2002 AIME数学试题及解答
- 格式:doc
- 大小:327.00 KB
- 文档页数:6
2002年《数学建模》试题解答要点及部分答案阅卷原则:以假设的合理性、建模的创新性、结果的正确性、文字表述的清晰程度为主要标准.说明:该套题目分为基本题目和分析题,其中分析题应在仔细分析和深入思考的基础上,发挥自己的创造能力,留下独立思考的痕迹.这里给出的答题要点是教师个人的想法,鼓励同学们的其它正确合理的解答.一.(基本题目)(1)在一个密度为ρ的流质表面下深 h 处的压强P=ρgh (g 是重力加速度),试检验此公式的量纲是否正确?(2)在弹簧—质量—阻力系统中,质量为m 的物体在外力F(t)的作用下,在 t 时刻的位置x(t)满足以下方程:)(22t F kx dtdx r dt xd m =++, 其中r 是阻尼系数,k 是弹簧的弹性系数,试确定r, k 的量纲.解答(1)[p] =L —1MT —2, 公式量纲正确;(2)[ r]= MT —1, [k]= MT —2.二. (分析题)一个细菌培养器皿中细菌的繁殖速度很快,目前器皿中有100个细菌,每隔5分钟细菌个数就会加倍,请仔细分析实际情况,建立一个函数表示出 t 时刻的细菌数量.解答 关键语句:“仔细分析实际情况”1.讲义p54的 模型 0,)139.0exp(100≥=t t y 是理想化的结果,不合乎实际情况。
2. 结合实际情况可考虑以下因素:细菌的繁殖、死亡、营养、培养器皿的空间大小等.3.做合理的假设,如:*1 器皿中的营养足够细菌的繁殖需要;*2 细菌个数是连续变化的,细菌的增加理解为自然繁殖个数减去自然死亡个数;*3 培养器皿的空间所限,器皿中存活细菌个数有上限Y M (类似于相对于人类生存的地球)。
4. 对理想化模型进行改进:⎩⎨⎧>≤<=.,;0,)139.0exp(100)(MM M t t Y t t t t y 其中,有M M Y t y =)(。
256注:针对对不同情况的考虑,可做出不同的假设,建立不同的模型.但应考虑马尔萨斯模型是否满足条件“有100个细菌,每隔5分钟细菌个数加倍”.三.(基本题目) (见概率论教材p41)许多人有过这样的经历,进行一次医疗检查,结果呈阳性提示此人患病,但实际上却虚惊一场,究其原因往往是检查的技术水平等因素造成错误所致。
2002年imo试题第六题
2002年IMO(国际数学奥林匹克竞赛)试题第六题是一个数论问题。
以下是对该问题的全面回答:
题目:
设 a,b,c 是三个大于1的整数,满足 a 和 b 的最大公约数为 1,且满足 a^b + b^a = c^2。
证明,a 和 b 中至少有一个是偶数。
解答:
首先,我们假设 a 和 b 都是奇数,即 a = 2k + 1,b = 2m + 1,其中 k 和 m 是非负整数。
代入原方程得到 (2k + 1)^(2m + 1) + (2m + 1)^(2k + 1) = c^2。
观察到,对于任意正整数 n,(2n + 1)^(2m + 1) ≡ 1 (mod 4)。
这是因为 (2n + 1) 可以表示为 4k + 1 或 4k + 3 的形式,而(4k + 1)^(2m + 1) ≡ 1 (mod 4),(4k + 3)^(2m + 1) ≡ 3 (mod 4)。
因此,左侧的两项模 4 同余于 2,而一个完全平方数模
4 只能是 0 或 1,不可能是 2。
所以,我们得出矛盾。
因此,我们的假设不成立,即 a 和 b 中至少有一个是偶数。
证毕。
以上是对于2002年IMO试题第六题的全面回答。
如果你还有其他问题,我将继续为你解答。
2002 AMC 10A1、The ratio is closest to which of the following numbers?SolutionWe factor as . As , ouranswer is .2、For the nonzero numbers , , , define.Find .Solution. Ouranswer is then .Alternate solution for the lazy: Without computing the answer exactly,we see that , , and . The sumis , and as all the options are integers, the correct one is obviously .3、According to the standard convention for exponentiation,.If the order in which the exponentiations are performed is changed, how many other values are possible?SolutionThe best way to solve this problem is by simple brute force.It is convenient to drop the usual way how exponentiation is denoted,and to write the formula as , where denotes exponentiation. We are now examining all ways to add parentheses to this expression. There are 5 ways to do so:1.2.3.4.5.We can note that . Therefore options 1 and 2 are equal, and options 3 and 4 are equal. Option 1 is the one given in the problem statement. Thus we only need to evaluate options 3 and 5.Thus the only other result is , and our answer is .4、For how many positive integers does there exist at least one positive integer such that ?infinitely manySolutionSolution 1For any we can pick , we get , therefore theanswer is .Solution 2Another solution, slightly similar to this first one would be using Simon's Favorite Factoring Trick.Let , thenThis means that there are infinitely many numbers that can satisfythe inequality. So the answer is .5、Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region.SolutionThe outer circle has radius , and thus area . The littlecircles have area each; since there are 7, their total area is . Thus,our answer is .6、Cindy was asked by her teacher to subtract from a certain numberand then divide the result by . Instead, she subtracted and thendivided the result by , giving an answer of . What would heranswer have been had she worked the problem correctly?SolutionWe work backwards; the number that Cindy started with is. Now, the correct result is . Ouranswer is .7、If an arc of on circle has the same length as an arc of oncircle , then the ratio of the area of circle to the area of circle isSolutionLet and be the radii of circles A and B, respectively.It is well known that in a circle with radius r, a subtended arc oppositean angle of degrees has length .Using that here, the arc of circle A has length . The arcof circle B has length . We know that they are equal,so , so we multiply through and simplify to get . As all circles are similar to one another, the ratio of the areas is just thesquare of the ratios of the radii, so our answer is .8、Betsy designed a flag using blue triangles, small white squares, anda red center square, as shown. Let be the total area of the bluetriangles, the total area of the white squares, and the area of thered square. Which of the following is correct?SolutionThe blue that's touching the center red square makes up 8 triangles, or 4 squares. Each of the corners is 2 squares and each of the edges is 1, totaling 12 squares. There are 12 white squares, thus we have.9、There are 3 numbers A, B, and C, such that ,and . What is the average of A, B, and C?More than 1SolutionNotice that we don't need to find what A, B, and C actually are, just their average. In other words, if we can find A+B+C, we will be done.Adding up the equations gives soand the average is . Our answer is .10、Compute the sum of all the roots of.SolutionSolution 1We expand to get which isafter combining like terms. Using the quadratic partof Vieta's Formulas, we find the sum of the roots is . Solution 2Combine terms to get, hence the rootsare and , thus our answer is .11、Jamal wants to store computer files on floppy disks, each ofwhich has a capacity of megabytes (MB). Three of his files requireMB of memory each, more require MB each, and theremaining require MB each. No file can be split between floppydisks. What is the minimal number of floppy disks that will hold all the files?SolutionA 0.8 MB file can either be on its own disk, or share it with a 0.4 MB. Clearly it is not worse to pick the second possibility. Thus we will have 3 disks, each with one 