2014最新人教版八年级数学下册期末考试卷及答案 copy
- 格式:pdf
- 大小:584.36 KB
- 文档页数:6
数 学 试 卷一﹑选择题(每小题5分,共20分,每小题只有一个正确答案)1、能判定四边形是平行四边形的条件是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组邻角相等C .一组对边平行,一组邻角相等D .一组对边平行,一组对角相等2、在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( )A .矩形B .菱形C .正方形D .梯形3、一个三角形三边的长分别为15cm ,20cm 和25cm ,则这个三角形最长边上的高为( )A.15cmB.20cmC.25cmD.12cm4、如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )A.邻边不等的矩形B.等腰梯形C.有一角是锐角的菱形D.正方形二、填空题(每小题5分,共15分,将正确答案直接填在空格的横线上) 5、某种感冒病毒的直径为0.0000000031米,用科学记数法表示为 米.6、如图,□ABCD 中,AE,CF 分别是∠BAD,∠BCD 的角平分线,请添加一个条件 使四边形AECF 为菱形.7、若一个三角形的三边满足222c b a -=,则这个三角形是三、解答题(每小题10分,共20分,写出详细的解题过程)8、先化简,再求值:412)211(22-++÷+-x x x x ,其中3-=xABC DF 14题9、一个游泳池长48米,小方和小朱进行游泳比赛,从同一处(A点)出发,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线(AC方向)游,而小方直游(AB 方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么?四、解答题(共45分,写出详细的解答过程)a b c其中a b c10、(15分)观察下表所给出的三个数,,(1)观察各组数的共同点:(6分)①各组数均满足 .②最小数a是数,其余的两个数b、c是的正整数;③最小数a的等于另外两个数b、c的和.a=时,求b、c的值.(4分)(2)根据以上的观察,当2111、(10分)如图所示,铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度3:4()BF i i CF ==,路基高3BF cm =,底CD 宽为18cm ,求路基顶AB 的宽 。
八年级期末数学模拟考试试题一、选择题(每小题3分,共30分)1.要使式子错误!未找到引用源。
有意义,则x 的取值范围是( ) A.x>0 B.x ≥-2 C.x ≥2 D.x ≤22.矩形具有而菱形不具有的性质是( )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.下列计算正确的是( )A.错误!未找到引用源。
×错误!未找到引用源。
=4错误!未找到引用源。
B.错误!未找到引用源。
+错误!未找到引用源。
=错误!未找到引用源。
C.错误!未找到引用源。
÷错误!未找到引用源。
=2错误!未找到引用源。
D.错误!未找到引用源。
=-154.(2013·陕西中考)根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )A.1 B.-1 C.3 D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) A.2400元、2400元 B.2400元、2300元 C.2200元、2200元 D.2200元、2300元6.四边形ABCD 中,对角线AC,BD 相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB ∥DC,AD ∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB ∥DC,AD=BC7.如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是( ) A.24 B.16 C.4错误!未找到引用源。
D.2错误!未找到引用源。
8.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B,C,E 在同一条直线上,连接BD,则BD 长( )A.错误!未找到引用源。
B.2错误!未找到引用源。
C.3错误!未找到引用源。
D.4错误!未找到引用源。
9.正比例函数y=kx(k ≠0)的函数值y 随x 的增大而增大,则一次函数y=x+k 的图象大致是()410.如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( ) A.x<错误!未找到引用源。
八年级下册数学期末测试题1一、选择题1、下列计算中,正确的是 ﹙ ﹚A .123-⎪⎭⎫ ⎝⎛-=23B .a 1+b 1=b a +1C .b a b a --22=a+bD .0203⎪⎭⎫⎝⎛-=02、正方形具有菱形不一定具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线平分一组对角3、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米 3. 当分式13-x 有意义时,字母x 应满足( ) A. 0=x B. 0≠x C. 1=x D. 1≠x5.、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( ).A .6 B .8 C .10 D .126.顺次连结矩形各边中点所得四边形是( )A .梯形 B.菱形 C.矩形 D.正方形7下列各组数中,以a 、b 、c 为边的三角形不是直角 三角形的是( )A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c ===8.如图,把一张平行四边形纸片ABCD 沿BD 对折。
