课时过关检测(五十四) 圆的方程
- 格式:doc
- 大小:98.00 KB
- 文档页数:6
高二圆的方程课时练习题
1. 已知圆心坐标为(-2, 3),半径为5的圆C,求圆C的方程。
解析:
圆的方程一般形式为:(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心坐标,r为半径。
根据已知条件可得,圆C的方程为:(x+2)^2 + (y-3)^2 = 5^2。
2. 已知圆心坐标为(1, -1),过点(4, 2)的直径为圆C的直径,求圆C 的方程。
解析:
由于直径的中点为圆心,所以圆心坐标为直径中点的坐标。
根据已知条件可得,圆C的圆心坐标为(1, -1)。
直径的两个端点坐标分别为(4, 2)和(1, -1),根据两点坐标可得直径的长度为√[(4-1)^2+(2-(-1))^2] = √14。
由于圆C的直径为直径的两倍,所以圆C的半径为√14/2 = √7。
根据已知条件可得,圆C的方程为:(x-1)^2 + (y+1)^2 = 7。
3. 已知圆的方程为x^2 + y^2 - 4x + 6y + 9 = 0,求圆的圆心坐标和半径。
解析:
将方程变形为标准形式,即将x和y的系数配方完成,并将常数项移到右边。
将x^2 - 4x和y^2 + 6y分别配方完成,得到(x^2 - 4x + 4) + (y^2 + 6y + 9) = 4 + 9。
化简得到(x - 2)^2 + (y + 3)^2 = 13。
对比圆的标准形式可得,圆的圆心坐标为(2, -3),半径为√13。
通过以上三道练习题,我们复习了高二圆的方程相关知识点。
希望同学们能够熟练掌握圆的方程的求解方法,为接下来的学习打下坚实的基础。
2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.2 圆的一般方程检测新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.2 圆的一般方程检测新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第四章圆与方程4.1 圆的方程4.1.2 圆的一般方程检测新人教A版必修2的全部内容。
4。
1。
2 圆的一般方程[A级基础巩固]一、选择题1.若点(a+1,a-1)在圆x2+y2-2ay-4=0的内部(不包括边界),则a的取值范围是( )A.a〉1 B.0〈a<1C.a〈错误!D.a〈1解析:点(a+1,a-1)在圆x2+y2-2ay-4=0的内部且不包括边界,则把点(a+1,a-1)代入方程,即(a+1)2+(a-1)2-2a(a-1)-4<0,解得a〈1,故选D.答案:D2.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为错误!,则a的值为() A.-2或2 B.错误!或错误!C.2或0 D.-2或0解析:由圆心(1,2)到直线的距离公式得错误!=错误!,得a=0或a=2。
答案:C3.若直线ax+3y-7=0过圆x2+y2+2x-4y-10=0的圆心,则a的值为()A.-1 B.1C.3 D.-3解析:化圆为标准形式(x+1)2+(y-2)2=15,圆心为(-1,2).因为直线过圆心,所以a×(-1)+3×2-7=0,所以a=-1。
答案:A4.在△ABC中,若点B,C的坐标分别是(-2,0)和(2,0),中线AD的长度是3,则点A 的轨迹方程是()A.x2+y2=3 B.x2+y2=4C.x2+y2=9(y≠0)D.x2+y2=9(x≠0)解析:点A在以D为圆心,半径为3的圆上.又因为A,B,C构成三角形,故点A的轨迹为x2+y2=9(y≠0).答案:C5.已知动点M到点(8,0)的距离等于点M到点(2, 0)的距离的2倍,那么点M的轨迹方程是( )A.x2+y2=32 B.x2+y2=16C.(x-1)2+y2=16 D.x2+(y-1)2=16解析:设M(x,y),则M满足错误!=2错误!,整理得x2+y2=16。
课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。
课时作业50 圆的方程一、选择题1.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( A )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:直线x -y +1=0与x 轴的交点为(-1,0).根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.故选A.2.(2019·河北邯郸联考)以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( A )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:因为两平行直线2x -y +4=0与2x -y -6=0的距离为d =|-6-4|5=2 5.故所求圆的半径为r =5,所以圆心(a,1)到直线2x-y +4=0的距离为5=|2a +3|5,即a =1或a =-4.又因为圆心(a,1)到直线2x -y -6=0的距离也为r =5,所以a =1.因此所求圆的标准方程为(x -1)2+(y -1)2=5.故选A.3.已知直线l :x +my +4=0,若曲线x 2+y 2+6x -2y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( D )A .2B .-2C .1D .-1解析:因为曲线x 2+y 2+6x -2y +1=0表示的是圆,其标准方程为(x +3)2+(y -1)2=9,若圆(x +3)2+(y -1)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-3,1),所以-3+m +4=0,解得m =-1.4.(2019·贵阳市监测考试)经过三点A (-1,0),B (3,0),C (1,2)的圆与y 轴交于M ,N 两点,则|MN |=( A )A .2 3B .2 2C .3D .4解析:根据A ,B 两点的坐标特征可知圆心在直线x =1上,设圆心为P (1,m ),则半径r =|m -2|,所以(m -2)2=22+m 2,解得m =0,所以圆心为P (1,0),所以圆的方程为(x -1)2+y 2=4,当x =0时,y =±3,所以|MN |=2 3.5.(2019·西安八校联考)若过点A (3,0)的直线l 与曲线(x -1)2+y 2=1有公共点,则直线l 斜率的取值范围为( D )A .(-3,3)B .[-3,3]C .(-33,33)D .[-33,33]解析:解法1:数形结合可知,直线l 的斜率存在,设直线l 的方程为y =k (x -3),则圆心(1,0)到直线y =k (x -3)的距离应小于等于半径1,即|2k |1+k2≤1,解得-33≤k ≤33,故选D. 解法2:数形结合可知,直线l 的斜率存在,设为k ,当k =1时,直线l 的方程为x -y -3=0,圆心(1,0)到直线l 的距离为|1-0-3|12+(-1)2=2>1,直线与圆相离,故排除A ,B ;当k =33时,直线l 的方程为x -3y -3=0,圆心(1,0)到直线l 的距离为|1-3×0-3|12+(-3)2=1,直线与圆相切,排除C ,故选D.6.(2019·河南豫西五校联考)在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -by +2b +1=0相切的所有圆中,半径最大的圆的标准方程为( B )A .x 2+(y -1)2=4B .x 2+(y -1)2=2C .x 2+(y -1)2=8D .x 2+(y -1)2=16解析:直线x -by +2b +1=0过定点P (-1,2),如图.∴圆与直线x -by +2b +1=0相切于点P 时,圆的半径最大,为2,此时圆的标准方程为x 2+(y -1)2=2,故选B. 二、填空题7.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为(x -2)2+y 2=9.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2, 所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.8.(2019·贵阳市摸底考试)过点M (2,2)的直线l 与坐标轴的正方向分别相交于A ,B 两点,O 为坐标原点,若△OAB 的面积为8,则△OAB 外接圆的标准方程是(x -2)2+(y -2)2=8.解析:设直线l 的方程为x a +y b =1(a >0,b >0),由直线l 过点M (2,2),得2a +2b =1.又S △OAB =12ab =8,所以a =4,b =4,所以△OAB 是等腰直角三角形,且M 是斜边AB 的中点,则△OAB 外接圆的圆心是点M (2,2),半径|OM |=22,所以△OAB 外接圆的标准方程是(x -2)2+(y -2)2=8.9.(2019·湖南湘东五校联考)圆心在抛物线y =12x 2(x <0)上,且和该抛物线的准线及y 轴都相切的圆的标准方程为(x +1)2+(y -12)2=1.解析:依题意设圆的方程为(x -a )2+(y -12a 2)2=r 2(a <0),又该圆与抛物线的准线及y 轴均相切,所以12+12a 2=r =-a ⇒⎩⎪⎨⎪⎧a =-1,r =1.故所求圆的标准方程为(x +1)2+(y -12)2=1.