0.8 MB file and one 0.4 MB file.We are left with 12 files of 0.7 MB each, and 12 files of 0.4 MB each.Their total size is MB. The total capacity of 9 disks is MB, hence we need at least 10 more disks. And wecan easily verify that 10 disks are indeed enough: six of them will carry two 0.7 MB files each, and four will carry three 0.4 MB files each.Thus our answer is .12、Mr. Earl E. Bird leaves his house for work at exactly 8:00 A.M. every morning. When he averages miles per hour, he arrives at hisworkplace three minutes late. When he averages miles per hour, hearrives three minutes early. At what average speed, in miles per hour, should Mr. Bird drive to arrive at his workplace precisely on time?SolutionSolution 1Let the time he needs to get there in be t and the distance he travelsbe d. From the given equations, we know that and. Setting the two equal, we have andwe find of an hour. Substituting t back in, we find . From, we find that r, and our answer, is .Solution 2Since either time he arrives at is 3 minutes from the desired time, the answer is merely the harmonic mean of 40 and 60. The harmonicmean of a and b is . In this case, a and b are 40 and 60,so our answer is , so .Solution 3A more general form of the argument in Solution 2, with proof:Let be the distance to work, and let be the correct average speed.Then the time needed to get to work is .We know that and . Summing these twoequations, we get: .Substituting and dividing both sides by , we get ,hence .(Note that this approach would work even if the time by which he is late was different from the time by which he is early in the other case - we would simply take a weighed sum in step two, and hence obtaina weighed harmonic mean in step three.)13、Give a triangle with side lengths 15, 20, and 25, find the triangle's smallest height.SolutionSolution 1This is a Pythagorean triple (a 3-4-5 actually) with legs 15 and 20. Thearea is then . Now, consider an altitude drawn to anyside. Since the area remains constant, the altitude and side to which it is drawn are inversely proportional. To get the smallest altitude, it must be drawn to the hypotenuse. Let the length be x; we have, so and x is 12. Our answer is then.Solution 2By Heron's formula, the area is , hence the shortest altitude'slength is .14、Both roots of the quadratic equation are prime numbers. The number of possible values of isSolutionConsider a general quadratic with the coefficient of being and theroots being and . It can be factored as which is just. Thus, the sum of the roots is the negative of the coefficient of and the product is the constant term. (In general, this leads to Vieta's Formulas).We now have that the sum of the two roots is while the product is. Since both roots are primes, one must be , otherwise the sumwould be even. That means the other root is and the product mustbe . Hence, our answer is .15、Using the digits 1, 2, 3, 4, 5, 6, 7, and 9, form 4 two-digit prime numbers, using each digit only once. What is the sum of the 4 prime numbers?SolutionOnly odd numbers can finish a two-digit prime number, and a two-digit number ending in 5 is divisible by 5 and thus composite,hence our answer is .(Note that we did not need to actually construct the primes. If we had to, one way to match the tens and ones digits to form four primes is , , , and .)16、Let . What is?SolutionLet . Since one ofthe sums involves a, b, c, and d, it makes sense to consider 4x. We have. Rearranging, we have , so .Thus, our answer is .17、Sarah pours four ounces of coffee into an eight-ounce cup and fourounces of cream into a second cup of the same size. She then transfers half the coffee from the first cup to the second and, after stirring thoroughly, transfers half the liquid in the second cup back to the first. What fraction of the liquid in the first cup is now cream?SolutionWe will simulate the process in steps.In the beginning, we have:▪ounces of coffee in cup▪ounces of cream in cupIn the first step we pour ounces of coffee from cup to cup ,getting:▪ounces of coffee in cup▪ounces of coffee and ounces of cream in cupIn the second step we pour ounce of coffee and ounces of cream from cup to cup , getting:▪ounces of coffee and ounces of cream in cup▪the rest in cupHence at the end we have ounces of liquid in cup , and outof these ounces is cream. Thus the answer is .18、A cube is formed by gluing together 27 standard cubicaldice. (On a standard die, the sum of the numbers on any pair of opposite faces is 7.) The smallest possible sum of all the numbers showing on the surface of the cube isSolutionIn a 3x3x3 cube, there are 8 cubes with three faces showing, 12 with two faces showing and 6 with one face showing. The smallest sum with three faces showing is 1+2+3=6, with two faces showing is 1+2=3, and with one face showing is 1. Hence, the smallest possiblesum is . Our answer is thus.19、Spot's doghouse has a regular hexagonal base that measures oneyard on each side. He is tethered to a vertex with a two-yard rope.What is the area, in square yards, of the region outside of the doghouse that Spot can reach?SolutionPart of what Spot can reach is of a circle with radius 2, whichgives him . He can also reach two parts of a unit circle, whichcombines to give . The total area is then , which gives .20、Points and lie, in that order, on , dividing it intofive segments, each of length 1. Point is not on line . Point lieson , and point lies on . The line segments andare parallel. Find .SolutionAs is parallel to , angles FHD and FGA are congruent. Also,angle F is clearly congruent to itself. From SSS similarity,; hence . Similarly, . Thus,.21、The mean, median, unique mode, and range of