使C 点落在E 处,BE 与AD 相交于点O .若∠DBC=15°,则∠BOD=A .130 ° B.140 ° C.150 ° D.160°9.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( )A .4 B.5 C.6 D.7 二、填空题10.边长为7,24,25的△ABC 内有一点P 到三边距离相等,则这个距离为 11.已知a 1-b 1=5,则bab a b ab a ---+2232的值是 12.ABCD 中一条对角线分∠A 为35°和45°,则∠B= __度。
D CB A八 年 级 期 末 考 试数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间90分钟注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,之后务必用黑色签字笔在答题卡指定位置填写自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B 铅笔填涂相应的信息点.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上,不按要求填涂的,答案无效.3.非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排,如需改动,先划掉原来的答案,然后再写上新的答案.不准使用铅笔和涂改液,不按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁,不折叠,不破损.考试结束后,将答题卡交回. 5.允许使用计算器.第Ⅰ卷 选择题一、选择题:本题有12小题,每题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................ 1.下列各式中,是分式的是 A.2x B. 231x C. 312-+x x D. 2-πx2.下列等式从左到右的变形是因式分解的是A .32632a b a ab =⋅ B .2(2)(2)4x x x +-=-C .22432(2)3x x x x +-=+- D. ()ax ay a x y -=- 3. 如图,ABC ∆中, AB =AC ,D 是BC 中点,下列结论中不正确...的是 A .B C ∠=∠ B. AD BC ⊥ C. AD 平分CAB ∠ D. 2AB BD =2014.07.024.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示正确的是5. 如图,□ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若3OE =cm ,则AB 的长为A .3cmB .6cmC .9cmD .12cm 6. 以下命题的逆命题为真命题的是A .对顶角相等 B. 同旁内角互补,两直线平行C. 若a b =则22a b =D. 若0,0a b >>则220a b +>7. 如图,在ABC ∆中,75CAB ∠=,在同一平面内,将ABC ∆绕点A 旋转到''ABC∆的位置,使得'//CC AB ,则'BAB ∠=A.30B.35C.40D.508. 若解分式方程441+=+-x mx x 产生增根,则 A. 1 B. 0C. 4-D. 5-9. 将 201320142(2)-+-因式分解后的结果是 A .20132B .2-C . 20132-D .1-10. 如图,ABC ∆中,AB 边的垂直平分线交AB 于点E ,交BC 于点D ,已知5AC =cm ,ADC ∆的周长为17cm ,则BC 的长为 A. 7cm B. 10cm C. 12cm D. 22cm 11. 已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤-12. 如图1,在平面直角坐标系中,将□ABCD 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么□ABCD 的面积为A. 4C. D. 8二、填空题:本题共4小题,每小题3分,共12分,把答案填在答题卡上..........13. 分解因式:2216ax ay -= .14. 如图,已知函数13y x b =+和23y ax =-的图象交于点(2,5)P --,则不等式33x b ax +>-的解集为第14题图 第16题图15. 已知224x mxy y ++是完全平方式,则m 的值是______16. 如图,□ABCD 中,对角线AC 与BD 相交于点E ,45AEB ∠=,2BD =,将ABC∆沿AC 所在直线翻折180到其原来所在的同一平面内,若点B 的落点记为'B ,则'DB 的长为b3ax -F E CBA三、解答题(本大题有七题,其中第17题9分、第18题6分、第19题6分、第20题6分、第21题9分、第22题7分、第23题9分,共52分)解答应写出文字说明或演算步骤.17.