个抽屉,那么最多只能放n个物体。
但是,假设我们有m > n个物体,这与前提矛盾。
因此,我们可以得出结论,至少会有一个抽屉中放有两个或两个以上的物体。
4. 抽屉原理的例子4.1 学生选择课程考虑一个学生选择课程的例子。
假设有10门课程和8名学生。
每个学生选择了至少一门课程。
根据抽屉原理,至少有一个学生选择了两门或两门以上的课程。
这是因为学生数(8)大于课程数(10)。
4.2 双生子生日问题另一个例子是双生子生日问题。
假设有365天,365个抽屉代表每一天,而抽屉里放置的是人的出生日期。
根据抽屉原理,当我们有至少366个人时,至少会有两个人在同一天出生。
这个问题揭示了在很小的数量下,会有出现概率较高的事件。
5. 抽屉原理的应用抽屉原理在计算机科学和数学中有广泛的应用。
以下是一些常见的应用:•密码学:在密码学中,抽屉原理用于解释概率分布和碰撞的概念。
它帮助我们理解两个不同的消息可能具有相同哈希值的概率。
•图论:在图论中,抽屉原理有助于解决图的着色问题。
根据抽屉原理,当要给少于或等于n个节点的图着色时,至少需要n种颜色。
•计算机算法:抽屉原理还用于处理算法设计中的情况,例如哈希冲突。
什么叫抽屉原理抽屉原理,又称鸽巢原理,是离散数学中的一个重要概念。
它在计算机科学、信息论、密码学等领域有着广泛的应用。
抽屉原理的核心思想是,如果有n个物品要放到m个抽屉里,且n大于m,那么至少有一个抽屉里会放多于一个物品。
抽屉原理最早的数学表述可以追溯到德国数学家Dirichlet提出的“鸽巢原理”,他认为如果有n只鸽子要放到m个巢里,且n大于m,那么至少有一个巢里会放多于一个鸽子。
这个概念后来被推广到了更一般的情况,即n个物品放到m个抽屉中。
抽屉原理的应用非常广泛。
在计算机科学中,抽屉原理被用来证明哈希算法的冲突不可避免,也被用来解决一些图论中的问题。
在信息论中,抽屉原理被用来证明数据压缩算法的存在性。
在密码学中,抽屉原理被用来分析密码学算法的安全性。
可以说,抽屉原理是离散数学中最基本的原理之一,它的重要性不言而喻。
抽屉原理的证明方法有很多种,其中比较直接的一种方法是采用反证法。
假设所有的抽屉里都放了不多于一个物品,然后根据n个物品和m个抽屉的关系,通过推理可以得出矛盾,从而证明了抽屉原理的成立。
除了直接的证明方法,抽屉原理还可以通过一些具体的例子来加深理解。
比如,假设有11个苹果要放到10个抽屉里,根据抽屉原理,至少有一个抽屉里会放多于一个苹果。
这个例子直观地展示了抽屉原理的成立。
在实际应用中,抽屉原理可以帮助我们解决一些实际问题。
比如,在生活中,如果有12个月要安排在10个月份里,那么至少会有一个月份有安排了多于一个的活动。
在排课的情况下,如果有11个学生要安排在10节课里,那么至少会有一节课有多于一个的学生安排在其中。
这些都是抽屉原理在实际生活中的应用。
总的来说,抽屉原理是离散数学中一个非常重要的概念,它在计算机科学、信息论、密码学等领域有着广泛的应用。
通过理论证明和具体例子的分析,我们可以更好地理解抽屉原理的内涵和应用,为我们在实际问题中的解决提供了有力的工具。
抽屉原理(又名鸽笼原理)什么是“抽屉原理”?举个简单例子来说明:把3个苹果分放在2个抽屉里,必定有1个抽屉里放了2个或2个以上苹果。
这就是“抽屉原理”。
道理很简单,谁都能理解,很容易用反证法证明。
用数学语言表达如下:抽屉原理一:把多于n个物体(n为正整数),放到n个抽屉里,必定有1个抽屉里放2个或2个以上的物体。
抽屉原理二:把多于m×n个物体(m、n为正整数),放到n个抽屉里,必定有1个抽屉里放m+1个或m+1个以上的物体。
以上原理是德国数学家狄利克雷首先发现的,所以也叫狄利克雷原理。
它是一个重要而又基本的数学原理。
应用它可以解决一些有趣的看起来相当复杂的问题。
举两个简单的例子:1.第四次人口普查表明,我国50岁以下的人口已经超过8亿。
试证明:在我国至少有2人的出生时间相差不超过2秒钟。
解:50年的秒数约等于15.8亿秒,设2秒为1个抽屉,抽屉总数小于8亿个,所以至少有2人的出生时间相差不超过2秒钟。
2.某工厂生产一种天平托盘1000付,要求每付两个托盘的重量相差≤1毫克,而该厂的冲床设备生产的产品重量误差是±5毫克,问该厂用这种冲床设备,至少要生产多少个托盘才能配出1000付符合要求的托盘?解:设10个重量相差为1毫克以内的抽屉:(-5<-4),(-4<-3),(-3<-2)……(+3<+4),(+4≤+5)。
最差的情况是每一个抽屉都是奇数,那么有10个托盘不能配对,所以只要生产2010个合格托盘,就能配出1000付符合要求的托盘。
以下几道题,请读者自己解:1.证明:在25人中,至少有3人属相相同。
2.6个小朋友,每人至少有1本书,一共有20本书,试证明:至少有2个小朋友有相同数量的书。
(提示:如果每人的书数量都不相同,至少要21本书。
)3.在2行5列的2×5的方格子中,随意用红、绿两种颜色染上,证明:不管怎样染,至少有两列着色完全相同.关于抽屉原理关于整除问题a.任意n+1个自然数中,总有两个自然数的差是n的倍数例1:任取8个自然数,必有两个数的差是7的倍数。