三、解答题10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0. ① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40. ②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.11.(2019·山西长治六校联考)已知圆C 经过点A ⎝ ⎛⎭⎪⎫74,174,B ⎝ ⎛⎭⎪⎫-318,338,直线x =0平分圆C ,直线l 与圆C 相切,与圆C 1:x 2+y 2=1相交于P ,Q 两点,且满足OP ⊥OQ .(1)求圆C 的方程; (2)求直线l 的方程.解:(1)依题意知圆心C 在y 轴上,可设圆心C 的坐标为(0,b ),圆C 的方程为x 2+(y -b )2=r 2(r >0).因为圆C 经过A ,B 两点,所以⎝ ⎛⎭⎪⎫742+⎝ ⎛⎭⎪⎫174-b 2=⎝ ⎛⎭⎪⎫-3182+⎝ ⎛⎭⎪⎫338-b 2, 即716+28916-172b +b 2=3164+1 08964-334b +b 2,解得b =4.又易知r 2=⎝ ⎛⎭⎪⎫742+⎝ ⎛⎭⎪⎫174-42=12, 所以圆C 的方程为x 2+(y -4)2=12.(2)当直线l 的斜率不存在时,由l 与C 相切得l 的方程为x =±22,此时直线l 与C 1交于P ,Q 两点,不妨设P 点在Q 点的上方,则P 22,22,Q 22,-22或P -22,22,Q ⎝ ⎛⎭⎪⎫-22,-22,则OP →·OQ →=0,所以OP ⊥OQ ,满足题意.当直线l 的斜率存在时,易知其斜率不为0, 设直线l 的方程为y =kx +m (k ≠0,m ≠0), ∵OP ⊥OQ 且C 1的半径为1, ∴O 到l 的距离为22,又l 与圆C 相切,∴⎩⎪⎨⎪⎧|m |1+k2=22,①|m -4|1+k2=22,②由①②知|m |=|m -4|,∴m =2, 代入①得k =±7,∴l 的方程为y =±7x +2.综上,l 的方程为x =±22或y =±7x +2.12.(2019·江西新余五校联考)已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,直线l 的方程为( D )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0解析:当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝ ⎛⎭⎪⎫k ≠12,则圆心到直线PQ的距离d =|1-2k |1+k2,由平面几何知识得|PQ |=29-d 2,S △OPQ =12·|PQ |·d =12·29-d 2·d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92.因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0.故选D.13.(2019·南宁、柳州联考)过点(2,0)作直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于-33.解析:令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22,于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan150°=-33.14.如图,在等腰△ABC 中,已知|AB |=|AC |,B (-1,0),AC 边的中点为D (2,0),则点C 的轨迹所包围的图形的面积为4π.解析:解法1:设C 坐标为(x ,y ),则A 坐标为(4-x ,-y ),∵|AB |=|AC |,∴(5-x )2+y 2=(4-2x )2+4y 2,整理得(x -1)2+y 2=4(y ≠0),所以C 的轨迹包围的图形面积为4π.解法2:由已知|AB |=2|AD |,设点A (x ,y ),则(x +1)2+y 2=4[(x-2)2+y 2],所以点A 的轨迹方程为(x -3)2+y 2=4(y ≠0),设C (x ′,y ′),由AC 边的中点为D (2,0)知A (4-x ′,-y ′),所以C 的轨迹方程为(4-x ′-3)2+(-y ′)2=4,即(x -1)2+y 2=4(y ≠0),所以点C 的轨迹所包围的图形面积为4π.尖子生小题库——供重点班学生使用,普通班学生慎用 15.(2019·福州高三考试)抛物线C :y =2x 2-4x +a 与两坐标轴有三个交点,其中与y 轴的交点为P .(1)若点Q (x ,y )(1<x <4)在C 上,求直线PQ 斜率的取值范围; (2)证明:经过这三个交点的圆E 过定点.解:(1)由题意得P (0,a )(a ≠0),Q (x,2x 2-4x +a )(1<x <4), 故k PQ =2x 2-4x +a -ax =2x -4, 因为1<x <4,所以-2<k PQ <4,所以直线PQ 的斜率的取值范围为(-2,4). (2)证明:P (0,a )(a ≠0). 令2x 2-4x +a =0,则Δ=16-8a >0,a <2,且a ≠0, 解得x =1±4-2a 2,故抛物线C 与x 轴交于A (1-4-2a 2,0),B (1+4-2a2,0)两点.故可设圆E 的圆心为M (1,t ), 由|MP |2=|MA |2,得12+(t -a )2=(4-2a 2)2+t 2,解得t =a 2+14, 则圆E 的半径 r =|MP |=1+(14-a 2)2.所以圆E 的方程为(x -1)2+(y -a 2-14)2=1+(14-a 2)2,所以圆E 的一般方程为 x 2+y 2-2x -(a +12)y +a2=0, 即x 2+y 2-2x -12y +a (12-y )=0.由⎩⎪⎨⎪⎧x 2+y 2-2x -12y =0,12-y =0,得⎩⎨⎧x =0,y =12或⎩⎨⎧x =2,y =12,故圆E 过定点(0,12),(2,12).。
高中数学单元达标之圆的方程单元过关检测卷+详细解答一、单选题(共60分,每题5分)1.已知圆1C 和2C 关于直线y x =-对称,若圆1C 的方程是()2254x y ++=,则圆2C 的方程是( ) A .()22 52x y ++= B .()22 54x y ++= C .()22 52x y -+=D .()22 54x y +-=2.已知圆1O 的方程为224x y +=,圆2O 的方程为22()(1)1x a y -+-=,那么这两个圆的位置关系不可能是( ) A .外离 B .外切 C .内含 D .内切3.圆1C 的方程为22425x y +=,圆2C 的方程221(cos )(sin )()25x y R θθθ-+-=∈,过2C 上任意一点P 作圆1C 的两条切线PM PN 、,切点分别为M N 、,则MPN ∠的最大值为 A .6π B .4π C .3π D .2π4.若称形如()()()()12120x x x x y y y y --+--=,()1212,,,x x y y R ∈的方程为圆的直径式方程.已知圆C 的方程为(1)(3)(2)(4)0x x y y -++-+=,则该圆的圆心坐标为( ) A .(2,2)--B .(1,1)--C .(1,1)D .(4,4)5.过椭圆2222:1(0)x y C a b a b+=>>的上顶点与右顶点的直线方程为240x y +-=,则椭圆C 的标准方程为( )A .221164x y +=B .221204x y +=C .221248x y +=D .221328x y +=6.已知椭圆的方程为22143x y +=,则此椭圆的焦距为( )A .1B .2C .4D7.已知椭圆的参数方程为2cos sin x y θθ=⎧⎨=⎩,[0,2)θπ∈,则该椭圆的焦点坐标为( )A .(0,B .(20)C .(D .(1,0)±8.已知椭圆的方程为()22230x y m m +=>,则此椭圆的离心率为( )A .13BC D .129.已知椭圆C 的方程为()2221016x y b b +=>,如果直线y x =与椭圆的—个交点M 在x轴上的射影恰好是椭圆的右焦点F ,则b 的值为( )A .2B .C .8D .10.如图所示,半径为1的圆O 是正方形MNPQ 的内切圆,将一颗豆子随机地扔到正方形MNPQ 内,用A 表示事件“豆子落在圆O 内”,B 表示事件“豆子落在扇形OEF (阴影部分)内”,则()|P B A =( )A .4πB .14C .16π D .1811.我们把形如(0,0)by a b x a=>>-的函数称为“莫言函数”,其图象与y 轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心且与“莫言函数”的图象有公共点的圆称为“莫言圆”,当1a b ==时,“莫言圆”的面积的最小值是( )A .2πB .52π C .e π D .3π12.已知圆22:210250M x y x y +--+=,圆22:146540N x y x y +--+=,点,P Q 分别在圆M 和圆N 上,点S 在x 轴上,则SP SQ +的最小值为( ) A .7B .8C .9D .10二、填空题(共20分,每题5分) 13.已知圆C的直角坐标方程为,则圆C 的极坐标方程为____________.14.圆的参数方程为3sin 4cos ,4sin 3cos x y θθθθ=+⎧⎨=-⎩(θ为参数),则此圆的半径为___________.15.我们把圆心在一条直线上且相邻圆彼此外切的一组圆叫作“串圆”.如图所示的“串圆”中,圆A 的方程为()2212x y +-=,圆C 的方程为()()22672x y -+-=,则圆B 的方程为______.16.若32,0,1,4a ⎧⎫∈-⎨⎬⎩⎭,则方程2222210x y ax ay a a +++++-=表示的圆的概率为______. 