(1)(4分)解不等式5132x x -+>- (2)(5分)解方程:2213311x xx x -=---18.(6分)先化简22122121x x x x xx x x ---⎛⎫-÷ ⎪+++⎝⎭,然后从11x -≤≤的范围内选取一个合适的整数作为x 的值代入求值.19.(6分)ABC ∆在平面直角坐标系xoy 中的位置如图所示. (1)作ABC ∆关于点C 成中心对称的111A B C ∆,并写出点1A 的坐标(2)将111A BC ∆向右平移4个单位,作出平移后的222A B C ∆,并写出点2A 的坐标20.(6分)已知:如图,D 是ABC ∆的BC 边的中点,DE AC ⊥于点E ,DF AB ⊥于点F ,且DE DF =,求证:ABC ∆是等腰三角形。
2013——2014学年度第二学期期末检测八年级数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分,卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷共8页,满分为120分,考试时间为120分钟. 卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如没有答题卡可将答案选在括号内。
一、选择题(本大题共16个小题,1-6每小题2分,7-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.数据:2,1,0,3,4的平均数是( ) A .0 B .1 C .2 D .32.方程x x 22=的解为 ( ) A . 0 B . 2 C . 0或-2 D .0或2 3.若2-x 是二次根式,则x 的取值范围是( )A .x≥0B .x≤2C .x >2D .x≥2 4.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定 这个四边形是平行四边形的是( ) A .AB ∥DC ,AD ∥BC B .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC5.函数y =3x +1的图象一定通过( ) A .(3,5) B .(-2,3) C .(2,7)D .(4,10)题号 一 二 三2122 23 24 25 26 得分6.下列计算正确的是 ( )A .235+=B .236=·C .84=D .2(3)3-=-7.如图:在平行四边形ABCD 中,∠BAD 的平分线AE 交DC 于E ,若∠DEA =25o , 则∠B 的度数( )A . 165°B . 130°C .100°D .115°8.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是( )A .甲秧苗出苗更整齐B .乙秧苗出苗更整齐C .甲、乙出苗一样整齐D .无法确定甲、乙出苗谁更整齐9.用配方法解关于x 的一元二次方程0322=--x x ,配方正确的是( )A .()412=-x B .()412=+x C .()212=-x D .()212=+x10.已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( ) A .P =25+5tB .P =25-5tC .P =t525 D .P =5t -2511.有以下图形:平行四边形、矩形、等腰三角形、等边三角形、菱形,其中既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个 12.已知一元二次方程x 2-6x+C=0有一个根为2,则另一根...为( ) A .2 B .3 C .4 D .813.若矩形的对角线长为8cm ,两条对角线的一个交角为600,则该矩形的面积为( ) A .83 cm 2 B .163 cm 2 C .16 cm 2 D .32 cm 214.如图,在正方形ABCD 的外侧,作等边三角形ADE ,连接BE ,则∠AEB 的度数为( )A .10°B .15°C .20°D .12.5°D ACBE15. 目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A .438(1+x )2=389 B .389(1+x )2=438C .389(1+2x )2=438 D .438(1+2x )2=38916.如图1,已知点E 、F 、G 、H 是矩形ABCD 各边的中点,AB=6,AD=8. 动点M 从点E 出发,沿E →F →G →H →E 匀速运动,设点M 运动的路程为x , 点M 到矩形的某一个顶点的距离为y , 如果y 关于x 的函数图象如图2所示,则矩形的这个顶点是H GFED CB A20Oyx3图1 图2 A .点A B. 点B C. 点C D. 点D卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上 .得分 评卷人17、在□ABCD 中,∠A+∠C=200°,则∠B=____ __.18、对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =ba ba -+,如3※2=52323=-+.那么12※8= . 19、在矩形ABCD 中,由9个边长均为1的正方形组成的“L 型”模板如图放置,此时量得CF=3,则BC 边的长度为_____________.20、有一面积为150m 2的长方形鸡场,鸡场的一边靠墙(墙长为18m ),另三边用竹篱笆围成,如果竹篱笆的长为35m ,则鸡场中较长的边长为 m.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)FED CBA三、解答题(本大题共8个小题共66分。