a collection of eight integers are all equal to 8. The largest integer that can be an element of this collection isSolutionAs the unique mode is , there are at least two s.As the range is and one of the numbers is , the largest one can beat most .If the largest one is , then the smallest one is , and thus the meanis strictly larger than , which is a contradiction.If the largest one is , then the smallest one is . This means that wealready know four of the values: , , , . Since the mean of all thenumbers is , their sum must be . Thus the sum of the missing fournumbers is . But if is the smallest number,then the sum of the missing numbers must be at least ,which is again a contradiction.If the largest number is , we can easily find the solution. Hence, our answer is .NoteThe solution for is, in fact, unique. As the median must be , thismeans that both the and the number, when ordered by size,must be s. This gives the partial solution . For themean to be each missing variable must be replaced by the smallestallowed value.22、A sit of tiles numbered 1 through 100 is modified repeatedly by the following operation: remove all tiles numbered with a perfect square, and renumber the remaining tiles consecutively starting with 1. How many times must the operation be performed to reduce the number of tiles in the set to one?SolutionSolution 1The pattern is quite simple to see after listing a couple of terms.Solution 2Given tiles, a step removes tiles, leaving tiles behind. Now,, so in the next step tilesare removed. This gives , another perfect square.Thus each two steps we cycle down a perfect square, and insteps, we are left with tile, hence our answer is.23、Points and lie on a line, in that order, with and. Point is not on the line, and . The perimeterof is twice the perimeter of . Find .SolutionFirst, we draw an altitude to BC from E.Let it intersect at M. As triangle BEC is isosceles, we immediately get MB=MC=6, so the altitude is 8. Now, let . Using the Pythagorean Theorem on triangleEMA, we find . From symmetry,as well. Now, we use the fact that the perimeter of is twice the perimeter of .We have so. Squaring both sides, we havewhich nicely rearranges into. Hence, AB is 9 so our answer is .24、Tina randomly selects two distinct numbers from the setand Sergio randomly selects a number from the set. The probability that Sergio's number is larger than the sum of the two numbers chosen by Tina isSolutionThis is not too bad using casework.Tina gets a sum of 3: This happens in only one way (1,2) and Sergio can choose a number from 4 to 10, inclusive. There are 7 ways that Sergio gets a desirable number here.Tina gets a sum of 4: This once again happens in only one way (1,3). Sergio can choose a number from 5 to 10, so 6 ways here.Tina gets a sum of 5: This can happen in two ways (1,4) and (2,3). Sergio can choose a number from 6 to 10, so 2*5=10 ways here.Tina gets a sum of 6: Two ways here (1,5) and (2,4). Sergio can choose a number from 7 to 10, so 2*4=8 here.Tina gets a sum of 7: Two ways here (2,5) and (3,4). Sergio can choose from 8 to 10, so 2*3=6 ways here.Tina gets a sum of 8: Only one way possible (3,5). Sergio chooses 9 or 10, so 2 ways here.Tina gets a sum of 9: Only one way (4,5). Sergio must choose 10, so 1 way.In all, there are ways. Tina chooses twodistinct numbers in ways while Sergio chooses a number inways, so there are ways in all. Since , ouranswer is .25、In trapezoid with bases and , we have ,, , and . The area of isSolutionSolution 1It shouldn't be hard to use trigonometry to bash this and find the height, but there is a much easier way. Extend and to meet atpoint :Since we have , with the ratio ofproportionality being . Thus So the sides of are , which we recognize to be aright triangle. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared),Solution 2Draw altitudes from points and :Translate the triangle so that coincides with . We getthe following triangle:The length of in this triangle is equal to the length of the original, minus the length of . Thus .Therefore is a well-known right triangle. Its area is, and therefore its altitude is.Now the area of the original trapezoid is.。
Problem 1The ratio is closest to which of the following numbers?SolutionProblem 2Given that a, b, and c are non-zero real numbers, define. Find.SolutionProblem 3According to the standard convention for exponentiation,.If the order in which the exponentiations are performed is changed, how manyother values are possible?SolutionProblem 4For how many positive integers is there at least 1 positive integer such that ?infinitely manySolutionProblem 5Each of the small circles in the figure has radius one. The innermost circle istangent to the six circles that surround it, and each of those circles is tangent tothe large circle and to its small-circle neighbors. Find the area of the shaded region.SolutionProblem 6From a starting number, Cindy was supposed to subtract 3, and then divide by 9,but instead, Cindy subtracted 9, then divided by 3, getting 43. If the correct instructions were followed, what would the result be?SolutionProblem 7A arc of circle A is equal in length to a arc of circle B. What is the ratio of circle A's area and circle B's area?SolutionProblem 8Betsy designed a flag using blue triangles, small white squares, and a red center square, as shown. Let be the total area of the blue triangles,the total area of the white squares, and the area of the red square. Which of the following is correct?SolutionThere are 3 numbers A, B, and C, such that, and. What is the average of A, B, and C?Not uniquely determined SolutionProblem 10What is the sum of all of the roots of?SolutionProblem 11Jamal wants to save 30 files onto disks, each with 1.44 MB space. 