三、解答题17.(10分)已知圆1C 的方程为222422210x y x my m m +-++-+=.(1)求实数m 的取值范围;(2)求当圆的面积最大时圆1C 的标准方程;(3)求当圆的面积最大时,圆1C 关于直线l :10x y -+=对称的圆2C 的方程.18.(12分)已知椭圆1C 的方程为22143x y +=,椭圆2C 的短轴为1C的长轴且离心率为2.(Ⅰ)求椭圆2C 的方程;(Ⅱ)如图,M N 、分别为直线l 与椭圆12C C 、的交点,P 为椭圆2C 与y 轴的交点,PON ∆面积为POM ∆面积的2倍,若直线l 的方程为(0)y kx k =>,求k 的值.19.(12分)在直角坐标系xOy 中,圆C 的参数方程为1{x cos y sin ϕϕ=+=,(ϕ为参数),以O 为极点, x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的普通方程和极坐标方程;(2)直线l 的极坐标方程是2sin 3πρθ⎛⎫+= ⎪⎝⎭射线OM : 6πθ=与圆C 的交点为O , P ,与直线l 的交点为Q ,求线段PQ 的长.20.(12分)如图,在边长为1的正方形内作两个互相外切的圆,同时每一个圆又与正方形的两相邻边相切,当一个圆为正方形内切圆时半径最大,另一圆半径最小,记其中一个圆的半径为x ,两圆的面积之和为S ,将S 表示为x 的函数。
一、选择题1.1m =-是直线(21)10mx m y +-+=和直线390x my ++=垂直的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( ) A .0 B .1C .2D .与实数k 的取值有关3.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 4.我国东南沿海一台风中心从A 地以每小时10km 的速度向东北方向移动,离台风中心15km 内的地区为危险地区,若城市B 在A 地正北20km 处,则B 城市处于危险区内的时间为( )小时. A .0.5 B .1 C .1.5 D .25.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( ) A .1B .2C .3D .46.已知圆()222x a y a -+=平分圆()()22121x y ++-=的周长,则a 的值是( ) A .0B .3-C .25-D .527.设有一组圆()()()224*:1k C x y k k k N -+-=∈,给出下列四个命题:①存在k ,使圆与x 轴相切 ②存在一条直线与所有的圆均相交 ③存在一条直线与所有的圆均不相交 ④所有的圆均不经过原点 其中正确的命题序号是( ) A .①②③B .②③④C .①②④D .①③④8.设P 为直线2x +y +2=0上的动点,过点P 作圆C :x 2+y 2-2x -2y -2=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值时直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=09.已知圆1C :224470x y x y ++-+=与圆2C :()()222516x y -+-=的位置关系是( ) A .外离B .外切C .相交D .内切10.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( ) A .2B .-3或1C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.已知直线0(0)x y a a +-=>与圆224x y +=交于不同的两点,,A B O 是坐标原点,且有||||OA OB AB +≥,那么a 的取值范围是( )A .)+∞B .(2,)+∞C .[2,D .12.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0B .5C .0或5D .1或5二、填空题13.已知圆O :221x y +=,圆M :22()(2)2x a y -+-=.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA PB ⊥,则实数a 的取值范围为______.14.已知直线l 经过点(2,1),且和直线30x --=的夹角等于30,则直线l 的方程是_________.15.已知直线3x +4y -12=0与x 轴,y 轴相交于A ,B 两点,点C 在圆x 2+y 2-10x -12y +52=0上移动,则△ABC 面积的最大值和最小值之差为________.16.若直线4(1)80x m y +++=与直线2390x y --=平行,则这两条平行线间的距离为_________.17.过点()3,1的直线分别与x 轴、y 轴的正半轴交于A 、B 两点,则AOB (O 为坐标原点)面积取得最小值时直线方程为____________.18.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.19.过点1(,1)2M 的直线l 与圆C :(x ﹣1)2+y 2=4交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为_____.20.已知直线l 过点(4,1)A -20y -+=的夹角为30°,则直线l 的方程为____________.三、解答题21.已知斜率为k 且过点()0,1M 的直线与圆()222(3)1x y -+-=相交于不同两点,A B(1)求实数k 的取值范围; (2)求证:MA MB ⋅为定值;(3)若O 为坐标原点,且12OA OB ⋅=,求直线l 的方程.22.已知圆C 经过点()0,1A ,()2,1B ,()3,4M . (1)求圆C 的方程;(2)设点P 为直线l :210x y --=上一点,过点P 作圆C 的两条切线,切点分别为E ,F .若60EPF ∠=︒,求点P 的坐标.23.已知在平面直角坐标系xOy 中,点()0,3A ,直线l :24y x =-.圆C 的半径为1,圆心C 在直线l 上.(1)若直线34120x y +-=与圆C 相切,求圆C 的标准方程;(2)已知动点(),M x y ,满足2=MA MO ,说明M 的轨迹是什么?若点M 同时在圆C 上,求圆心C 的横坐标a 的取值范围.24.已知O 为坐标原点,倾斜角为2π3的直线l 与x ,y 轴的正半轴分别相交于点A ,B ,AOB 的面积为83.(1)求直线l 的方程; (2)直线3:l y x =-',点P 在l '上,求PA PB +的最小值. 25.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为23,求直线l 的方程. 26.如图,已知ABC 的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC 外接圆的方程;(3)求过()2,0N -的ABC 外接圆的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以0m =或1m =-,再根据充分必要条件的定义判断得解. 【详解】因为直线(21)10mx m y +-+=和直线390x my ++=垂直, 所以23(21)0,220,0m m m m m m ⨯+-⨯=∴+=∴=或1m =-. 当1m =-时,直线(21)10mx m y +-+=和直线390x my ++=垂直; 当直线(21)10mx m y +-+=和直线390x my ++=垂直时,1m =-不一定成立. 所以1m =-是直线()2110mx m y +-+=和直线390x my ++=垂直的充分不必要条件, 故选:A . 【点睛】方法点睛:充分必要条件的常用的判断方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件选择合适的方法求解.2.C解析:C 【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数. 【详解】 设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=, 即点P 的轨迹是以()2,0为圆心,2r为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个. 故选:C 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法. 3.D解析:D【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果.【详解】22640x y x+-+=,即()2235x y-+=,圆心为()3,0,半径为5,y x 的几何意义是圆上一点(),x y与()0,0连线的斜率,如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大,令此时直线的倾斜角为α,则5tanα=,yx5,故选:D.【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.4.B解析:B【分析】建立直角坐标系,过点B作BC AF⊥,交AF于点C,以点B为圆心,15为半径的圆交AF于点E,F,连接BE,BF,利用勾股定理求出BC的值,进而求出EF的值,再结合台风中心的运动速度即可求出B城市处于危险区内的时间.