高中数学竞赛系列讲座第五讲抽屉原理北京十二中刘文武在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。
这类存在性问题中,“存在”的含义是“至少有一个”。
在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。
这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。
“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。
这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。
这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。
抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。
(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。
证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。
在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。
同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。
“鸽笼原理”由此得名。
例1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。
证明:至少有两个点之间的距离不大于(1978年广东省数学竞赛题)分析:5个点的分布是任意的。
如果要证明“在边长为1的等边三角形内(包括边界)有5个点,那么这5个点中一定有距离不大于的两点”,则顺次连接三角形三边中点,即三角形的三条中位线,可以分原等边三角形为4个全等的边长为的小等边三角形,则5个点中必有2点位于同一个小等边三角形中(包括边界),其距离便不大于。
以上结论要由定理“三角形内(包括边界)任意两点间的距离不大于其最大边长”来保证,下面我们就来证明这个定理。
如图2,设BC是△ABC的最大边,P,M是△ABC内(包括边界)任意两点,连接PM,过P 分别作AB、BC边的平行线,过M作AC边的平行线,设各平行线交点为P、Q、N,那么∠PQN=∠C,∠QNP=∠A因为BC≥AB,所以∠A≥∠C,则∠QNP≥∠PQN,而∠QMP≥∠QNP≥∠PQN(三角形的外角大于不相邻的内角),所以PQ≥PM。
显然BC≥PQ,故BC≥PM。
由此我们可以推知,边长为的等边三角形内(包括边界)两点间的距离不大于。
说明:(1)这里是用等分三角形的方法来构造“抽屉”。
类似地,还可以利用等分线段、等分正方形的方法来构造“抽屉”。
例如“任取n+1个正数a i,满足0<a i≤1(i=1,2,…,n+1),试证明:这n+1个数中必存在两个数,其差的绝对值小于”。
又如:“在边长为1的正方形内任意放置五个点,求证:其中必有两点,这两点之间的距离不大于。
(2)例1中,如果把条件(包括边界)去掉,则结论可以修改为:至少有两个点之间的距离小于",请读者试证之,并比较证明的差别。
(3)用同样的方法可证明以下结论:i)在边长为1的等边三角形中有n2+1个点,这n2+1个点中一定有距离不大于的两点。
ii)在边长为1的等边三角形内有n2+1个点,这n2+1个点中一定有距离小于的两点。
(4)将(3)中两个命题中的等边三角形换成正方形,相应的结论中的换成,命题仍然成立。
(5)读者还可以考虑相反的问题:一般地,“至少需要多少个点,才能够使得边长为1的正三角形内(包括边界)有两点其距离不超过”。
例2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。
分析:本题似乎茫无头绪,从何入手?其关键何在?其实就在“两个数”,其中一个是另一个的整数倍。
我们要构造“抽屉”,使得每个抽屉里任取两个数,都有一个是另一个的整数倍,这只有把公比是正整数的整个等比数列都放进去同一个抽屉才行,这里用得到一个自然数分类的基本知识:任何一个正整数都可以表示成一个奇数与2的方幂的积,即若m∈N+,K∈N+,n∈N,则m=(2k-1)·2n,并且这种表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,……证明:因为任何一个正整数都能表示成一个奇数乘2的方幂,并且这种表示方法是唯一的,所以我们可把1-100的正整数分成如下50个抽屉(因为1-100中共有50个奇数):(1){1,1×2,1×22,1×23,1×24,1×25,1×26};(2){3,3×2,3×22,3×23,3×24,3×25};(3){5,5×2,5×22,5×23,5×24};(4){7,7×2,7×22,7×23};(5){9,9×2,9×22,9×23};(6){11,11×2,11×22,11×23};……(25){49,49×2};(26){51};……(50){99}。