3 of the files take up 0.8 MB each, 12 of the files take up 0.7 MB each, and the rest take up 0.4 MB each. It is not possible to split a file onto 2 different disks. What is thesmallest number of disks needed to store all 30 files?SolutionProblem 12Mr. Earl E. Bird leaves home every day at 8:00 AM to go to work. If he drives at an average speed of 40 miles per hour, he will be late by 3 minutes. If he drives at an average speed of 60 miles per hour, he will be early by 3 minutes. How many miles per hour does Mr. Bird need to drive to get to work exactly on time?SolutionProblem 13Given a triangle with side lengths 15, 20, and 25, find the triangle'ssmallest height.SolutionBoth roots of the quadratic equation are prime numbers. The number of possible values of isSolutionProblem 15Using the digits 1, 2, 3, 4, 5, 6, 7, and 9, form 4 two-digit prime numbers, usingeach digit only once. What is the sum of the 4 prime numbers?SolutionProblem 16Let. What is?SolutionProblem 17Sarah pours 4 ounces of coffee into a cup that can hold 8 ounces. Then she pours4 ounces of cream into a second cup that can also hold 8 ounces. She then pours half of the contents of the first cup into the second cup, completely mixes the contents of the second cup, then pours half of the contents of the second cup back into the first cup. What fraction of the contents in the first cup is cream?SolutionProblem 18A 3x3x3 cube is made of 27 normal dice. Each die's opposite sides sum to 7.What is the smallest possible sum of all of the values visible on the 6 faces of the large cube?SolutionProblem 19Spot's doghouse has a regular hexagonal base that measures one yard oneach side. He is tethered to a vertex with a two-yard rope. What is the area, insquare yards, of the region outside of the doghouse that Spot can reach?SolutionProblem 20Points and lie, in that order, on , dividing it into fivesegments, each of length 1. Point is not on line . Point lies on ,and point lies on . The line segments and are parallel.Find .SolutionProblem 21The mean, median, unique mode, and range of a collection of eight integersare all equal to 8. The largest integer that can be an element of this collection isSolutionProblem 22A set of tiles numbered 1 through 100 is modified repeatedly by the followingoperation: remove all tiles numbered with a perfect square , and renumber theremaining tiles consecutively starting with 1. How many times must the operationbe performed to reduce the number of tiles in the set to one?SolutionProblem 23Points and lie on a line, in that order, with and. Point is not on the line, and. The perimeter ofis twice the perimeter of. Find.SolutionProblem 24Tina randomly selects two distinct numbers from the set {1, 2, 3, 4, 5}, and Sergio randomly selects a number from the set {1, 2, ..., 10}. What is the probability that Sergio's number is larger than the sum of the two numbers chosen by Tina?SolutionProblem 25, we have , In trapezoid, , andwith bases and(diagram notto scale). The area of is Solution。
2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)⎰∞+exx dx2ln =.(2)已知函数()y y x =由方程0162=-++x xy e y 确定,则(0)y ''=. (3)微分方程02='+''y y y 满足初始条件0011,'2x x yy ====的特解是.(4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换x Py =可化成标准型216y f =,则a =.(5)设随机变量X 服从正态分布2(,)(0)N μσσ>,且二次方程042=++X y y 无实根的概率为12,则μ= .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)考虑二元函数),(y x f 的下面4条性质: ①),(y x f 在点),(00y x 处连续; ②),(y x f 在点),(00y x 处的两个偏导数连续; ③),(y x f 在点),(00y x 处可微;④),(y x f 在点),(00y x 处的两个偏导数存在.若用“P Q ⇒”表示可由性质P 推出性质Q ,则有(A ) ②⇒③⇒①. (B ) ③⇒②⇒①. (C ) ③⇒④⇒①.(D ) ③⇒①⇒④.(2)设0(1,2,3,)n u n ≠=,且lim1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑ (A ) 发散. (B ) 绝对收敛.(C ) 条件收敛.(D ) 收敛性根据所给条件不能判定.(3)设函数()y f x =在(0,)+∞内有界且可导,则 (A ) 当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x .(B ) 当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x .(C ) 当0lim ()0x f x +→=时,必有0lim ()0x f x +→'=. (D ) 当0lim ()x f x +→'存在时,必有0lim ()0x f x +→'=.(4)设有三张不同平面的方程123i i i i a x a y a z b ++=,3,2,1=i ,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则(A ) 1()f x +2()f x 必为某一随机变量的概率密度. (B ) 1()f x 2()f x 必为某一随机变量的概率密度. (C ) 1()F x +2()F x 必为某一随机变量的分布函数. (D ) 1()F x 2()F x 必为某一随机变量的分布函数.三、(本题满分6分) 设函数)(x f 在0x =的某邻域内具有一阶连续导数,且(0)0,(0)0f f '≠≠,若()(2)(0)af h bf h f +-在0→h 时是比h 高阶的无穷小,试确定b a ,的值.四、(本题满分7分) 已知两曲线)(x f y =与⎰-=x t dt e yarctan 02在点(0,0)处的切线相同,写出此切线方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分dxdy e Dy x⎰⎰},max{22,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,其起点为(b a ,),终点为(d c ,).记2221[1()][()1],L xI y f xy dx y f xy dy y y=++-⎰(1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数333369()1()3!6!9!(3)!n x x y x x n =++++++-∞<<+∞满足微分方程x e y y y =+'+'';(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xOy 坐标面,其底部所占的区域为2{(,)|D x y x =275}y xy +-≤,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大? 若记此方向导数的最大值为),(00y x g ,试写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一上山坡最大的点作为攀登的起点.也就是说,要在D 的边界线2275x y xy +-=上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵),,,(4321αααα=A ,4321,,,αααα均为4维列向量,其中432,,ααα线性无关,3212ααα-=,如果4321ααααβ+++=,求线性方程组β=Ax 的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 均为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分) 设维随机变量X 的概率密度为10,cos ,()220,x x f x π⎧≤≤⎪=⎨⎪⎩其他.对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体的概率分布为其中1(0)2θθ<<是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值.2002年考研数学一试题答案与解析一、填空题 (1)【分析】 原式2ln 11.ln ln eed x x x+∞+∞==-=⎰(2)【分析】 方程两边对x 两次求导得'6'620,y e y xy y x +++=① 2'''6''12'20.y y e y e y xy y ++++=②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【分析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得20dP yPP dy +=,即0dPy P dy +=(或0P =,但其不满足初始条件01'2x y ==). 