【详解】以A为原点,正北方向为纵轴正方向,正东方向为横轴正方向,建立如图所示直角坐标系,因为台风中心从A 地以每小时10km 的速度向东北方向移动, 所以运动轨迹所在直线AF 与坐标轴成45角,设以点B 为圆心,15为半径的圆交AF 于点E ,F ,连接BE ,BF 过点B 作BC AF ⊥,交AF 于点C , 在等腰Rt ABC △中,20AB =,220102BC =⨯=, 在Rt BCE 中,102BC =,15BE =,225CE BE BC ∴=-=,210EF CE ∴==,台风中心从A 地以每小时10km 的速度向东北方向移动,且当台风中心在线段EF 上时B 城市处于危险区内,B ∴城市处于危险区内的时间为110EF=小时, 故选:B .【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.5.B解析:B 【分析】根据题意得要使四边形PACB 面积的最小值,只需PC 取最小即可,再根据几何关系求解即可. 【详解】解:根据题意:要使四边形PACB 面积的最小值,则只需切线长,PA PB 最小, 进而只需PC 取最小即可.由于()2214x y ++=,故圆心为()1,0-,2r,由于P 是直线l :260x y ++=上一动点,所以过圆心作直线l 的垂线,垂足即为P ,此时CP ==此时切线长1PA PB ===,此时四边形PACB 面积为122S =⨯=. 即四边形PACB 面积的最小值为2. 故选:B. 【点睛】本题考查直线与圆的位置关系,考查化归转化思想和运算求解能力,是中档题.解题的关键是将问题转化为求PC 取最小值,再结合点到线的距离即可解答.6.B解析:B 【分析】由题可知,两圆的公共直线必过()()22121x y ++-=的圆心()1,2-,然后求出公共直线的方程,列式计算即可得解. 【详解】圆222()x a y a -+=平分()()22121x y ++-=的周长,所以两圆的公共直线过()()22121x y ++-=的圆心()1,2-,两圆方程相减,可得两圆的公共直线()1220a x y +-+=, 将()1,2-代入可得()1420a -+-+=,解得3a =-. 故选:B . 【点睛】两圆的公共弦方程过已知圆心是解题关键.7.C解析:C 【分析】取特殊值1k =,圆与x 轴相切,①正确;利用圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,可判定②③的正误;利用反证法说明④错误. 【详解】选项①中,当1k =时,圆心()1,1,半径1r =,满足与x 轴相切,正确; 选项②③中,圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,故②正确,③错误;选项④中,若()0,0在圆上,则241k k +=,而*k N ∈,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,正确. 故选:C.【点睛】本题解题关键是发现圆心()1,k 恒在直线0kx y 上,确定该线与圆一定相交,再结合特殊值法和反证法逐个击破即可.8.D解析:D 【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求直线AB 的方程. 【详解】由于,PA PB 是圆()()22:114C x y -+-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小, 此时PC :11(x 1)2y -=-,即210.y x --= 联立210,220y x x y --=⎧⎨++=⎩得1,,(1,0),0x P y =-⎧-⎨=⎩PC 的中点为1(0,),||2PC ==以PC 为直径的圆的方程为2215(),24x y +-=即2210x y y +--=,两圆方程相减可得直线AB 的方程210,x y ++=故选:D.9.B解析:B 【分析】分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解. 【详解】由题意,圆1C :224470x y x y ++-+=,可得圆心坐标为1(2,2)C -,半径为11r =,圆2C :()()222516x y -+-=,可得圆心坐标为1(2,5)C ,半径为14r =,又由125C C ==,且12145r r =+=+,即1212C C r r =+,所以圆12,C C 相外切. 故选:B. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.10.C解析:C 【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值. 【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C. 【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.11.C解析:C 【分析】设AB 的中点为C ,由||||OA OB AB +,可得||||OC AC ,则222||||4AC OC =≤+,再结合直线与圆相交列不等式,即可求出实数a 的取值范围. 【详解】设AB 的中点为C , 因为||||OA OB AB +,所以||||OC AC ,因为||OC =,所以222||||4AC OC =≤+,所以2a -或2a ,2<,所以a -<<因为0a >,所以实数a 的取值范围是[2,, 故选:C . 【点睛】本题考查直线与圆的位置关系、平面向量的加法运算,考查点到直线的距离公式,考查学生的计算能力,属于中档题.12.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】 解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C. 【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;二、填空题13.【分析】将转化为由圆与圆:有公共点可解得结果【详解】因为所以所以所以圆与圆:有公共点所以所以得所以故答案为:【点睛】关键点点睛:转化为圆与圆:有公共点求解是解题关键 解析:22a -≤≤【分析】将PA PB ⊥转化为PO =,由圆222x y +=与圆M :22()(2)2x a y -+-=有公共点可解得结果.【详解】 因为PA PB ⊥,所以4APO BPO π∠=∠=,所以1PA PB ==,PO =,所以圆222x y +=与圆M :22()(2)2x a y -+-=有公共点,所以OM PO PM ≤+==≤24a ≤,所以22a -≤≤.故答案为:22a -≤≤【点睛】关键点点睛:转化为圆222x y +=与圆M :22()(2)2x a y -+-=有公共点求解是解题关键.14.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由已知可得直线的斜率所以倾斜角为因为直线与的夹角为所以直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为解析:1y =10y --=【分析】分析可得已知直线的倾斜角为30,则直线l 的倾斜角为0或60,分类讨论并利用点斜式方程求解即可.【详解】由已知可得直线y x =3k =,所以倾斜角为30,因为直线l 与y x =30,所以直线l 的倾斜角为0或60,当倾斜角为60时,直线l 为)12y x -=-10y -+-=;当倾斜角为0︒时,直线l 为1y =,故答案为:1y =10y -+-=.【点睛】本题考查直线与直线的夹角,关键点是求出直线30x --=的倾斜角得到l 的倾斜角,考查求直线方程,考查分类讨论思想.15.15【分析】根据直线3x +4y-12=0可求得的坐标及利用圆心到直线的距离求出点C 到直线的距离的最小值和最大值利用面积公式可求得结果【详解】令得令得所以A (40)点B (03)∴|AB|=5由x2+y解析:15【分析】根据直线3x +4y -12=0可求得,A B 的坐标及||AB ,利用圆心到直线的距离求出点C 到直线AB 的距离的最小值和最大值,利用面积公式可求得结果.【详解】令0y =得4x =,令0x =得3y =,所以A (4,0),点B (0,3),∴|AB |=5,由x 2+y 2-10x -12y +52=0得22(5)(6)9x y -+-=,所以圆的半径为3,圆心为(5,6),圆心(5,6)到直线AB 的距离d ==275, 所以点C 到直线AB 的距离的最小值为2712355-=,最大值为2742355+=, 所以ABC S 的最大值为14252125⨯⨯=,最小值为1125625⨯⨯=, 所以△ABC 面积的最大值和最小值之差为21615-=.故答案为:15【点睛】 关键点点睛:利用圆心到直线的距离求出点C 到直线AB 的距离的最小值和最大值是解题关键.16.【分析】根据两直线平行求得得到两直线的方程再结合两直线间的距离公式即可求解【详解】由直线与直线平行可得解得即两条分别为和所以两直线间的距离为故答案为:【点睛】两平行线间的距离的求法:利用转化法将两条【分析】根据两直线平行,求得7m =-,得到两直线的方程,再结合两直线间的距离公式,即可求解.【详解】由直线4(1)80x m y +++=与直线2390x y --=平行,可得4(3)2(1)m ⨯-=+,解得7m =-,即两条分别为2340x y ++=和2390x y --=,所以两直线间的距离为d ==【点睛】两平行线间的距离的求法:利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离; 利用两平行线间的距离公式进行求解.17.