八年级下册数学期末测试题1一、选择题1、下列计算中,正确的是 ﹙ ﹚A .123-⎪⎭⎫ ⎝⎛-=23B .a 1+b 1=b a +1C .b a b a --22=a+bD .0203⎪⎭⎫⎝⎛-=02、正方形具有菱形不一定具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线平分一组对角3、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米 3. 当分式13-x 有意义时,字母x 应满足( ) A. 0=x B. 0≠x C. 1=x D. 1≠x5.(08年四川乐山中考题)如图,在直角梯形ABCD 中,AD BC ∥,点E 是边CD 的中点,若52AB AD BC BE =+=,,则梯形ABCD 的面积为( ) A .254B .252C .258D .256.顺次连结等腰梯形各边中点所得四边形是( ) A .梯形 B.菱形 C.矩形 D.正方形7.(2004年杭州中考题)甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的( ) A.bba +倍 B.ba b+倍 C.ab ab -+倍 D.ab ab +-倍 8.如图,把一张平行四边形纸片ABCD 沿BD 对折。
使C 点落在E 处,BE 与AD 相交于点D .若∠DBC=15°,则∠BOD=A .130 ° B.140 ° C.150 ° D.160°9.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( )A .4 B.5 C.6 D.7 二、填空题10.边长为7,24,25的△ABC 内有一点P 到三边距离相等,则这个距离为 11.已知a 1-b 1=5,则bab a b ab a ---+2232的值是 12.从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm )都减去165.0cm ,其结果如下:−1.2,0.1,−8.3,1.2,10.8,−7.0这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)A DEB三、计算问答题 13.(08年宁夏中考题)汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元) 10 15 3050 60 人数361113 6因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元. (1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数、中位数分别是多少?14.已知:CD 为ABC Rt ∆的斜边上的高,且a BC =,b AC =,c AB =,h CD =(如图)求证:222111h b a =+ⅡⅠ A (B 1B (A 1)C 1CA 1BCC 1 B 1A图①图②第25题图 15、(本题满分8分)两块完全相同的三角板Ⅰ(△ABC )和Ⅱ(△A 1B 1C 1)如图①放置在同一平面上(∠C =∠C 1=90º,∠ABC =∠A 1B 1C 1=60º),斜边重合.若三角板Ⅱ不动,三角板Ⅰ在三角板Ⅱ所在的平面上向右滑动,图②是滑动过程中的一个位置.(1)在图②中,连接BC 1、B 1C ,求证:△A 1BC 1≌△AB 1C .(2)三角板Ⅰ滑到什么位置(点B 1落在AB 边的什么位置)时,四边形BCB 1C 1是菱形?说明理由.16、(本题满分8分)在国家下身的宏观调控下,某市的商品房成交价由今年3月分的14000元/下降到5月份的12600元/⑴问4、5两月平均每月降价的百分率是多少?(参考数据:)⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/?请说明理由。
(第5题图)2013—2014学年第二学期期末八年级数学试卷一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项 1、下列各式中,属于最简二次根式的是( ) A 、B 、C 、D 、2、下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是 ( ) A 、 40,41,9===c b a B 、25,5,5===c b a C 、 5:4:3::=c b a D 、13,12,11===c b a3、将直线x y 2=向下平移一个单位后所得的直线解析式为( )A 、12+=x yB 、22-=x yC 、12-=x yD 、22+=x y4、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如右表:某同学分析上表后得出如下结论: ①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); ③甲班成绩的波动比乙班大。