分离变量得0,dP dy P y+= 积分得ln ln ',P y C +=即1C P y=(0P =对应10C =); 由0x =时11,',2y P y ===得11.2C =于是又由1x y==得21,C =所求特解为y =(4)【分析】 因为二次型TxAx 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,0是A 的特征值.又因iiia λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【分析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=>4}.依题意,有1(){4}.2P A P X =>=而 4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、选择题(1)【分析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A ).(2)【分析】 由1lim 101n n un n →+∞=>⇒充分大时即,N n N ∃>时10n u >,且1lim 0,n nu →+∞=不妨认为,0,n n u ∀>因而所考虑级数是交错级数,但不能保证1nu 的单调性. 按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑ 1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n n n u u ∞=++∑.注意111112,11nn n n u u n n n u u n n++++=+⋅→+ 11n n∞=∑发散⇒1111()n n n u u ∞=++∑发散.因此选(C ).(3)【分析】 证明(B )对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞(当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M -≤+≤矛盾(()).f x M ≤(4)【分析】 因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B ).(A )表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C )中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D )中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线.(5)【分析】 首先可以否定选项(A )与(C ),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B ),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C ),综上分析,用排除法应选(D ).进一步分析可知,若令12max(,)X X X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解】 用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-=又由洛必达法则00()(2)(0)'()2'(2)limlim1h h af h bf h f af h bf h h →→+-+= (2)'(0)0,a b f =+=及(0)0f '≠,则有20a b +=. 综上,得2, 1.a b ==-四、【解】 由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x e f e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得02()(0)2()(0)lim ()2lim 2lim 2'(0) 2.2n n x f f f x f n nf f n xn→∞→∞→--====五、【分析与求解】 D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥⇒I 222212max{,}max{,}xy xy D D e dxdy e dxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy =+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)2102xx dx e dy =⎰⎰(选择积分顺序)221102 1.x xxe dx e e ===-⎰六、【分析与求解】(1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即0(,)()xy xu x y f t dt y =+⎰. ⇒积分I 在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==-七、【证明】 与书上解答略有不同,参见数三2002第七题(1)因为幂级数3693()13!6!9!(3)!n x x x x y x n =++++++的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-,4732''()4!7!(32)!n x x x y x x n -=+++++-,所以2'''12!!n x x x y y y x e n ++=+++++=()x -∞<+∞.(2)与'''xy y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,212λ=-±.因此齐次微分方程的通解为212(cossin )22x Y eC x C x -=+. 设非齐次微分方程的特解为xy Ae *=,将y *代入方程'''xy y y e ++=可得13A =,即有13x y e *=.于是,方程通解为2121(sin )3xx y Y y eC x C x e -*=+=++. 当0x =时,有112121(0)1,23,0.311'(0)0.223y C C C y C ⎧==+⎪⎪⇒==⎨⎪==-++⎪⎩于是幂级数30(3)!n n x n ∞=∑的和函数为221()33x x y x e x e -=+()x -∞<+∞八、【分析与求解】(1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h h h x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,00(,)g x y ⇒=(2)按题意,即求(,)g x y 求在条件22750x y xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+-在条件22750x y xy +--=下的最大值点. 这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数2222(,,)558(75),L x y x y xy x y xy λλ=+-++--则有 22108(2)0,108(2)0,750.L x y x y x L y x y x yL x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=若2,λ=-由①或②均得y x =,代入③式得275x=即x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(M M M M ----现比较222(,)(,)558f x y g x y x y xy ==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ==== 因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)g x y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点.九、【解】 由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0).T -再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T 是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解】(1)若,A B 相似,那么存在可逆矩阵P ,使1,P AP B -=故 111E B E P AP P EP P AP λλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==- 但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P -==,矛盾,亦可从()1,()0r A r B ==而知A 与B 不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλ则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B 也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ 于是111()().PQ A PQ B ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解】 由于311{}cos ,3222x P X dx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯=十二、【解】 22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=- θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计算1(31303123)8x =+++++++ 2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+-2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=----令ln ()0d L d θθ=,得方程2121430θθ-+=,解得θ=1,2θ=>不合题意).于是θ的最大似然估计值为ˆθ=。
2002高教社杯全国大学生数学建模竞赛A 题 车灯线光源的优化设计 参考答案注意:以下答案是命题人给出的,仅供参考。
各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
一. 假设和简化 (略)二. 模型的建立建立坐标系如下图,记线光源长度为l ,功率为W ,B,C 点的光强度分别为)(l h B W 和)(l h C W ,先求)(l h B 和)(l h C 的表达式,再建立整个问题的数学模型.以下均以毫米为单位,由所给信息不难求出车灯反射面方程为6022y x z +=,焦点坐标为(0,0,15)。