【分析】设直线的方程为求出点的坐标结合已知条件求出的取值范围然后求出的面积关于的表达式利用基本不等式可求出面积的最小值利用等号成立求出的值即可得出所求直线的方程【详解】易知直线的斜率存在且不为零设直 解析:360x y +-=【分析】设直线AB 的方程为()13y k x -=-,求出点A 、B 的坐标,结合已知条件求出k 的取值范围,然后求出AOB 的面积关于k 的表达式,利用基本不等式可求出AOB 面积的最小值,利用等号成立求出k 的值,即可得出所求直线的方程.【详解】易知直线AB 的斜率存在且不为零,设直线AB 的方程为()13y k x -=-,即13y kx k =+-.在直线AB 的方程中,令0x =,可得13=-y k ;令0y =,可得31k x k -=. 所以,点31,0k A k -⎛⎫ ⎪⎝⎭、()0,13B k -. 由已知条件可得310130k k k -⎧>⎪⎨⎪->⎩,解得0k <. OAB 的面积为()131111136966222k S k k k k ⎡-⎛⎫=⨯-⨯=--≥⨯+=⎢ ⎪⎝⎭⎢⎣. 当且仅当()190k k k-=-<时,即当13k =-时,等号成立, 所以,直线AB 的方程为123y x =-+,即360x y +-=. 故答案为:360x y +-=.【点睛】 关键点点睛:解本题的关键在于将三角形的面积利用斜率k 有关的代数式表示,并结合基本不等式求出三角形面积的最小值,同时不要忽略了斜率k 的取值范围的求解. 18.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3【分析】利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为L ,则L =,所以当切线长L 取最小值时,PC 取最小值, 过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3.此时PC ==,此时,3L == 故答案为:3【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则L =,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.19.2x ﹣4y+3=0【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大此时直线l 与直线垂直即可算出的斜率求得直线l 的方程【详解】由题得当∠ACB 最小时直线l 与直线垂直此时又故又直线l 过点所以即故解析:2x ﹣4y +3=0【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大,此时直线l 与直线CM 垂直,即可算出CM 的斜率求得直线l 的方程.【详解】由题得,当∠ACB 最小时,直线l 与直线CM 垂直,此时102112CM k -==-- ,又1CM l k k ⋅=-,故12l k =,又直线l 过点1(,1)2M ,所以11:1()22l y x -=-,即2430x y -+= . 故答案为2430x y -+=【点睛】本题主要考查直线与圆的位置关系,过定点的直线与圆相交于两点求最值的问题一般为圆心到定点与直线垂直时取得最值.同时也考查了线线垂直时斜率之积为-1,以及用点斜式写出直线方程的方法.20.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由题直线的倾斜角为则直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为时直线为故答案为:或【点睛】本题考 解析:4x =-334330x y -+=【分析】分析可得已知直线的倾斜角为60︒,则直线l 的倾斜角为30或90︒,分类讨论,并利用点斜式方程求解即可【详解】由题,直线32y x =+的倾斜角为60︒,则直线l 的倾斜角为30或90︒,当倾斜角为30时,直线l 为)314y x -=+,334330x y -+=; 当倾斜角为90︒时,直线l 为4x =-,故答案为:4x =-334330x y -+=【点睛】本题考查直线倾斜角与斜率的关系,考查求直线方程,考查分类讨论思想三、解答题21.(1)4747)-+;(2)证明见解析;(3)1y x =+. 【分析】(1)设直线l 的方程为1y kx =+,结合直线与圆的交点个数与点到直线的距离公式,可得解;(2)设11(,)A x y ,22(,)B x y ,联立直线与圆的方程,利用韦达定理,结合平面向量的坐标运算,可得证;(3)由121212OA OB x x y y ⋅=+=,列出关于k 的方程,解之即可.【详解】(1)设直线l 的方程为1y kx =+,因为直线l 与圆有两个不同交点,1<k <<, 所以实数k的取值范围为44(,33+; (2)证明:设11(,)A x y ,22(,)B x y ,联立()()221231y kx x y =+⎧⎪⎨-+-=⎪⎩,得22(1)(44)70k x k x +-++=, 所以122441k x x k ++=+,12271x x k =+, 所以11221122(,1)(,1)(,)(,)MA MB x y x y x kx x kx ⋅=-⋅-=⋅22212121227(1)(1)71x x k x x k x x k k =+=+=+⋅=+,为定值; (3)因为12OA OB ⋅=, 所以12121212(1)(1)OA OB x x y y x x kx kx ⋅=+=+++22121222744(1)()1(1)11211k k x x k x x k k k k+=++++=+⋅+⋅+=++, 整理解得1k =,所以直线l 的方程为:1y x =+.【点睛】 思路点睛:该题考查的是有关直线与圆的问题,解题思路如下:(1)根据直线与圆有两个交点,得到直线与圆相交,利用圆心到直线的距离小于半径,得到对应的不等关系,解不等式求得结果;(2)设出两点坐标,将直线与圆的方程联立,消元,利用韦达定理得到两根关系,利用向量数量积坐标公式求其数量积,结合韦达定理,证得结果;(3)利用向量数量积坐标公式得到k 所满足的等量关系式,求得k 的值,进而求得直线方程.22.(1)222650x y x y +--+=;(2)()1,1--或2711,55⎛⎫⎪⎝⎭. 【分析】(1)设出圆C 的一般方程,将()0,1A ,()2,1B ,()3,4M 三点代入即可求解; (2)设出P 点的坐标,利用切线的性质以及勾股定理即可求得.【详解】解:(1)设圆C 的方程为()2222040x y Dx Ey F D E F ++++=+->,将()0,1A ,()2,1B ,()3,4M 三点代入,得:1052025340E F D E F D E F ++=⎧⎪+++=⎨⎪+++=⎩,解得:265D E F =-⎧⎪=-⎨⎪=⎩,∴圆C 的方程为222650x y x y +--+=;(2)设点()21,P y y +,由(1)圆C 的圆心()1,3C,r ==由已知得:CE PE ⊥,1302CPE EPF ∠=∠=︒, 在Rt CPE △中:2PC CE =,= 解得:1y =-或115y =, P ∴的坐标为()1,1--或2711,55⎛⎫⎪⎝⎭. 【点睛】方法点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.23.(1) 22(3)(2)1x y -+-=或22232()()11111x y -+-=(2)120,5⎡⎤⎢⎥⎣⎦【分析】(1)设圆心C 为(a ,2a -4),利用直线与圆相切,求解a ,得到圆心坐标,求出圆的方程.(2)由2=MA MO ,求出动点M 的轨迹方程,说明轨迹,通过点M 同时在圆C 上,说明圆C 与圆D 有公共点,利用两个圆的位置关系,转化求解圆心C 的横坐标a 的取值范围即可.【详解】(1)因为圆心C 在直线l 上,所以圆心C 可设为(a ,2a -4),|1128|15a-==,即|1128|5a-=,所以11285a-=±,解得3a=或2311a=,所以圆心C的坐标为(3,2)或232,1111⎛⎫⎪⎝⎭,所以圆C的标准方程为22(3)(2)1x y-+-=或22232()()11111x y-+-=(2) 由2=MA MO,=化简得:22230x y y++-=,即22(1)4x y++=,所以动点M的轨迹是以D (0,-1)为圆心,半径是2的圆,若点M同时在圆C上,则圆C与圆D有公共点,则21||21CD-≤≤+,即1 3.≤≤整理得:2251280,5120a aa a⎧-+≥⎨-≤⎩解得125a≤≤,所以圆心C的横坐标a的取值范围为[0,125].【点睛】关键点点睛:判断两圆位置关系式,只需求出两圆圆心的距离,比较与两圆半径的关系即可,本题根据两圆有公共点可得21||21CD-≤≤+,解不等式即可求解,属于中档题.24.(1)y=+;(2) .【分析】(1)求出直线l的斜率,设直线l的方程为:y b=+,求出横纵截距即可表示出AOB的面积即可求解;(2)求出()4,0A,(0,B,求出点()4,0A关于直线:3l y x=-'的对称点A',PA PB PA PB A B'+='+≥,当A',B,P三点共线时取得最小值.【详解】(1)由题意可得:直线l的斜率2πtan3k==,设直线l的方程为:y b =+.可得直线l与坐标轴的正半轴交点为,03A b ⎛⎫ ⎪ ⎪⎝⎭,()0,B b ,其中0b >.123OAB S b b ∴=⨯⨯=△b =, ∴直线l的方程为:y =+.(2)由(1)可得:()4,0A,(0,B ,直线l '的方程为:y x =. 设点A 关于直线l '的对称点(),A m n ',则04422n m n m -⎧=⎪-⎪⎨+⎪=⎪⎩,解得:2m n =⎧⎪⎨=-⎪⎩(,2A ∴'-. PA PB PA PB A B '+='+≥,∴当A ',B ,P 三点共线时,PA PB +取得最小值.