2018中考数学专题练习《反比例函数》
- 格式:doc
- 大小:1.01 MB
- 文档页数:10
2018中考数学专题练习《反比例函数》(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.如果反比例函数ky x=的图象经过点(1,2)-,那么它还一定经过( ) A. (2,1)- B. 1(,2)2-C. (2,1)--D. 1(,2)22.如图1,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3(0)y x x=>上的一个动点,当点B 的横坐标逐渐增大时,OAB ∆的面积将( )A.逐渐增大B.不变C.逐渐减小D.先增大,后减小3.如果反比例函数1ky x-=的图象与直线y x =没有交点,那么符合条件的k 值为( )A. 1k =B. 1k =-C. 2k =D. 2k =-4.在反比例函数13ky x-=的图象上有两个点1122(,),(,)A x y B x y ,且120x x <<,12y y <,则k 的取值范围是( )A. 13k ≥B. 13k >C. 13k <-D. 13k < 5.如图2,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(2,1)A ,若210y y >>,则x 的取值范围在数轴上表示为( )6.如图3,点A 是反比例函数11(0)k y x x=>图象上一点,过点A 作x 轴的平行线,交反比例函数22(0)k y x x=>的图象于点B ,连接,OA OB ,若O A B ∆的面积为2,则21k k -的值为( )A. 2-B. 2C. 4-D. 47.设ABC ∆的一边长为x ,这条边上的高为y ,y 与x 满足的反比例函数关系如图4所示,当ABC ∆为等腰直角三角形时,x y +的值为( ) A. 4 B. 5C. 5或D. 4或8.在数学活动课上,小华借助下列表格中的数据,在平面直角坐标系中经历描点和连线 的步骤,正确绘制了某个反比例函数的图象,则下列关于该函数的描述错误的是( )A.图象在第二、四象限B.图象必经过点1(6,)2- C.图象与坐标轴没有交点D.当4x <-时,y 的取值范围是34y < 9.如图,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P ,则在第一象限内,经过点'P 的反比例函数图象的表达式是( )A. 5(0)y x x =-> B. 5(0)y x x => C. 6(0)y x x =-> D. 6(0)y x x=>10.如图6,ABC ∆和DEF ∆的各顶点分别在双曲线1y x =,2y x =,3y x=的第一象限的图象上,90C F ∠=∠=︒,////AC DF x 轴,////B C E F y 轴,则ABC DEF S S ∆∆-=( )A.112 B. 16 C. 14 D. 512二、填空题(本大题共10小题,每小题3分,共30分)11.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系式是 (不考虑x 的取值范围).12.如果关于x 的函数11(1)k y k x x+=+-是反比例函数,那么k 的值等于 . 13.如图7,点,A B 是双曲线3y x=上的点,分别经过,A B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .14.若反比例函数(0)ky k x=<的函数图象过点(2,),(1,)P m Q n ,则m 与n 的大小关系是m n .(填“>”或“=”“<”)15.如图8,一次函数1y ax b =+的图象与反比例函数23y x=的图象相交于,A B 两点,当12y y >时,10x -<<,或3x >,则一次函数的表达式为 . 16.在平面直角坐标系中,点A 的坐标为(5,0),点C 的坐标为(0,4),四边形ABCO 为矩形,点P 为线段BC 上的一个动点,若POA ∆为等腰三角形,且点P 在双曲线ky x=上,则k 的值可以是 .17. 如图9,已知双曲线1214(0),(0)y x y x x x =>=>,点P 为双曲线24y x=上的一点,且PA x ⊥轴于点A ,PB y ⊥轴于点B ,,PA PB 分别交双曲线11y x=于,D C 两点,则PCD ∆的面积是 .18.直线(0)y a x a =≥,与双曲线3y x=交于1122(,),(,)A x y B x y 两点,则122143x y x y -= .19.我们已经学习过反比例函数1y x=的图象和性质,请回顾研究它的过程,对函数21y x=进行探索,下列结论:①图象在第一、二象限; ②图象在第一、三象限; ③图象关于y 轴对称; ④图象关于原点对称;⑤当0x >时,y 随x 增大而增大;当0x <时,y 随x 增大而增大; ⑥当0x >时,y 随x 增大而减小;当0x <时,y 随x 增大而增大.其中是函数21y x=的性质及它的图象特征的是 .(填写所有正确答案的序号) 20.如图10,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345,,,,A A A A A ,分别作x 轴的垂线与反比例函数2(0)y x x=≠的图象相交于点12345,,,,P P P P P ,得直角三角形11OP A ,122A P A ,233A P A ,344A P A ,455A P A ,并设其面积分别为12345,,,,S S S S S ,则5S 的值为 ,以此类推n S = (1n ≥的整数).三、解答题(本大题共6小题,共60分)21. ( 8分)已知变量y 与x 成反比例函数,并且当5x =时,3y =. (1)求y 与x 之间的函数关系式.(2)求15x =时,y 的值.22.