1) 位于点P(0,w,15)的单位能量的点光源反射到点C(0, 2600, 25015)的能量设反射点的坐标为Q )60,,(22y x y x +.记入射向量为a ,该点反射面外法线方向为b ,不难得到反射向量c满足.22b bba a c ⋅-= 记222y x r +=,由)1,30/,30/(),1560,,(2-=--=y x b r w y x a从而得),,(z y x c c c c =的表达式)900(6081000036001800900)9002(90022242222++-+=+--=+=r wy r r c r r y w c r xyw c z y x注意到反射光通过C 点,应有60/25015,2600,2r kc y kc x kc z y x -=-=-=其中k 为常数. 从上述第一式可解得0=x 或wyr k 29002+-=.由此得反射点坐标满足以下两组方程:⎪⎩⎪⎨⎧--±=-=⎪⎩⎪⎨=--++-+++-223459005200)2600(133750.021060000001350810000)8100009360000()46800001498200(1800)2600(y y x w w y w y w y w y y w y通过计算可知,存在56.10-≈C w ,当Cw w 0>时第一组方程不存在满足2236≤r 的实根,即无反射点. 而当C w w 0<时,有两个反射点2,1),60/,,0(2=i y y Q i i i .而第二组方程仅当5609.18119.3-<<-w 时存在满足2236≤r 的一对实根,即有两个反射点),60,,(22y x y x +±记为43,Q Q . 若反射点的坐标为),,(z y x Q ,则位于点)15,,0(w P 的单位能量点光源经Q 点反射到C点的能量密度(单位面积的能量, 正比于光强度)为 24cos PQL πβ=其中2222)1560/()(-+-+=r w y x PQ而β为反射向量与z 轴的夹角,.60/25015cos 2QCr -=β2))(),(l h l h C B 的表达式长l 的具有单位能量的线光源位于点)15,,0(w P 的长dw 的微小线光源段反射到C 点的能量密度为 ,/)()(41l w f w E i i ∑==其中⎪⎩⎪⎨⎧=--∉--∈=⎪⎩⎪⎨⎧=-∉-∈=4,3,]5609.1,8119.3[,0]5609.1,8119.3[,4cos )(2,1,],30[,0],2/[,4cos )(20002i w w PQ w f i w w w l w PQ w f iii C Ci i i πβπβ长l 的具有单位能量的线光源反射到C 点的能量密度为 .)()(2/2/⎰-=l l C dw w E l h类似可得)(l h B 的表达式.相应的反射点方程为⎪⎩⎪⎨⎧--±=-=⎪⎩⎪⎨=--++-+++-223459002600)1300(137500.010530000001350810000)8100004680000()23400001498200(1800)1300(y y x w w y w y w y w y y w y相应的,78.00-≈Bw 而第二组方程的有两个反射点的范围为].7800005.0,906.1[--∈w3) 优化设计的数学模型设线光源的功率为W , 则它反射到B 点和C 点的能量密度分别为W l h B ⋅)(和W l h C ⋅)(.问题的数学模型为:⎪⎩⎪⎨⎧≥≥≤≤1)(2)(..min 00W l h W l h t s W C B l l三. 模型的求解)(),(l h l h C B 可以用数值积分求得. )(l h B 应具备下列性质:⎪⎩⎪⎨⎧≤<↓≤≤↑=<<=0''0,,20,0)(l l l l l l w l l l h B BB BB B 其中B l 为起亮值,'B l 为最大值点,0l 为考察的最大范围,例如取为20mm 。
2002年全国硕士研究生入学统一考试数学二试题及详解试题部分一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设函数⎪⎪⎩⎪⎪⎨⎧≤>-=0,e ,0,2arcsine 1)(2tan x a x xx f xx在0=x 处连续,则=a ______.(2)位于曲线xxey -=,+∞<≤x 0下方,x 轴上方的无界图形的面积是______.(3)微分方程02='+"y yy 满足初始条件10==x y,21|0='=x y 的特解是______. (4)++++∞→n n n n π2cos 1πcos 1[1lim=++]πcos 1nn Λ______. (5)矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----222222220的非零特征值是______.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为1.0,则)1(f '=( ) (A )-1.(B )0.1.(C )1.(D )0.5.(2)设函数)(x f 连续,则下列函数中必为偶函数的是( ) (A ).d )(20t t f x⎰(B ).d )(20t t f x⎰(C ).d )]()([0t t f t f t x--⎰(D ).d )]()([0t t f t f t x-+⎰(3)设)(x y y =是二阶常系数微分方程xqy py y 3e =+'+"满足初始条件=)0(y0)0(='y 的特解,则当0→x 时,函数)()1ln(2x y x +的极限 ( )(A )不存在.(B )等于1.(C )等于2.(D )等于3.(4)设函数)(x f y =在),0(+∞内有界且可导,则( ) (A )当0)(lim =+∞→x f x 时,必有.0)(lim ='+∞→x f x(B )当)(lim x f x '+∞→存在时,必有.0)(lim ='+∞→x f x(C )当0)(lim 0=+→x f x 时,必有.0)(lim 0='+→x f x(D )当)(lim 0x f x '+→存在时,必有.0)(lim 0='+→x f x(5)设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k ,必有( ) (A )321,,ααα21,ββ+k 线性无关. (B )321,,ααα21,ββ+k 线性相关. (C )321,,ααα21,ββk +线性无关. (D )321,,ααα21,ββk +线性相关.三、(本题满分6分)已知曲线的极坐标方程是θcos 1-=r ,求该曲线上对应于6π=θ处的切线与法线的直角坐标方程. 四、(本题满分7分)设⎪⎪⎩⎪⎪⎨⎧≤≤+<≤-+=,10,)1e (e,01,232)(22x x x x x x f x x求函数t t f x F x d )()(1⎰-=的表达式. 五、(本题满分7分)已知函数)(x f 在),0(+∞内可导,1)(lim ,0)(=>+∞→x f x f x ,且满足,e ))()((lim 110x hh x f hx x f =+→ 求)(x f . 六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小.七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD ,下部由二次抛物线与线段AB 所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为4:5,闸门矩形部分的高h 应为多少m (米)?八、(本题满分8分) 设),2,1()3(,3011Λ=-=<<+n x x x x n n n ,证明数列}{n x 的极限存在,并求此极限.九、(本题满分8分) 设b a <<0,证明不等式⋅<--<+ab a b a b b a a 1ln ln 222十、(本题满分8分)设函数)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(,0)0(,0)0(≠''≠'≠f f f .证明:存在惟一的一组实数321,,λλλ,使得当0→h 时,)0()3()2()(321f h f h f h f -++λλλ是比2h 高阶的无穷小.十一、(本题满分6分)已知B A ,为3阶矩阵,且满足E B B A 421-=-,其中E 是3阶单位矩阵. (1)证明:矩阵E A 2-可逆;(2)若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=200021021B ,求矩阵A .十二、(本题满分6分)已知4阶方阵43214321,,,),,,,(αααααααα=A 均为4维列向量,其中432,,ααα线性无关,,2321ααα-=如果4321ααααβ+++=,求线性方程组β=Ax 的通解.详解部分一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设函数⎪⎪⎩⎪⎪⎨⎧≤>-=0,e ,0,2arcsine 1)(2tan x a x xx f xx在0=x 处连续,则=a ______.【答案】2-【考点】函数的左极限和右极限、函数连续的概念 【难易度】★★【详解】本题涉及到的主要知识点:若函数)(x f 在0x x =处连续,有)()(lim )(lim 00x f x f x f x x x x ==+-→→解析:tan 0001tan lim ()lim lim 2arcsin22x x x x e xf x x x+++→→→--=-== 20lim ()lim ,(0),xx x f x ae a f a --→→===()f x 在0x =处连续(0)(0)(0),f f f +-⇔==即 2.a =- (2)位于曲线xxe y -=,+∞<≤x 0下方,x 轴上方的无界图形的面积是______.【答案】1【考点】定积分的几何应用—平面图形的面积 【难易度】★★【详解】解析:所求面积为1)(00=-=+-=-==+∞-∞+-+∞--∞+∞+-⎰⎰⎰xx xx xedx e xee xd dx xe S .其中,()01lim lim lim =--=-+∞→+∞→-+∞→xx xx xx e e x xe洛必达.(3)微分方程02='+"y yy 满足初始条件10==x y,21|0='=x y 的特解是______.【答案】y =【考点】可降阶的高阶微分方程【难易度】★★★【详解】本题涉及到的主要知识点:可降阶的高阶微分方程,若缺x ,则令dydp py p y =''=',. 解析:方法1:将20yy y '''+=改写为()0yy ''=,从而得1yy C '=.以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=.即21yy '=,改写为2()1y '=.解得2,y x C =+y =再以初值代入,1=""+且21C =.于是特解y =方法2:这是属于缺x 的类型(,)y f y y '''=.命,dp dp dy dpy p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dp ypp dy +=,得0p =或0dpy p dy+= 0p =即0dy dx =,不满足初始条件1'02y x ==,弃之, 由0dp yp dy +=按分离变量法解之,得1.C y 由初始条件11,'002y y x x ====可将1C 先定出来:1111,212C C ==.于是得12dy dx y =,解之,得22,y x C y =+=以01x y ==代入,得1=,所以应取“+”号且21C =.于是特解是y =(4)++++∞→n n n n π2cos 1πcos 1[1lim=++]πcos 1nn Λ______.【考点】定积分的概念 【难易度】★★★【详解】解析:记1n u n =11n i n == 所以011lim lim n n n n i u n →∞→∞===⎰11coscos22xxdx dx ππ===⎰12sin2x πππ==.(5)矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----222222220的非零特征值是______.【答案】4【考点】矩阵的特征值的计算 【难易度】★★【详解】解析:22222220222222E A λλλλλλλλ-=--=--200011(4)222λλλλλ==--故4λ=是矩阵的非零特征值.(另一个特征值是0λ=(二重))二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为1.0,则)1(f '=( ) (A )-1. (B )0.1.(C )1.(D )0.5.【答案】D【考点】导数的概念、复合函数的求导法则 【难易度】★★★【详解】本题涉及到的主要知识点: ①dy 为y ∆的线性主部; ②)()]([))]([(x g x g f x g f ''='; 解析:在可导条件下,0()x x dyy x o x dx=∆=∆+∆.当00x x dy dx =≠时0x x dyx dx =∆称为y ∆的线性主部,现在2()2dyx f x x x dx'∆=∆,以1,0.1x x =-∆=-代入得(1)0.2dyx f dx'∆=⨯,由题设它等于0.1,于是(1)0.5f '=,应选(D ). (2)设函数)(x f 连续,则下列函数中必为偶函数的是( ) (A ).d )(20t t f x⎰(B ).d )(20t t f x⎰(C ).d )]()([0t t f t f t x--⎰(D ).d )]()([0t t f t f t x-+⎰【答案】D【考点】函数的奇偶性、积分上限的函数及其导数 【难易度】★★【详解】解析:[()()]t f t f t +-为t 的奇函数,[()()]xt f t f t dt +-⎰为x 的偶函数,(D )正确,(A )、(C )是x 的奇函数,(B )可能非奇非偶.例如()1f t t =+,均不选.(3)设)(x y y =是二阶常系数微分方程xqy py y 3e =+'+"满足初始条件=)0(y0)0(='y 的特解,则当0→x 时,函数)()1ln(2x y x +的极限 ( )(A )不存在. (B )等于1.(C )等于2.(D )等于3.【答案】C【考点】洛必达法则、佩亚诺型余项泰勒公式 【难易度】★★【详解】解析:方法1:220000ln(1)222limlim lim lim 2()()()()1x x x x x x x y x y x y x y x →→→→+==='''洛洛 方法2:由(0)(0)0,(0)1y y y '''===.