()m in PA B PB A ='==∴+【点睛】 关键点点睛:求出点()4,0A 关于直线l '的对称点(),A m n ',利用PA PA =', PA PB PA PB A B '+='+≥可求PA PB +的最小值.25.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=.【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程.【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4xy -++=. 所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线l 被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k = ∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】 易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.26.(1)320x y ++=;(2)22(2)8x y -+=;(3)20x y -+=或20x y ++=.【分析】(1)求出直线AC 的斜率后可得直线AC 的方程.(2)求出点A 的坐标,结合圆心坐标可求圆的半径,从而可得圆的方程.(3)利用点到直线的距离为半径可求切线的斜率,从而可得所求的切线的方程.【详解】(1)0AT AB ⋅=,AT AB ∴⊥,又T 在AC 上,AC AB ∴⊥,ABC ∴为Rt ABC ∆,又AB 边所在直线的方程为360x y --=,∴直线AC 的斜率为3-, 又点()1,1T -在直线AC 上,AC ∴边所在直线的方程为13(1)y x -=-+,即320x y ++=.(2)AC 与AB 的交点为A ,∴由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-, BM MC =,()2,0M ∴为Rt ABC 斜边上的中点,即为Rt ABC 外接圆的圆心,又||r AM ===从而ABC 外接圆的方程为22(2)8x y -+=.(3)设切线方程为(2)y k x =+=,解得1k =或1-.所以切线方程为20x y -+=或20x y ++=.【点睛】思路点睛:(1)确定直线的方程往往需要两个独立的条件,比如直线所过的两个不同点,或直线所过的一个点和直线的斜率;(2)确定圆的方程,关键是圆心坐标和半径的确定;(2)直线与圆的位置关系,往往通过圆心到直线的距离与半径的大小关系来判断.。
课时过关检测(四十八)圆的方程【原卷版】1.圆心为(2,1)且和x轴相切的圆的方程是()A.(x-2)2+(y-1)2=1B.(x+2)2+(y+1)2=1C.(x-2)2+(y-1)2=5D.(x+2)2+(y+1)2=52.设a∈R,则“a>2”是“方程x2+y2+ax-2y+2=0的曲线是圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若x2+y2=8,则2x+y的最大值为()A.8B.4C.210D.54.已知圆C:(x-3)2+(y-1)2=1和两点A(-t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则t的取值范围是()A.(0,2]B.[1,2]C.[2,3]D.[1,3]5.点M为圆C:(x+2)2+(y+1)2=1上任意一点,直线(1+3λ)x+(1+2λ)y=2+5λ过定点P,则|MP|的最大值为()A.23B.13C.23+1D.13+16.(多选)已知圆x2+y2-4x-1=0,则下列关于该圆说法正确的有()A .关于点(2,0)对称B .关于直线y =0对称C .关于直线x +3y -2=0对称D .关于直线x -y +2=0对称7.(多选)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 可能的方程为()A .x 2=43B .x 2=43C .(x -3)2+y 2=43D .(x +3)2+y 2=438.已知三个点A (0,0),B (2,0),C (4,2),则△ABC 的外接圆的圆心坐标是________.9.已知点P 为圆C :x 2+y 2-4x -2y +1=0上任意一点,A ,B 为直线3x +4y +5=0上的两动点,且|AB |=2,则△ABP 的面积的取值范围是________.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.11.瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是()A .(1,3)B .(3,1)C .(-2,0)D .(0,-2)12.写出一个关于直线x +y -1=0对称的圆的方程____________.13.已知A (-2,0),B (2,0),动点M 满足|MA |=2|MB |,则点M 的轨迹方程是____________________;又若MA ―→·MB ―→=0,此时△MAB 的面积为________.14.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.15.(多选)设有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),下列命题正确的是()A .不论k 如何变化,圆心C 始终在一条直线上B .所有圆C k 均不经过点(3,0)C .经过点(2,2)的圆C k 有且只有一个D .所有圆的面积均为4π16.已知曲线T :F (x ,y )=0,对坐标平面上任意一点P (x ,y ),定义F [P ]=F (x ,y ),若两点P ,Q 满足F [P ]·F [Q ]>0,称点P ,Q 在曲线T 同侧;F [P ]·F [Q ]<0,称点P ,Q 在曲线T 两侧.(1)直线过l 原点,线段AB 上所有点都在直线l 同侧,其中A (-1,1),B (2,3),求直线l 的斜率的取值范围;(2)已知曲线F (x ,y )=(3x +4y -5)4-x 2-y 2=0,O 为坐标原点,求点集S ={P |F [P ]·F [O ]>0}的面积.课时过关检测(四十八)圆的方程【解析版】1.圆心为(2,1)且和x 轴相切的圆的方程是()A .(x -2)2+(y -1)2=1B .(x +2)2+(y +1)2=1C .(x -2)2+(y -1)2=5D .(x +2)2+(y +1)2=5解析:A 圆心为(2,1)且和x 轴相切的圆,它的半径为1,故它的方程是(x -2)2+(y -1)2=1,故选A .2.设a ∈R ,则“a >2”是“方程x 2+y 2+ax -2y +2=0的曲线是圆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A方程x 2+y 2+ax -2y +2=0的曲线是圆,则有D 2+E 2-4F =a 2+4-8>0,解得a >2或a <-2,则“a >2”是“a >2或a <-2”的充分不必要条件,所以“a >2”是“方程x 2+y 2+ax -2y +2=0的曲线是圆”的充分不必要条件.故选A .3.若x 2+y 2=8,则2x +y 的最大值为()A .8B .4C .210D .5解析:C 设2x +y =t ,则y =t -2x ,当直线y =t -2x 与x 2+y 2=8相切时,t 取到最值,所以|t |5≤22,解得-210≤t ≤210,所以2x +y 的最大值为210,故选C .4.已知圆C :(x -3)2+(y -1)2=1和两点A (-t,0),B (t,0)(t >0),若圆C 上存在点P ,使得∠APB =90°,则t 的取值范围是()A .(0,2]B .[1,2]C .[2,3]D .[1,3]解析:D圆C :(x -3)2+(y -1)2=1的圆心C (3,1),半径为1,因为圆心C 到O (0,0)的距离为2,所以圆C 上的点到O (0,0)的距离最大值为3,最小值为1,又因为∠APB =90°,则以AB 为直径的圆和圆C 有交点,可得|PO |=12|AB |=t ,所以有1≤t ≤3,故选D .5.点M 为圆C :(x +2)2+(y +1)2=1上任意一点,直线(1+3λ)x +(1+2λ)y =2+5λ过定点P ,则|MP |的最大值为()A .23B .13C .23+1D .13+1解析:D 整理直线方程得:(x +y -2)+(3x +2y -5)λ=0+y -2=0,x +2y -5=0得=1,=1,∴P (1,1),由圆的方程知圆心C (-2,-1),半径r =1,∴|MP |max =|CP |+r =(-2-1)2+(-1-1)2+1=13+1.故选D .6.(多选)已知圆x 2+y 2-4x -1=0,则下列关于该圆说法正确的有()A .关于点(2,0)对称B .关于直线y =0对称C .关于直线x +3y -2=0对称D .关于直线x -y +2=0对称解析:ABCx 2+y 2-4x -1=0⇒(x -2)2+y 2=5,所以圆心的坐标为(2,0),半径为5.A项,圆是关于圆心对称的中心对称图形,而点(2,0)是圆心,所以本选项正确;B 项,圆是关于直径所在直线对称的轴对称图形,直线y =0过圆心,所以本选项正确;C 项,圆是关于直径所在直线对称的轴对称图形,直线x +3y -2=0过圆心,所以本选项正确;D 项,圆是关于直径所在直线对称的轴对称图形,直线x -y +2=0不过圆心,所以本选项不正确.