(10分)函数2y x=的图象如图11所示. (1)在同一平面直角坐标系中,用描点法画下列函数的图象. ①21y x =+;②21y x =+. 列表:画图象,并注明函数表达式. (2)观察图象,完成填空:①将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向 平移 个单位,可得函数21y x =+的图象.(3)函数2y x =的图象经过怎样的变化,可得函数20192017x y x +=+的图象?(写出一种即可)23. ( 8分)如图12,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点(1,3)A .(1)求这两个函数的表达式及其图象的另一个交点B 的坐标.(2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.24. (10分)如图13,在平面直角坐标系中,直线(0)y k x b k =+≠与双曲线(0)my m x=≠相交于点(2,3)A -和点(,2)B n . (1)求直线与双曲线的表达式.(2)对于横、纵坐标都是整数的点叫做整点.动点P 是双曲线(0)my m x=≠上的整点,过点P 作垂直于x 轴的直线,交直线AB 于点Q ,当点P 位于点Q 的下方时,请直接写出整点P 的坐标.25. (12分)一辆汽车匀速通过某段公路,所需时间t (h)与行驶速度v (km/h)满足函数关系式kt v=,其图象为如图14所示的一段曲线且端点为(40,1)A 和(,0.5)B m . (1)求k 和m 的值.(2)若行驶速度不得超过60km/h ,则汽车通过该路段最少需要多少时间?26. (12分)“保护生态环境,建设绿色社会”已经从理念变为人们的行动.某化工厂2017年1月的利润为200万元.设2017年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2017年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图15 ).(1)分别求该化工厂治污期间及治污改造工程完工后,y 与x 之间对应的函数关系式. (2)治污改造工程完工后经过几个月,该厂月利润才能达到2017年1月的水平? (3)当月利润少于100万元时,为该厂资金紧张期,问该厂资金紧张期共有几个月?参考答案1.A2. C3. C4. D5. D6. D7. D8. D9. D 10. A11.90y x= 12. 1或2- 13. 5 14. >15. 2y x =- 16. 10或12或817. 98 18. 3-19. ①③⑥ 20.15 1n21. (1)设y 与x 之间的函数关系式为ky x=, 由题意,得35k =, 解得15k = ∴15y x=(2)当15x =时,15115y ==.22. (1)图略.(2)观察图象,完成填空: ①将函数2y x =的图象向上平移1个单位,可得函数21y x =+的图象; ②将函数2y x =的图象向左平移1个单位,可得函数21y x =+的图象.(3)函数2y x =的图象向左平移2017个单位,可得函数22017y x =+的图象.再将所得的图象向上平移1个单位,可得函数212017y x =++,即20192017x y x +=+的图象;23.(1)由题意,得31m =+.解得2m =.∴一次函数的表达式为12y x =+. 由题意,得,31k =. 解得3k =.∴反比例函数的表达式为23y x=. 由题意,得32x x+=. 解得11x =,23x =-. 当23x =-时,121y y ==-, ∴点B 的坐标为(3,1)--.(2)由图象,可知当30x -≤<或1x ≥时,函数值12y y ≥.24. (1)∵双曲线(0)my m x=≠经过点(2,3)A -,如图5, ∴6m =-.∴双曲线的表达式为6y x =-. ∵点(,2)B n 在双曲线6y x=-上,∴点B 的坐标为(3,2)-.∵直线y kx b =+经过点(2,3)A -和点B (3,2)-,∴2332k b k b +=-⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩,∴直线的表达式为1y x =--.(2)符合条件的点P 的坐标是(1,6)-或(6,1)-. 25.(1)将(40,1)代入k t v=, 得140k =, 解得40k =.所以函数表达式为40t v =. 当0.5t =时,400.5m=.解得80m =.所以40,80k m ==. (2)令60v =,得402603t ==.结合函数图象可知,汽车通过该路段最少需要23小时. 26.(1)①当15x ≤≤时,设k y x =,把(1,200)代入, 得200k =, 即200y x= ②当5x =时,40y =,∴当5x >时,4020(5)2060y x x =+-=-.(2)当200y =时,2002060x =-.解得13x =.所以治污改造工程顺利完工后经过1358-= (个)月后,该厂利润达到2017年1月的水平.(3)对于200y x=,当100y =时,2x =; 对于2060y x =-,当100y =时,8x =,所以资金紧张的时间为826-=(个)月.。