由佩亚诺余项泰勒公式展开,有22()00()2x y x o x =+++,代入,有222000222ln(1)1lim lim lim 211()()()22x x x x x o x y x x o x x→→→+==++=. (4)设函数)(x f y =在),0(+∞内有界且可导,则( ) (A )当0)(lim =+∞→x f x 时,必有.0)(lim ='+∞→x f x(B )当)(lim x f x '+∞→存在时,必有.0)(lim ='+∞→x f x(C )当0)(lim 0=+→x f x 时,必有.0)(lim 0='+→x f x(D )当)(lim 0x f x '+→存在时,必有.0)(lim 0='+→x f x【答案】B【考点】导数的概念 【难易度】★★★★【详解】解析:方法1:排斥法 (A )的反例21()sin ,f x x x =它有界,221()sin 2cos ,lim ()0x f x x x f x x→+∞'=-+=,但lim ()x f x →+∞'不存在.(C)与(D)的反例同(A )的反例.0lim ()0x f x →+=,但0lim ()10x f x →+'=≠,(C )不成立;0lim ()10x f x →+'=≠,(D )也不成立.(A )、(C )、(D )都不对,故选(B ). 方法2:证明(B )正确.设lim ()x f x →+∞'存在,记为A ,求证0A =.用反证法,设0A ≠.若0A >,则由保号性知,存在00x >,当0x x >时()2Af x '>,在区间0[,]x x 上对()f x 用拉格朗日中值定理知,有00000()()()()()(),.2Af x f x f x x f x x x x x ξξ'=+->+-<<,x →+∞,从而有()f x →+∞,与()f x 有界矛盾.类似可证若0A <亦矛盾.(5)设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k ,必有( ) (A )321,,ααα21,ββ+k 线性无关. (B )321,,ααα21,ββ+k 线性相关. (C )321,,ααα21,ββk +线性无关. (D )321,,ααα21,ββk +线性相关.【答案】A【考点】向量的线性表示 【难易度】★★★【详解】解析:方法1:对任意常数k ,向量组123,,ααα,12k ββ+线性无关.用反证法,若123,,ααα,12k ββ+线性相关,因已知123,,ααα线性无关,故12k ββ+可由123,,ααα线性表出.设12112233k ββλαλαλα+=++,因已知1β可由123,,ααα线性表出,设为1112233l l l βααα=++代入上式,得2111222333()()()l l l βλαλαλα=-+-+-这和2β 不能由123,,ααα线性表出矛盾.故向量组123,,ααα,12k ββ+线性无关, 应选(A ).方法2:用排除法取0k =,向量组123,,ααα,12k ββ+即123,,ααα,2β线性相关不成立,排除(B ).取0k =,向量组123,,ααα,12k ββ+,即123,,ααα,1β线性无关不成立,排除(C ).0k ≠时,123,,ααα,12k ββ+线性相关不成立(证法与方法1类似,当1k =时,选项(A )、(D )向量组是一样的,但结论不同,其中(A )成立,显然(D )不成立.) 排除(D ).三、(本题满分6分)已知曲线的极坐标方程是θcos 1-=r ,求该曲线上对应于6π=θ处的切线与法线的直角坐标方程. 【考点】平面曲线的切线、平面曲线的法线 【难易度】★★★【详解】本题涉及到的主要知识点:①切线方程:)(000x x y y y -'=- ②法线方程:)(1000x x y y y -'-=- 解析:极坐标曲线1cos r θ=-化成直角坐标的参数方程为(1cos )cos (1cos )sin x y θθθθ=-⎧⎨=-⎩ 即2cos cos sin cos sin x y θθθθθ⎧=-⎨=-⎩ 曲线上6πθ=的点对应的直角坐标为31,,42- 22666cos sin cos 1.sin 2cos sin dy dyd dx dxd ππθθπθθθθθθθθθ===+-===-+于是得切线的直角坐标方程为13()24y x -=-,即504x y -=法线方程为113()(()),24124y x --=---即104x y +-=. 四、(本题满分7分)设⎪⎪⎩⎪⎪⎨⎧≤≤+<≤-+=,10,)1e (e ,01,232)(22x x x x x x f x x求函数t t f x F x d )()(1⎰-=的表达式.【考点】定积分的分部积分法、积分上限的函数及其导数 【难易度】★★★ 【详解】解析: 当10x -≤<时2233213111()(2)().12222xx F x t t dt t t x x -=+=+=+--⎰ 当01x ≤<时,011()()()()xxF x f t dt f t dt f t dt --==+⎰⎰⎰23200000111()12(1)2(1)11021121111ln(1)ln(1)ln 202121t x x t t tx x t t x tt x x x te t t dt tde e x t dt xe dt e e e e x x x e e e e ----=++=---++=--+=--+++++=---+=---++++⎰⎰⎰⎰所以3211,1022()1ln ln 2,01112xx x x x x F x e x x e e ⎧+--≤<⎪⎪=⎨⎪-+-≤<⎪++⎩当当 五、(本题满分7分)已知函数)(x f 在),0(+∞内可导,1)(lim ,0)(=>+∞→x f x f x ,且满足,e ))()((lim 110x hh x f hx x f =+→ 求)(x f .【考点】导数的概念、一阶线性微分方程 【难易度】★★★【详解】本题涉及到的主要知识点:e =∆+∆→∆10)1(lim ;∆-∆+='→∆)()(lim)(0x f x f x f ,其中∆可以代表任何形式;解析:11()ln h ()()()f x hx hf x f x hx ef x ⎛⎫+ ⎪⎝⎭⎛⎫+= ⎪⎝⎭,001()1()()lim ln lim ln(1)()()h h f x hx f x hx f x h f x h f x →→⎛⎫++-=+ ⎪⎝⎭001()()()()lim ln()lim ()()()()(),0.()h h f x hx f x x f x hx f x h f x f x f x x f x x f x →→+-+-=='=≠从而得到 1()1()0()lim ()xf x hf x x h f x hx e ef x '→⎛⎫+= ⎪⎝⎭由题设于是推得()1()xf x f x x '=, 即 2()1()f x f x x '= 解此微分方程,得 11ln ()f x C x=-+ 改写成 1()xf x Ce-=再由条件lim ()1x f x →+∞=,推得1C =,于是得1().xf x e -=六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小.【考点】旋转体的体积、一阶线性微分方程、函数的最大值与最小值 【难易度】★★★【详解】本题涉及到的主要知识点:dx x fV bax ⎰=)(2π解析:一阶线性微分方程21y y x'-=-,由通解公式有 22[]dx dx x x y eedx C ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭⎰⎰=-+⎰221[]x dx C x =-+⎰221(),12x C x Cx x x=+=+≤≤ 由曲线2y x Cx =+与1,2x x ==及x 轴围成的图形绕x 轴旋转一周所成的旋转体的体积为2222131157()()523V x Cx dx C C ππ=+=++⎰,令6215()052dV C dC π=+=,得75.124C =- 又()0V C ''>,故75124C =-为V 的惟一极小值点,也是最小值点,于是所求曲线为275.124y x x =-七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD ,下部由二次抛物线与线段AB 所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为4:5,闸门矩形部分的高h 应为多少m (米)?【考点】定积分的物理应用—压力 【难易度】★★★★【详解】解析:建立坐标系,细横条为面积微元,面积微元2dA xdy =, 因此压力微元 2(1)dp gx h y dy ρ=+- 平板ABCD 上所受的总压力为 1102(1)hP gx h y dy ρ+=+-⎰其中以1x =代入,计算得 21P gh ρ=.抛物板AOB 上所受的总压力为 1202(1),P gx h y dy ρ=+-⎰其中由抛物线方程知x y =2124()315P g h ρ=+,由题意12:5:4P P =,即,251244()315h h =+ 解之得2h =(米)(13h =-舍去),即闸门矩形部分的高应为2m . 八、(本题满分8分)设),2,1()3(,3011Λ=-=<<+n x x x x n n n ,证明数列}{n x 的极限存在,并求此极限.【考点】数列的极限 【难易度】★★★【详解】解析:方法1:考虑(1)19(3)3343222n n n x x x ----==222933()4203322n n n x x x -+---==≤+ 所以132n x +≤(当1,2,n =L ),即32n x ≤(当2,3,n =L ),数列{}2,3,n x n =L 有上界32.再考虑(2)21n n n x x x --==0.=≥ 2,3,n =L .所以{}n x 单调增加.单调增加数列{}n x 有上界,所以lim n n x →∞存在,记为.a(3)由1n x +a 2230,a a -=得32a =或0a =,但因0n x >且单调增,故0a ≠,所以3lim 2n n x →∞=.方法2:由103x <<知1x 及13x -()均为正数,故)211130(3).22x x x *<≤+-= 设302k x <≤,则113(3).22k k k x x x +≤+-= 由数学归纳法知,对任意正整数2n ≥有302n x <≤.210.n n n x x x +≤=≥-所以{}n x 单调增,单调增加数列{}n x 有上界,所以lim n n x →∞存在,记为a .再由1n x +=两边命n →∞取极限,得a =32a =或0a =,但因0n x >且单调增加,故0a ≠,所以32a =. 九、(本题满分8分) 设b a <<0,证明不等式⋅<--<+ab a b a b b a a 1ln ln 222【考点】函数单调性的判别 【难易度】★★★【详解】解析:左、右两个不等式分别考虑 先证左边不等式,方法1:由所证的形式想到试用拉格朗日中值定理.ln ln 1(ln ),0.x b ax a b b aξξξ=-'==<<<-而22112a b a bξ>>+. 其中第二个不等式来自不等式222a b ab +>(当0a b <<时),这样就证明了要证明的左边. 方法2:用单调性证,将b 改写为x 并移项,命222()()ln ln a x a x x a a x ϕ-=--+,有()0a ϕ=.22222124()()()a ax x a x x a x a x ϕ-'=-+++222222()4()0()()x a ax x a x a x a x --=+>++(当0a x <<), 而推知当0x a >>时()0x ϕ>,以x b =代入即得证明.再证右边不等式,用单调性证,将b 改写为x 并移项,命()ln ln ),x x a x aφ=---有()0a φ=,及21()0,x x φ'==<所以当0x a >>时,()0x φ<,再以x b =代入,便得ln ln ),b a b a-<-即ln ln b a b a -<-右边证毕.十、(本题满分8分)设函数)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(,0)0(,0)0(≠''≠'≠f f f .证明:存在惟一的一组实数321,,λλλ,使得当0→h 时,)0()3()2()(321f h f h f h f -++λλλ是比2h 高阶的无穷小.【考点】无穷小的比较,洛必达法则 【难易度】★★★【详解】解析:方法1:由题目,去证存在唯一的一组123,,λλλ,1232()(2)(3)(0)lim0h f h f h f h f L h λλλ→++-==由此知,分子极限应为0,由()f x 在0x =连续,于是推知,应有123 1.