上述结论正确的是( )A 、①②③B 、 ①②C 、①③D 、②③5、如图,在矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A 、3 B 、4 C 、5 D 、66、如图,把一枚边长为1的正方形印章涂上红色印泥,在4×4的正方形网格纸上盖一下,被盖上印泥的正方形网格个数最多是( ) A 、6 B 、5 C 、4 D 、3 二、填空题(本大题共8个小题,每小题3分,共24分)7、计算=⋅)2731()312( ; 8、写出一个图象经过点(-2,0)且函数y 随x 增大而增大的一次函数解析式 ; 9、已知2<x <5,化简=-+-2252)()(x x _________ .10、如图,每个小正方形的边长为1.在∆ABC 中,点D 为AB 的中点,则线段CD 的长为 ; 11、如图,直线b kx y +=交坐标轴于A 、B 两点,则不等式0>+b kx 的解集是 ; 12、某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表(第6题图)印章分) 15、计算:5022145.03821+--16、 若15+=a , 15-=b ,求22ab b a +的值.17、如图是某出租车单程收费y (元)与行驶路程x (千米)之间的函数关系图象,根据图象回答下列问题(1)当行驶8千米时,收费应为 元(2)求出收费y (元)与行使x (千米)(x ≥3)之间的函数关系式。
新人教版2014-2015学年八年级(下)期末数学试卷A卷(100分)一、选择题(本题共30分,每小题3分)1.(2015春•西城区期末)下列图案中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(2015春•西城区期末)下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.2,2,3 B. 3,4,5 C. 5,12,13 D. 1,,3.(2013•黔西南州)已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B. 160°C. 80°D. 60°4.(2015春•西城区期末)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4 B.C. 3 D. 54题图5题图6题图5.(2012•铜仁地区)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C. 4 D.﹣46.(2015春•西城区期末)某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B. 7,7 C. 9,9 D. 9,7 7.(2014•绵阳)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形8.(2015春•西城区期末)某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米.若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是()A.2000(1+x)2=2880 B. 2000(1﹣x)2=2880C.2000(1+2x)=2880 D. 2000x2=28809.(2015春•西城区期末)若一直角三角形的两边长分别是6,8,则第三边长为()A.10 B.C. 10或D.14 10.(2015春•西城区期末)如图,以线段AB为边分别作直角三角形ABC和等边三角形ABD,其中∠ACB=90°.连接CD,当CD的长度最大时,此时∠CAB的大小是()A.75°B.45°C.30°D. 15°10题图12题图15题图二、填空题(本题共24分,每小题3分)11.(2015春•西城区期末)若x=2是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.12.(2014•成都)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是m.13.(2015春•西城区期末)2015年8月22日,世界田径锦标赛将在北京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.6秒,甲、乙、丙、丁的成绩的方差分别是0.07,0.03,0.05,0.02.则当天这四位运动员中“110米跨栏”的训练成绩最稳定运动员的是.14.(2015春•西城区期末)双曲线y=经过点A(2,y1)和点B(3,y2),则y1y2.(填“>”、“<”或“=”)15.(2015春•绿园区期末)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD= .16.(2015春•西城区期末)将一元二次方程x2+8x+3=0化成(x+a)2=b的形式,则a+b的值为.17.(2015春•西城区期末)如图,将▱ABCD绕点A逆时针旋转30°得到▱AB′C′D′,点B′恰好落在BC边上,则∠DAB′= °.17题图18题图18.(2015春•西城区期末)如图,在平面直角坐标系xOy中,菱形OABC的顶点B在x轴上,OA=1,∠AOC=60°.当菱形OABC开始以每秒转动60度的速度绕点O逆时针旋转时,动点P同时从点O出収,以每秒1个单位的速度沿菱形OABC的边逆时针运动.当运动时间为1秒时,点P的坐标是;当运动时间为2015秒时,点P的坐标是.三、解答题(本题共20分,第19题10分,其余每小题10分)19.(10分)(2015春•西城区期末)解方程:(1)(x﹣5)2﹣9=0;(2)x2+2x﹣6=0.20.