故选A 、B 、C .7.(多选)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 可能的方程为()A .x 2=43B .x 2=43C .(x -3)2+y 2=43D .(x +3)2+y 2=43解析:AB由题意知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心C (0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C的方程为x 2=43.8.已知三个点A (0,0),B (2,0),C (4,2),则△ABC 的外接圆的圆心坐标是________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,则=0,+2D +F =0,+4D +2E +F =0,解得=-2,=-6,=0,所以圆的方程为x 2-2x +y 2-6y =0,即(x -1)2+(y -3)2=10,所以圆心坐标为(1,3).答案:(1,3)9.已知点P 为圆C :x 2+y 2-4x -2y +1=0上任意一点,A ,B 为直线3x +4y +5=0上的两动点,且|AB |=2,则△ABP 的面积的取值范围是________.解析:圆C 的标准方程为(x -2)2+(y -1)2=4,圆心C (2,1),半径r =2,圆心C 到直线3x +4y +5=0的距离d =|6+4+5|32+42=3,设P 到直线AB 的距离为h ,则S △ABP =12·|AB |·h=h ,∵d -r ≤h ≤d +r ,∴1≤h ≤5,∴S △ABP ∈[1,5],即△ABP 的面积的取值范围为[1,5].答案:[1,5]10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2).所以直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①又直径|CD |=410,所以|PA |=210.所以(a +1)2+b 2=40.②=-3,=6=5,=-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.11.瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是()A .(1,3)B .(3,1)C .(-2,0)D .(0,-2)解析:D ∵A (-4,0),B (0,4),∴AB 的垂直平分线方程为x +y =0,又外心在欧拉线x-y +2=0+y =0,-y +2=0,解得三角形ABC 的外心为G (-1,1),又r =|GA |=(-1+4)2+(1-0)2=10,∴△ABC 外接圆的方程为(x +1)2+(y -1)2=10.设C (x ,y ),则三角形ABC 即x -43-y +43+2=0.整理得x -y -2=0.联x +1)2+(y -1)2=10,-y -2=0,=0,=-2=2,=0.∴顶点C 的坐标可以是(0,-2).故选D .12.写出一个关于直线x +y -1=0对称的圆的方程____________.解析:设圆心坐标为C (a ,b ),因为圆C 关于x +y -1=0对称,所以C (a ,b )在直线x +y -1=0上,则a +b -1=0,取a =1⇒b =0,设圆的半径为1,则圆的方程(x -1)2+y 2=1.答案:(x -1)2+y 2=1(答案不唯一)13.已知A (-2,0),B (2,0),动点M 满足|MA |=2|MB |,则点M 的轨迹方程是____________________;又若MA ―→·MB ―→=0,此时△MAB 的面积为________.解析:设M (x ,y ),由|MA |=2|MB |,得(x +2)2+y 2=2(x -2)2+y 2,整理得3x 2+3y 2-20x +12=0.以AB 为直径的圆的方程为x 2+y 2=4,x 2+3y 2-20x +12=0,2+y 2=4,解得|y |=85.即M 点的纵坐标的绝对值为85.此时△MAB 的面积为S =12×4×85=165.答案:3x 2+3y 2-20x +12=016514.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:圆C :x 2+(y -4)2=42,故圆心为C (0,4),半径为4.(1)当C ,M ,P 三点均不重合时,∠CMP =90°,所以点M 的轨迹是以线段PC 为直径的圆(除去点P ,C ),线段PC 中点为(1,3),12|PC |=12(2-0)2+(2-4)2=2,故M 的轨迹方程为(x -1)2+(y -3)2=2(x ≠2,且y ≠2或x ≠0,且y ≠4).当C ,M ,P 三点中有重合的情形时,易求得点M 的坐标为(2,2)或(0,4).综上可知,点M 的轨迹是一个圆,轨迹方程为(x -1)2+(y -3)2=2.(2)由(1)可知点M 的轨迹是以点N (1,3)为圆心,2为半径的圆.法一(几何法):由于|OP |=|OM |,故O 在线段PM 的垂直平分线上.又P 在圆N 上,从而ON⊥PM.因为ON的斜率为3,所以直线l的斜率为-13,故直线l的方程为y=-13x+83,即x+3y-8=0.又易得|OM|=|OP|=22,点O到直线l的距离为812+32=4105,|PM|==4105,所以△POM的面积为12×4105×4105=165.法二(代数法):设M(x,y),由|OM|=|OP|=22得x2+y2=8,2+y2=8,①-1)2+(y-3)2=2,②①-②得直线l方程为x+3y-8=0,将x=8-3y代入①得5y2-24y+28=0,解得y1=145,y2=2.从而x1=-25,x2=2.所以M-25,|PM|==4105.又点O到l距离d=812+32=4105,所以△POM的面积S=12|PM|·d=12×4105×4105=165.15.(多选)设有一组圆C k:(x-k)2+(y-k)2=4(k∈R),下列命题正确的是()A.不论k如何变化,圆心C始终在一条直线上B.所有圆C k均不经过点(3,0)C.经过点(2,2)的圆C k有且只有一个D.所有圆的面积均为4π解析:ABD圆心坐标为(k,k),在直线y=x上,A正确;令(3-k)2+(0-k)2=4,化简得2k2-6k+5=0,∵Δ=36-40=-4<0,∴2k2-6k+5=0无实数根,B正确;由(2-k)2+(2-k)2=4,化简得k2-4k+2=0,∵Δ=16-8=8>0,有两不等实根,∴经过点(2,2)的圆C k有两个,C错误;由圆的半径为2,得圆的面积为4π,D正确.故选A、B、D.16.已知曲线T:F(x,y)=0,对坐标平面上任意一点P(x,y),定义F[P]=F(x,y),若两点P,Q满足F[P]·F[Q]>0,称点P,Q在曲线T同侧;F[P]·F[Q]<0,称点P,Q在曲线T 两侧.(1)直线过l原点,线段AB上所有点都在直线l同侧,其中A(-1,1),B(2,3),求直线l 的斜率的取值范围;(2)已知曲线F(x,y)=(3x+4y-5)4-x2-y2=0,O为坐标原点,求点集S={P|F[P]·F[O]>0}的面积.解:(1)由题意,显然直线l斜率存在,设方程为y=kx,则F(x,y)=kx-y=0,因为A(-1,1),B(2,3),线段AB上所有点都在直线l同侧,则F[A]·F[B]=(-k-1)(2k-3)>0,解得-1<k<3 2.(2)因为F[O]<0,所以F[P]=(3x+4y-5)·4-x2-y2<0,x+4y-5<0,2+y2<4,点集S为圆x2+y2=4在直线3x+4y-5=0下方内部,如图所示,设直线与圆的交点为A,B,则O到AB的距离为1,故∠AOB=2π3,因此,所求面积为S=12·4π3·22+12·32·22=8π3+3.。
2.4 圆的方程 2.4.1 圆的标准方程1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254. 答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A.10.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆O挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.-∞,-4√33∪4√33,+∞D.(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=a4x+a2,即ax-4y+2a=0,令d=√a2+16=1,化简后,得3a2=16,解得a=±4√33.再进一步判断便可得到正确答案为C.(方法2)(数形结合法)如图,设直线AB切圆O于点C在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C.11.(2020四川成都石室中学高二上期中)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)解析因为x2+y2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sinα+π6,所以√3x+y的取值范围是[-2,2].故选C.12.(多选题)若经过点P(5m+1,12m)可以作出圆(x-1)2+y2=1的两条切线,则实数m的取值可能是()A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即√32+42=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B-x A,Δy=y B-y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx,Δy为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x,y).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x2+y2=5.。
课时过关检测(五十四) 圆的方程
A 级——夯基保分练
1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( )
A .(x +1)2+(y +1)2=2
B .(x -1)2+(y -1)2=2
C .(x +1)2+(y +1)2=8 D.(x -1)2+(y -1)2=8
解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.
2.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )
A .-43
B.-34
C. 3
D.2
解析:选A 圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,
故圆心为(1,4),d =|a +4-1|a 2+1
=1,解得a =-43. 3.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53
B.213
C.253
D.43
解析:选B 设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),
∴⎩⎪⎨⎪⎧ 1+D +F =0,3+3E +F =0,
7+2D +3E +F =0,∴⎩⎪⎨⎪⎧ D =-2,E =-433,F =1,
∴△ABC 外接圆的圆心为⎝
⎛⎭⎫1,233,故△ABC 外接圆的圆心到原点的距离为 1+⎝⎛⎭⎫2332=213. 4.(2019·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( )
A .一个椭圆
B.一个圆 C .两个圆 D.两个半圆
解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1
时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.
5.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )
A .(x +1)2+y 2=2
B.(x +1)2+y 2=8 C .(x -1)2+y 2=2 D.(x -1)2+y 2=8
解析:选A 直线x -y +1=0与x 轴的交点为(-1,0).
根据题意,圆C 的圆心坐标为(-1,0).
因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+1
2=2,则圆的方程为(x +1)2+y 2=2.
6.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________________.
解析:设圆心C 的坐标为(a ,b ),
则a =-1+12=0,b =2+42
=3,故圆心C (0,3). 半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.
∴圆C 的标准方程为x 2+(y -3)2=2.
答案:x 2+(y -3)2=2
7.(2019·宜昌模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.
解析:圆C 的方程可化为⎝⎛⎭⎫x +k 22+()
y +12=-34
k 2+1.所以当k =0时圆C 的面积最大. 答案:(0,-1)
8.已知圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.
解析:设圆心为C (a,0),由|CA |=|CB |,
得(a +1)2+12=(a -1)2+32,解得a =2.
半径r =|CA |=(2+1)2+12=10. 故圆C 的方程为(x -2)2+y 2=10.
由题意知(m -2)2+(6)2<10,
解得0<m <4.
答案:(0,4)
9.如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B
的坐标为()0,-22,顶点C 在x 轴上.
(1)求BC 边所在直线方程;
(2)若M 为直角三角形ABC 外接圆的圆心,求圆M 的方程.
解:(1)易知k AB =-2,AB ⊥BC ,所以k CB =
22
, 所以BC 边所在直线方程为y =22x -2 2. (2)由(1)及题意得C (4,0),所以M (1,0),
又因为|AM |=3,
所以外接圆M 的方程为(x -1)2+y 2=9.
10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.
(1)求直线CD 的方程;
(2)求圆P 的方程.
解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2).
所以直线CD 的方程为y -2=-(x -1),
即x +y -3=0.
(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.①
又直径|CD |=410,
所以|P A |=210.
所以(a +1)2+b 2=40.②
由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩
⎪⎨⎪⎧
a =5,
b =-2, 所以圆心P (-3,6)或P (5,-2),
所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.
B 级——提能综合练
11.自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )
A .8x -6y -21=0
B .8x +6y -21=0
C .6x +8y -21=0
D.6x -8y -21=0
解析:选D 设P (x ,y ),由题意得,圆心C 的坐标为(3,-4),半
径r =2,如图.因为|PQ |=|PO |,且PQ ⊥CQ ,所以|PO |2+r 2=|PC |2,所
以x 2+y 2+4=(x -3)2+(y +4)2,即6x -8y -21=0,所以点P 的轨迹方程
为6x -8y -21=0,故选D.
12.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________________.
解析:因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.
答案:(x -1)2+y 2=2
13.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.
(1)求M 的轨迹方程;
(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.
解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.
设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ).
由题设知CM ―→·MP ―→=0,故x (2-x )+(y -4)(2-y )=0,
即(x -1)2+(y -3)2=2.
由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.
(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .
因为ON 的斜率为3,所以l 的斜率为-13
,
故l 的方程为x +3y -8=0.
又|OM |=|OP |=22,O 到l 的距离为4105
, 所以|PM |=4105,S △POM =12×4105×4105=165
, 故△POM 的面积为165
. C 级——拔高创新练
14.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .
(1)求圆C 1的圆心坐标;
(2)求线段AB 的中点M 的轨迹C 的方程.
解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4, ∴圆C 1的圆心坐标为C 1(3,0).
(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点,
∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0.
又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ),
∴x 2-3x +y 2=0.
易知直线l 的斜率存在,故设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,
圆心到直线l 的距离d =
|3m -0|m 2+1
=2, 解得m =±255
. 把相切时直线l 的方程代入圆C 1的方程化简得
9x 2-30x +25=0,解得x =53
. 当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3.
∴点M的轨迹C的方程为x2-3x+y2=0,其中5
3<x≤3,其轨迹为一段圆弧.。