λλλ++= (1)由洛必达法则,1232()(2)(3)(0)limh f h f h f h f L h λλλ→++-=1230()2(2)3(3)lim 2h f h f h f h hλλλ→'''++= (2) 分子的极限为1231230lim(()2(2)3(3))(23)(0)h f h f h f h f λλλλλλ→''''++=++,若不为0,则式(1)应为∞,与原设为0矛盾,故分子的极限应是0,即 123230λλλ++= (3) 对(2)再用洛必达法则,1231230()4(2)9(3)1lim(49)(0)22h f h f h f h L f λλλλλλ→''''''++''==++ 由(0)0f ''≠,故应有 123490λλλ++= (4)将(1)、(3)、(4)联立解之,由于系数行列式11112320,149=≠由克莱姆法则知,存在唯一的一组解满足题设要求,证毕. 方法2:由佩亚诺余项泰勒公式2211()(0)(0)(0)(),2f h f f h f h o h '''=+++ 222(2)(0)2(0)2(0)(),f h f f h f h o h '''=+++2239(3)(0)3(0)(0)(),2f h f f h f h o h '''=+++ 代入1232()(2)(3)(0)0limh f h f h f h f hλλλ→++-=2123123123201(1)(0)(23)(0)(49)(0)2lim h f f h f h h λλλλλλλλλ→⎡'''++-++++++⎢=⎢⎢⎣2221122332()()()o h o h o h h λλλ⎤+++⎥⎦, 上面[]中第二项极限为0,所以第一项中应有1231231231230490λλλλλλλλλ++=⎧⎪++=⎨⎪++=⎩ 由于系数行列式11112320,149=≠ 由克莱姆法则知,存在唯一的一组解满足题设要求,证毕. 十一、(本题满分6分)已知B A ,为3阶矩阵,且满足E B B A 421-=-,其中E 是3阶单位矩阵. (1)证明:矩阵E A 2-可逆;(2)若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=200021021B ,求矩阵A .【考点】逆矩阵的概念、矩阵的计算 【难易度】★★★【详解】本题涉及到的主要知识点: 若有E AB =则称B A ,互逆.解析:(1)由题设条件124A B B E -=-两边左乘A ,得 24B AB A =- 即 24AB B A -=(2)4884(2)8A E B A E E A E E -=-+=-+ (2)(4)8A E B E E --=1(2)(4)8A EB E E --=得证2A E -可逆(且11(2)(4)8A EB E --=-).(2) 方法1:由(1)结果知111(2)(4)8(4)8A E B E B E --⎡⎤-=-=-⎢⎥⎣⎦18(4)2A B E E -=-+1204003204120040120002004002B E ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦[]3201001200104120010320100002001002001B E E ⎡--⎤⎡-⎤⎢⎥⎢⎥-=-→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦M0101200101201308013001008800110011000022⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥→-→--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦11044100130100880011002⎡⎤-⎢⎥⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦故 11104413(4)0881002B E -⎡⎤-⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦10208(4)2110002A B E E -⎡⎤⎢⎥=-+=--⎢⎥⎢⎥-⎣⎦.方法2:由题设条件 124A B B E -=- 等式两边左乘A ,得 2(4)B A B E =-则12(4)A B B E -=-(求1(4)B E --过程见方法1)11044120120220131212001201308840020020041002⎡⎤-⎢⎥---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦08002014401104008002⎡⎤⎡⎤⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦. 十二、(本题满分6分)已知4阶方阵43214321,,,),,,,(αααααααα=A 均为4维列向量,其中432,,ααα线性无关,,2321ααα-=如果4321ααααβ+++=,求线性方程组β=Ax 的通解.【考点】线性方程组解的性质和解的结构、非齐次线性方程组的基础解系和通解 【难易度】★★★★【详解】解析:方法1:由234,,ααα线性无关,及123420,αααα=-+即1234,,,αααα线性相关,及1234βαααα=+++知[][][]12341234,,,()3,,,,r r A r A r ααααβααααβ====M故Ax β=有解,且其通解为k ξη*+,其中k ξ是对应齐次方程0Ax =的通解,η*是Ax β=的一个特解,因 123420,αααα=-+故 []123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥=-+==⎢⎥⎢⎥⎣⎦故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦故[]1,1,1,1Tη*=是Ax β=的一个特解,故方程组的通解为[][]1,2,1,01,1,1,1TTk -+.(其中k是任意常数)方法2:令[]1234,,,Tx x x x x =则线性非齐次方程为[]112233441234,,,x x x x x ααααααααβ+++==已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩ 取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+即方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数)。
2002年全国高中数学联合竞赛一试一、选择题:本大题共6个小题,每小题6分,共36分。
2002*1、函数)32(log )(221--=x x x f 的单调递增区间是A.()1,-∞- B.()1,∞- C.()+∞,1 D.()+∞,3◆答案:A★解析:由0322>--x x 解得1-<x 或3>x ,由复合函数的单调性可得选A 2002*2、若实数y x ,满足22214)12()5(=-++y x ,则22y x +的最小值为。
A.2B.1C.3D.2◆答案:B★解析:22214)12()5(=-++y x 可以看成以()12,5-为圆心,14为半径的圆,22y x +表示圆上的点到原点的距离的平方,因为圆心到原点的距离为13,所以11413222=-=+y x ,故选B2002*3、函数)(xx x f x --=A.是偶函数但不是奇函数B.是奇函数但不是偶函数C.既是偶函数又是奇函数D.既不是偶函数也不是奇函数◆答案:A★解析:计算出)(x f -的表达式整理到最简后对比即可发现,2002*4、直线134=+yx 与椭圆191622=+y x 相交于B A ,两点,该椭圆上点P ,使得PAB ∆面积等于3,这样的点P 共有A.1个 B.2个 C.3个 D.4个◆答案:B★解析:设()θθsin 3,cos 41P (20πθ<<),即点1P 在第一象限的椭圆上,如图,考虑四边形AOB P 1的面积S 。
可得⎪⎭⎫ ⎝⎛+=4sin 26πθS ,可知26max =S ,又6=∆OAB S 可知()3626max1<-=∆ABP S 所以点P 不可能在直线AB 的上方,显然在直线AB 的下方有两个点P ,故选B。
2002*5、已知两个实数集合{}10021,,,a a a A =与{}5021,,,b b b B =,若从A 到B 的映射f 使得B 中每个元素都有原象,且)()()(10021a f a f a f ≤≤≤ 则这样的映射共有A.50100C 个 B.4899C 个C.49100C 个D.4999C 个◆答案:D★解析:不妨设5021b b b <<< ,将A 中元素10021,,,a a a 按顺序分为非空的50组,定义映射B A f →:,使得第i 组的元素在f 之下的象都是i b (50,,2,1 =i ),易知这样的f 满足题设要求,每个这样的分组都一一对应满足条件的映射,于是满足题设要求的映射f 的个数与A 按足码顺序分为50组的分法数相等,而A 的分法数为4999C ,则这样的映射共有4999C ,故选D。
2002 AIME 試題
1. 已知(1)x 與y 均表介於100與999之間(含100與999)的整數。
(2)y 係由x 的各位數字反向排列而得。
(3)z x y =-。
試問z 共有多少個不同的可能值?
答:9
2. 已知一正立方體的三個頂點為(7,12,10)P ,(8,8,1)Q 與(11,3,9)R 。
試問此正立方體的表面積是多少?
答:294
3. 已知6log a +6log b +6log 6c =,其中,,a b c 為正整數。
若,,a b c 為等比遞增數列,且b a -為一正整數的平方,試求a b c ++。
答:111
4. 中南美洲國家房子庭院中要建造花園時,都會在花園周圍每邊使用n 個邊長為1單位的正六邊形磚塊,邊接連邊舖設出花園的輪廓。
下圖所示者為當
5n =時圍繞著花園的磚塊步道。
若202n =時,步道所圍繞的花園面積(不含步道本身)
為(2
m 平方單位,其中m 表正整數。
試求m 除以1000所得之餘數。
答:803
5. 設23n m a =⋅,其中n 與m 皆表大於或等於0的整數。
則滿足6a 不是6a 的因 數之所有正整數a 的總和是多少?
答:42
6. 試求最接近於1000023110004
n n =∑
-之整數。
答:521
7. 已知對於所有正整數k ,恒有21+22+23+…+2(1)(21)6
k k k k ++=。
試求能 使21+22+23+…+2k 為200的倍數之最小正整數k 。
答:112
8. 試求最小正整數k 使方程式2002[
]k n
=中的n 沒有整數解(符號[]x 表示小於 或等於x 的最大整數)。
答:49
9. 設S 表集合{}1,2,3,,10 。
令n 表S 中任兩個非空互斥子集合的總對數(註:互斥集合定義為沒有共同元素之兩集合)。
試求n 除以1000所得的餘數。
答:501
10.一位心不在焉的教授在計算某角的正弦值時,沒注意到他的計算機並沒有設
定在正確的角度系統,不過他還是幸運地得到正確解。
已知滿足x度的正弦
值等於x弧度的正弦值之最小正實數x其解為
m
n
π
π
-
與
p
q
π
π
+
,其中
,,,
m n p q皆為正整數,試求m+n+p+q。
答:900
11.兩個相異的無窮等比級數(各項皆為實數),它們各別的總和均為1且有相同的
第二項。
其中一個級數的第三項是1
8
,
且兩個級數的第二項皆可表成
n
p
-
之形式,其中,,
m n p都是正整數且m不能被任何質數的平方所整除。
試求10010
m n p
++。
答:518
12. 某籃球選手每次投籃命中機率均固定為0.4,與之前投籃無關。
令此選手
投籃至第n 次的命中率為n a (即n a 等於進球次數與n 之比值),則會產生
「100.4a =,且對所有19n ≤≤皆滿足0.4n a ≤」之情形的機率為a b c p q r s
, 其中,,,p q r s 皆為質數且,,a b c 皆為正整數。
試求()()p q r s a b c +++⋅++。
答:660
13. 在ABC ∆中,點D 在BC 上使得2CD =且5DB =,點E 在AC 上,使得
1CE =且3EA =,又8AB =,且AD 與BE 相交於點P ,而點Q 與R 在AB 上使得//PQ CA 且//PR CB ,已知PQR ∆面積與ABC ∆面積之比值為m n
, 其中,m n 為互質的正整數,試求m +n 。
答:901
14. APM ∆的周長為152,且PAM ∠為直角。
點O 在AP 上,以點O 為圓心,
19為半徑所畫的圓和與都相切。
已知m OP n
=
,其中m 與n 為互 質的正整數。
試求m +n 。
答:98
15. 兩圓1C 與2C 相交於兩點,其中一交點的坐標為(9,6),兩圓半徑的乘積為
68。
x 軸與直線y mx =都與兩圓相切,其中0m >。
已知m 可寫成c
之 形式,其中,,a b c 皆為正整數,b 不能被任何質數的平方所整除,且a 與c 互 質。
試求a b c ++。
答:282。