2018中考数学专题练习《反比例函数》(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.已知120k k <<,则函数11y k x =-和2k y x=的图象大致是( )2一次函数(0)y kx b k =+≠与反比例函数(0)ky k x=≠的图象在同一平面直角坐标系下的大致图象如图1所示,则,k b 的取值范围是( )A. 0,0k b >>B. 0,0k b <>C. 0,0k b <<D. 0,0k b ><3.如图2,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠相交于,A B 两点,若点B 的坐标为(1,2)--,则点A 的坐标为( )A. (2,1)B. (1,2)C. (1,1)D. (2,2)4.如图3,正比例函数1y 与反比例函数2y 相交于点(1,2)E -,若120y y <<,则x 的取值范围在数轴上表示正确的是( )5.如图4,已知P 为反比例函数4y x=图象上的一个动点,O 为坐标原点,过P 作x 轴的垂线,垂足为C ,连接OP ,则PCO ∆的面积为( )A.2B.4C.8D.不确定6.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一公共点,其横坐标为1,则一次函数y bx ac =+的图象可能是( )7.若0a ≠,则函数a y x=与2y ax a =-+在同一平面直角坐标系中的大致图象可能是( )8.如图5,若抛物线23y x =-+与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数(0)ky k x=>的图象是( )9.方程2310x x +-=的根为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程2310x x +-=的实数根0x 的取值范围是( )A. 0104x <<B. 01143x << C. 01132x << D. 0112x <<10.在平面直角坐标系中,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y x =和双曲线1y x=相交于点,A B ,且4AC BC +=,则OAB ∆的面积为( )A. 3或3B. 11C. 3D.1二、填空题(本大题共6小题,每小题4分,共24分)11.函数1y x =与24y x=的图象如图6所示,下列关于函数12y y y =+的结论:①函数的图象关于原点中心对称;②当2x >时,y 随x 的增大而增大;③当0x >时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 .12.如图7,直线y ax =与双曲线k y x =(0)x >交于点(1,2)A ,则不等式kax x <的解集是 .13.如图8,直线2x =与反比例函数3y x =和1y x=-的图象分别交于,A B 两点,若点P 是y 轴上的任意一点,则PAB ∆的面积是 .14.设函数3y x =与26y x =-+的图象的交点坐标为(,)a b ,则12a b+的值是 . 15.已知点(,)A a b 在双曲线5y x=上,若,a b 都是正整数,则图象经过(0,),(,0)B aC b 两点的一次函数表达式为 .16.如图9,已知一次函数3(0)y kx k =-≠的图象与x 轴、y 轴分别交于,A B 两点,与反比例函数6(0)y x x=>交于C 点,且AB AC =,则k 的值为 .三、解答题(本大题共6小题,共66分)17.(8分)已知一次函数1y x =+的图象与反比例函数(0)ky k x=≠的图象都经过点(,2)A a .(1)求a 的值及反比例函数表达式.(2)判断点(2B 是否在改反比例函数的图象上,请说明理由.18. (10分)已知一次函数32y x =-的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)求该反比例函数的表达式.(2)将一次函数32y x =-的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标.19. (10分)如图10,已知反比例函数1ky x=的图象与一次函数2y ax b =+的图象交于点(1,4)A 和点(2,)B m -.(1)求这两个函数的表达式.(2)根据图象直接写出一次函数的值小于反比例函数的值的x 的取值范围.20. (12分)如图11,将直线31y x =+向下平移1个单位,得到直线3y x m =+,若反比例函数ky x=的图象与直线3y x m =+相交于点A ,且点A 的横坐标是1. (1)求m 和k 的值.(2)结合图象,求不等式3kx m x+>的解集.21. (12分)如图12,一次函数y x b =-+与反比例函数ky x=(0)x >的图象交于点(1,3)A 和点(3,)B m .(1)填空:一次函数的表达式为 ,反比例函数的表达式为 .(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.22. (14分)如图13,在平面直角坐标系中,函数ky x=(0)x >的图象与直线2y x =-交于点(3,)A m . (1)求,k m 的值(2)已知点((,)(0)P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数ky x=(0)x >的图象于点N ,当1n =时,判断线段PM 与PN 的数量关系,并说明理由.参考答案1. C2. C3. B4. B5. A6. B7. D8. D9. C 10. A11. ①②③ 12. 01x <<13. 2 14. 2 15. 115y x =-+或55y x =-+ 16. 317.(1)将(,2)A a 代入1y x =+中, 得21a =+. 解得1a =, 即(1,2)A .将(1,2)A 代入反比例函数表达式ky x=中, 得2k =.所以反比例函数表达式为2y x=. (2)点B 在该反比例函数的图象上. 理由如下:将y =得x =∴点B 在该反比例函数的图象上. 18. (1)把1x =代入32y x =-, 得1y =.设反比例函数的表达式为k y x=, 把1,1x y ==代入, 得1k =.∴该反比例函数的表达式为1y x=. (2)由题意,得平移后的图象对应的函数表达式为32y x =+.解方程组132y xy x ⎧=⎪⎨⎪=+⎩, 得133x y ⎧=⎪⎨⎪=⎩或11x y =-⎧⎨=-⎩, ