11 DA转换器
- 格式:ppt
- 大小:67.50 KB
- 文档页数:11
实验 D/A 转换器一、实验目的:1. 熟悉D /A 转换器数字输入与模拟输出之间的关系。
2. 学会设置D /A 转换器的输出范围。
3. 学会测量D /A 转换器的输出偏移电压。
4. 掌握测试D /A 转换器的分辩率的方法。
二、实验准备:1. D /A 转换:我们把从数字信号到模拟信号的转换称为数/模转换或D /A 转换,把实现D /A 转换的电路称D /A 转换器,简称DAC 。
D /A 转换的过程是,先把输入数字量的每一位代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,即可得到与该数字量成正比的模拟量,从而实现数字/模拟转换。
DAC 通常由译码网络、模拟开关、求和运算放大器和基准电压源等部分组成。
DAC 的满度输出电压,为全部有效数码1加到输入端时的DAC 的输出电压值。
满度输出电压决定了DAC 的输出范围。
DAC 的输出偏移电压,为全部有效数码0加到输入端时的DAC 的输出电压值。
在理想的DAC 中,输出偏移电压为0。
在实际的DAC 中,输出偏移电压不为0。
许多DAC 产品设有外部偏移电压调整端,可将输出偏移电压调为0。
DAC 的转换精度与它的分辩率有关。
分辩率是指DAC 对最小输出电压的分辩能力,可定义为输入数码只有最低有效位1时的输出电压LSB U 与输入数码为全1时的满度输出电压m U 之比,即:分辩率=121-=nmLSB U U ........................................................3.13.1 当m U 一定时,输入数字代码位数n 越多,则分辩率越小,分辩能力就越高。
图3.13.1为8位电压输出型DAC 电路,这个电路可加深我们对DAC 数字输入与模拟输出关系的理解。
DAC 满度输出电压的设定方法为,首先在DAC 数码输入端加全1(即),然后调整2k 电位器使满度输出电压值达到输出电压的要求。
图3.13.2为一个8位电压输出型DAC 与4位二进制计数器7493相连,计数器的输入时钟脉冲由1kHz 信号发生器提供。
在仪器仪表系统中,常常需要将检测到的连续变化的模拟量如:温度、压力、流量、速度、光强等转变成离散的数字量,才能输入到计算机中进行处理.这些模拟量经过传感器转变成电信号(一般为电压信号),经过放大器放大后,就需要经过一定的处理变成数字量。
实现模拟量到数字量转变的设备通常成为模数转换器(ADC),简称A/D。
随着集成电路的飞速发展,A/D转换器的新设计思想和制造技术层出不穷。
为满足各种不同的检测及控制需要而设计的结构不同、性能各异的A/D转换器应运而生.下面讲讲A/D转换器的基本原理和分类根据A/D转换器的原理可将A/D转换器分成两大类。
一类是直接型A/D转换器,将输入的电压信号直接转换成数字代码,不经过中间任何变量;另一类是间接型A/D转换器,将输入的电压转变成某种中间变量(时间、频率、脉冲宽度等),然后再将这个中间量变成数字代码输出。
尽管A/D转换器的种类很多,但目前广泛应用的主要有三种类型:逐次逼近式A/D转换器、双积分式A/D转换器、V/F变换式A/D转换器.另外,近些年有一种新型的Σ—Δ型A/D转换器异军突起,在仪器中得到了广泛的应用。
逐次逼近式A/D转换器的基本原理是:将待转换的模拟输入信号与一个推测信号进行比较,根据二者大小决定增大还是减小输入信号,以便向模拟输入信号逼进.推测信号由D/A转换器的输出获得,当二者相等时,向D/A转换器输入的数字信号就对应的时模拟输入量的数字量.这种A/D转换器一般速度很快,但精度一般不高。
常用的有ADC0801、ADC0802、AD570等。
双积分式A/D转换器的基本原理是:先对输入模拟电压进行固定时间的积分,然后转为对标准电压的反相积分,直至积分输入返回初始值,这两个积分时间的长短正比于二者的大小,进而可以得出对应模拟电压的数字量。
这种A/D转换器的转换速度较慢,但精度较高.由双积分式发展为四重积分、五重积分等多种方式,在保证转换精度的前提下提高了转换速度.常用的有ICL7135、ICL7109等Σ-Δ型A/D转换的具体技术细节不详,这种转换器的转换精度极高,达到16到24位的转换精度,价格低廉,弱点是转换速度比较慢,比较适合用于对检测精度要求很高但对速度要求不是太高的检验设备。
246实验3.13 D/A 转换器一、实验目的:1. 熟悉D /A 转换器数字输入与模拟输出之间的关系。
2. 学会设置D /A 转换器的输出范围。
3. 学会测量D /A 转换器的输出偏移电压。
4. 掌握测试D /A 转换器的分辩率的方法。
二、实验准备:1. D /A 转换:我们把从数字信号到模拟信号的转换称为数/模转换或D /A 转换,把实现D /A 转换的电路称D /A 转换器,简称DAC 。
D /A 转换的过程是,先把输入数字量的每一位代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,即可得到与该数字量成正比的模拟量,从而实现数字/模拟转换。
DAC 通常由译码网络、模拟开关、求和运算放大器和基准电压源等部分组成。
DAC 的满度输出电压,为全部有效数码1加到输入端时的DAC 的输出电压值。
满度输出电压决定了DAC 的输出范围。
DAC 的输出偏移电压,为全部有效数码0加到输入端时的DAC 的输出电压值。
在理想的DAC 中,输出偏移电压为0。
在实际的DAC 中,输出偏移电压不为0。
许多DAC 产品设有外部偏移电压调整端,可将输出偏移电压调为0。
DAC 的转换精度与它的分辩率有关。
分辩率是指DAC 对最小输出电压的分辩能力,可定义为输入数码只有最低有效位1时的输出电压LSB U 与输入数码为全1时的满度输出电压m U 之比,即:分辩率=121-=nmLSB U U ........................................................3.13.1 当m U 一定时,输入数字代码位数n 越多,则分辩率越小,分辩能力就越高。
图3.13.1为8位电压输出型DAC 电路,这个电路可加深我们对DAC 数字输入与模拟输出关系的理解。
DAC 满度输出电压的设定方法为,首先在DAC 数码输入端加全1(即11111111),然后调整2k 电位器使满度输出电压值达到输出电压的要求。