(5分)(2015春•西城区期末)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.21.(5分)(2015春•西城区期末)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC关于原点O对称的图形是△A1B1C1.(1)画出△A1B1C1;(2)BC与B1C1的位置关系是平行,AA1的长为2;(3)若点P(a,b)是△ABC 一边上的任意一点,则点P经过上述变换后的对应点P1的坐标可表示为.四、解答题(本题共12分,每小题6分)22.(6分)(2015春•西城区期末)“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.根据以上信息回答下列问题:(1)本次共随机抽取了50 名学生进行调查,听写正确的汉字个数x在21≤x<31 范围的人数最多;(2)补全频数分布直方图;(3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;听写正确的汉字个数x 组中值1≤x<11 611≤x<21 1621≤x<31 2631≤x<41 36(4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.23.(6分)(2015春•西城区期末)已知关于x的一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.五、解答题(本题共14分,每小题7分)24.(7分)(2015春•西城区期末)如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.(1)求a的值及双曲线y=的解析式;(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.①求直线BC的解析式;②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.25.(7分)(2015春•西城区期末)已知:在矩形ABCD和△BEF中,∠DBC=∠EBF=30°,∠BEF=90°.(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF的中点M,连接ME,MC,则ME与MC的数量关系是,∠EMC= °;(2)如图2,将图1中的△BEF绕点B旋转,使点E在CB的延长线上,(1)中的其他条件不变.①(1)中ME与MC的数量关系仍然成立吗?请证明你的结论;②求∠EMC的度数.B卷(50分)一、填空题(本题6分)26.(6分)(2015春•西城区期末)若一个三角形的三条边满足:一边等于其他两边的平均数,我们称这个三角形为“平均数三角形”.(1)下列各组数分别是三角形的三条边长:①5,7,5;②3,3,3;③6,8,4;④1,,2.其中能构成“平均数三角形”的是;(填写序号)(2)已知△ABC的三条边长分别为a,b,c,且a<b<c.若△ABC既是“平均数三角形”,又是直角三角形,则的值为.二、解答题(本题共14分,每小题7分)27.(7分)(2015春•西城区期末)阅读下列材料:某同学遇到这样一个问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点A(1,t)在反比例函数(x>0)的图象上,求点A到直线l的距离.如图1,他过点A作AB⊥l于点B,AD∥y轴分别交x轴于点C,交直线l于点D.他发现OC=CD,∠ADB=45°,可求出AD的长,再利用Rt△ABD求出AB的长,即为点A到直线l的距离.请回答:图1中,AD= ,点A到直线l的距离= .参考该同学思考问题的方法,解决下列问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点M(a,b)是反比例函数(x>0)的图象上的一个动点,且点M在第一象限,设点M到直线l的距离为d.(1)如图2,若a=1,d=,则k= ;(2)如图3,当k=8时,①若d=,则a= ;②在点M运动的过程中,d的最小值为.28.(7分)(2015春•西城区期末)已知:四边形ABCD是正方形,E是AB边上一点,连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF.(1)如图1,求证:DE=DF;(2)若点D关于直线EF的对称点为H,连接CH,过点H作PH⊥CH交直线AB于点P.①在图2中依题意补全图形;②求证:E为AP的中点;(3)如图3,连接AC交EF于点M,求的值.答案:一、选择题1.故选B.2.故选:A.3.故选C.4.故选:A.5.故选D.6.故选D.7.故选:C.8.故选A.9.故选C.10.故选:B.二、填空题(本题共24分,每小题3分)11.故答案是:﹣11.12.故答案为:64.13.故答案为:丁.14.故答案为:>.15.故答案为:10.16.故答案为:17.17.故答案为:75.18.故答案为:(0,﹣1);(0,0)三、解答题(本题共20分,第19题10分,其余每小题10分)19.解答:解:(1)方程整理得:(x﹣5)2=9,开方得:x﹣5=±3,即x﹣5=3,或x﹣5=﹣3,解得:x1=8,x2=2;(2)这里a=1,b=2,c=﹣6,∵△=b2﹣4ac=22﹣4×1×(﹣6)=28>0,∴方程有两个不相等的实数根,则x=﹣1±.20.解答:证明:(1)如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS);(2)∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.21.解答:解:(1)根据题意画出△A1B1C1,如图所示;(2)由题意得:BC∥B1C1,AA1==2;(3)利用中心对称图形性质得:点P经过上述变换后的对应点P1的坐标为(﹣a,﹣b).故答案为:(2)平行,2;(2)(﹣a,﹣b)四、解答题(本题共12分,每小题6分)22.解答:解:(1)抽取的学生总数是10÷20%=50(人),听写正确的汉字个数21≤x<31范围内的人数最多,故答案是:50,21≤x<31;(2)11≤x<21一组的人数是:50×30%=15(人),21≤x<31一组的人数是:50﹣5﹣15﹣10=20.;(3)=23(个).答:被调查学生听写正确的汉字个数的平均数是23个.(4)(人).答:估计该校本次“汉字听写”比赛达到良好的学生人数约为810人.23.解答:解:(1)∵一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根,∴△=b2﹣4ac=(2m+2)2﹣4×1×(m2﹣4)=8m+20>0,∴;(2)∵m为负整数,∴m=﹣1或﹣2,当m=﹣1时,方程x2﹣3=0的根为:,(不是整数,不符合题意,舍去),当m=﹣2时,方程x2﹣2x=0的根为x1=0,x2=2都是整数,符合题意.综上所述m=﹣2.五、解答题(本题共14分,每小题7分)24解答:解:(1)∵点A(a,)在直线y=﹣上,∴﹣a﹣=,解得a=2,则A(2,﹣),∵AB∥y轴,且点B的纵坐标为1,∴点B的坐标为(2,1).∵双曲线y=经过点B(2,1),∴m=2×1=2,∴反比例函数的解析式为y=;(2)①设C(t,),∵A(2,﹣),B(2,1),∴×(2﹣t)×(1+)=,解得t=﹣1,∴点C的坐标为(﹣1,﹣2),设直线BC的解析式为y=kx+b,把B(2,1),C(﹣1,﹣2)代入得,解得,∴直线BC的解析式为y=x﹣1;②当y=1时,﹣=1,解得x=﹣1,则D(﹣1,1),∵直线BCy=x﹣1为直线y=x向下平移1个单位得到,∴直线BC与x轴的夹角为45°,而BD∥x轴,∴∠DBC=45°,当△PBD为等腰直角三角形时,以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,若∠BPD=90°,则点P在BD的垂直平分线上,P点的横坐标为,当x=时,y=x﹣1=﹣,此时P(,﹣),若∠BDP=90°,则PD∥y轴,P点的横坐标为﹣1,当x=﹣1时,y=x﹣1=﹣2,此时P(﹣1,﹣2),综上所述,满足条件的P点坐标为(﹣1,﹣2)或(,).25答:解:(1)如图1,,∵∠BEF=90°,∴∠DEF=90°,∵点M是DF的中点,∴ME=MD,∵∠BCD=90°,点M是DF的中点,∴MC=MD,∴ME=MC;∵ME=MD,∴∠MDE=∠MED,∴∠EMF=∠MDE+∠MED=2∠MDE,∵MC=MD,∴∠MDC=∠MCD,∴∠CMF=∠MDC+∠MCD=2∠MDC,∴∠EMC=∠EMF+∠CMF=2(∠MDE+∠MDC)=2∠BDC,又∵∠DBC=30°,∴∠BDC=90°﹣30°=60°,∴∠EMC=2∠BDC=2×60°=120°.(2)①ME=MC仍然成立.证明:如图2,分别延长EM,CD交于点G,,∵四边形ABCD是矩形,∴∠DCB=90°.∵∠BEF=90°,∴∠FEB+∠DCB=180°.∵点E在CB的延长线上,∴FE∥DC.∴∠1=∠G.∵M是DF的中点,∴FM=DM.在△FEM和△DGM中,,∴△FEM≌△DGM,∴ME=GM,∴在Rt△GEC中,MC=EG=ME,∴ME=MC.②如图3,分别延长FE,DB交于点H,,∵∠4=∠5,∠4=∠6,∴∠5=∠6.∵点E在直线FH上,∠FEB=90°,∴∠HEB=∠FEB=90°.在△FEB和△HEB中,,∴△FEB≌△HEB.∴FE=HE.∵FM=MD,∴EM∥HD,∴∠7=∠4=30°,∵ME=MC,∴∠7=∠8=30°,∴∠EMC=180°﹣∠7﹣∠8=180°﹣30°﹣30°=120°.故答案为:ME=MC,120.一、填空题(本题6分)26.是②③;(填写序号)(2).二、解答题(本题共14分,每小题7分)27解答:解:图1中,把x=1代入反比例解析式得:t=3,即A(1,3),即AC=3,把x=1代入y=﹣x得:y=﹣1,即CD=1,∴AD=AC+CD=3+1=4,点A到直线l的距离AB=×4=2;(1)由题意得:△MBD为等腰直角三角形,∴MB=BD=MD=5,即MD=10,把x=1代入y=﹣x得:y=﹣1,即CD=1,∴MC=9,则k=1×9=9;(2)①由k=8,得到ab=8(i),如图2所示,得到BM=BD=AD=3,即AD=6,把x=a代入y=﹣x得:b=﹣a,即MD=MC+CD=b+a=6(ii),联立(i)(ii)得:a=2,b=4或a=4,b=2,则a=2或4;②由题意得:ab=8,∵a+b≥2=4,∴MD的最小值为4,则BM的最小值为4,即d的最小值为4.故答案为:4;2;(1)9;(2)①2或4;②428.解答:解:(1)∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠ADC=∠DCB=90°.∴∠DCF=180°﹣90°=90°.∴∠DAE=∠DCF.∵DF⊥DE,∴∠EDF=90°.∵∠ADE+∠CDE=90°,∠CDE+∠CDF=90°,∴∠ADE=∠CDF.在△DAE和△DCF中,∴△DAE≌△DCF.∴DE=DF.(2)①所画图形如图2所示.