这样,1-100的正整数就无重复,无遗漏地放进这50个抽屉内了。
从这100个数中任取51个数,也即从这50个抽屉内任取51个数,根据抽屉原则,其中必定至少有两个数属于同一个抽屉,即属于(1)-(25)号中的某一个抽屉,显然,在这25个抽屉中的任何同一个抽屉内的两个数中,一个是另一个的整数倍。
说明:(1)从上面的证明中可以看出,本题能够推广到一般情形:从1-2n的自然数中,任意取出n+1个数,则其中必有两个数,它们中的一个是另一个的整数倍。
想一想,为什么?因为1-2n 中共含1,3,…,2n-1这n个奇数,因此可以制造n个抽屉,而n+1>n,由抽屉原则,结论就是必然的了。
给n以具体值,就可以构造出不同的题目。
例2中的n取值是50,还可以编制相反的题目,如:“从前30个自然数中最少要(不看这些数而以任意方式地)取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小的数的倍数?”(2)如下两个问题的结论都是否定的(n均为正整数)想一想,为什么?①从2,3,4,…,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?②从1,2,3,…,2n+1中任取n+1个数,是否必有两个数,它们中的一个是另一个的整数倍?你能举出反例,证明上述两个问题的结论都是否定的吗?(3)如果将(2)中两个问题中任取的n+1个数增加1个,都改成任取n+2个数,则它们的结论是肯定的还是否定的?你能判断证明吗?例3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。
证明:把前25个自然数分成下面6组:1;①2,3;②4,5,6;③7,8,9,10;④11,12,13,14,15,16;⑤17,18,19,20,21,22,23,⑥因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍。
说明:(1)本题可以改变叙述如下:在前25个自然数中任意取出7个数,求证其中存在两个数,它们相互的比值在内。
显然,必须找出一种能把前25个自然数分成6(7-1=6)个集合的方法,不过分类时有一个限制条件:同一集合中任两个数的比值在内,故同一集合中元素的数值差不得过大。
这样,我们可以用如上一种特殊的分类法:递推分类法:从1开始,显然1只能单独作为1个集合{1};否则不满足限制条件。
能与2同属于一个集合的数只有3,于是{2,3}为一集合。
如此依次递推下去,使若干个连续的自然数属于同一集合,其中最大的数不超过最小的数的倍,就可以得到满足条件的六个集合。
(2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为{26,27,28,29,30,31,32,33,34,35,36,37,38,39};第8个抽屉为:{40,41,42,…,60};第9个抽屉为:{61,62,63,…,90,91};……那么我们可以将例3改造为如下一系列题目:(1)从前16个自然数中任取6个自然数;(2)从前39个自然数中任取8个自然数;(3)从前60个自然数中任取9个自然数;(4)从前91个自然数中任取10个自然数;…都可以得到同一个结论:其中存在2个数,它们相互的比值在]内。
上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。
如果我们改变区间[](p >q)端点的值,则又可以构造出一系列的新题目来。
例4.已给一个由10个互不相等的两位十进制正整数组成的集合。
求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。
(第14届1M0试题)分析与解答:一个有着10个元素的集合,它共有多少个可能的子集呢?由于在组成一个子集的时候,每一个元素都有被取过来或者不被取过来两种可能,因此,10个元素的集合就有210=1024个不同的构造子集的方法,也就是,它一共有1024个不同的子集,包括空集和全集在内。
空集与全集显然不是考虑的对象,所以剩下1024-2=1022个非空真子集。
再来看各个真子集中一切数字之和。
用N来记这个和数,很明显:10≤N≤91+92+93+94+95+96+97+98+99=855这表明N至多只有855-9=846种不同的情况。
由于非空真子集的个数是1022,1022>846,所以一定存在两个子集A与B,使得A中各数之和=B中各数之和。
若A∩B=φ,则命题得证,若A∩B=C≠φ,即A与B有公共元素,这时只要剔除A与B中的一切公有元素,得出两个不相交的子集A1与B1,很显然A1中各元素之和=B1中各元素之和,因此A1与B1就是符合题目要求的子集。
说明:本例能否推广为如下命题:已给一个由m个互不相等的n位十进制正整数组成的集合。
求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。
请读者自己来研究这个问题。
例5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。