②连接HE,HF,如图3.∵点H与点D关于直线EF对称,∴EH=ED,FH=FD.∵DE=DF,∴EH=FH=ED=FD.∴四边形DEHF是菱形.∵∠EDF=90°,∴四边形DEHF是正方形.∴∠DEH=∠EHF=∠HFD=90°.∴∠AED+∠PEH=90°,∠HFC+∠DFC=90°.∵△DAE≌△DCF,∴∠AED=∠DFC,AE=CF.∴∠PEH=∠HFC.∵PH⊥CH,∴∠PHC=90°.∵∠PHE+∠EHC=90°,∠EHC+∠FHC=90°,∴∠PHE=∠PHC.在△HPE和△HCF中,,∴△HPE≌△HCF.∴PE=CF.∴AE=PE.∴点E是AP的中点.(3)过点F作GF⊥CF交AC的延长线于点G,如图4.则∠GFC=90°.∵正方形ABCD中,∠B=90°,∴∠GFC=∠B.∴AB∥GF.∴∠BAC=∠G.∵四边形ABCD是正方形,∴AB=BC,∴∠BAC=∠BCA=90°=45°.∴∠BAC=∠BCA=∠FCG=∠G=45°.∴FC=FG.∵△DAE≌△DCF,∴AE=CF.∴AE=FG.在△AEM和△GFM中,,∴△AEM≌△GFM.∴AM=GM.∴AG=2AM,在Rt△ABC中,.同理,在Rt△CFG中,.∴.∴.∴.。
2014年八年级下学期数学测试卷(新版人教版附答案)八年级下学期数学测试卷一、选择题:1.如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠12.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()ABCD3.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为()A.4B.6C.16D.554.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD5.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F 分别是边AD,AB的中点,EF交AC于点H,则的值为()A.1B.C.D.6.的图象如图所示,当时,的取值范围是()A.B.C.D.7.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是进球数012345人数15xy32A.y=x+9与y=x+B.y=-x+9与y=x+C.y=-x+9与y=-x+D.y=x+9与y=-x+8.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=,b=9.已知:ΔABC中,AB=4,AC=3,BC=,则ΔABC的面积是()A.6B.5C.1.5D.210.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.11.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC12.有一块直角三角形纸片,如图1所示,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cmB.3cmC.4cmD.5cm二、填空题:13.计算:14.已知,则=_________。
八年级数学第二学期期末考试试卷答案2014一、选择题(每小题2分,共20分)题号 1 2 3 4 5 6 7 8 9 10答案 A D C B B B B B C B二、填空题(每小题2分,共20分)题号 11 12 13 14 15 16 17 18 19 20答案 2110deg; 120 4 5 ① ③ pi; 18 1:2三、解答题(21、22题每小题5分,共20分,23~26每小题各10分,共40分)21、解:⑴ 原式= - (4分)= (5分)⑵ b-a=ab(a-b),,,,,,,,(2分)=(3+ )(3- )(3+2 -3+2 ),(3分)=-44 ,,,,,,,,(5分)22、解:⑴ x(x-1)=0 , (3分)there4;x1=0,x2=1 ,(5分)⑵ 两边同除以2得x2-2x+ =0there4;(x-1)= ,,(2分)(x-1)= ,,(4分)there4;x1=1+ x2=1- ,(5分)23、⑴ 频数栏填8、12;频率栏填0.2、0.24。
,,(2分)(每格0.5分)⑵ 略,,(4分)⑶ 总体是850名学生竞赛成绩的全体;个体是每名学生的竞赛成绩;样本是抽取的50名学生的竞赛成绩;样本容量是50。
,,(6分)(每格0.5分)⑷ 80.5~90.5 ,(8分)⑸ 204 ,,(10分)24、⑴取DF=AE=6,,(2分)S菱形AEFD=6×6=36,,,,,(3分)⑵取CF=AE= ,(5分)S菱形AECF= ×6= ,,,,,(6分)⑶取矩形四边中点Aprime;、Bprime;、Cprime;、Dprime; (8分)S菱形Aprime;Bprime;Cprime;Dprime;= =24,,,,(10分)(每个图2分,面积最后一个2分,其余1分)25、解:⑴ 设每期减少的百分率为x则450(1-x)2=288 ,(3分)x1=1.8(舍去) x2=0.2 ,(5分)答:略⑵ 450×0.2×3+450×0.8×0.2×4.5=594(万元) ,(10分)答:略26、解:⑴ 当PD=CQ时,四边形PQCD为平行四边形21-t=2tt=7 ,(5分)⑵ 当CQ-PD=6时,四边形PQCD为等腰梯形2t-(21-t)=6t=9 ,(10分)由为您提供的八年级数学第二学期期末考试试卷答案2014 ,希望给您带来启发!。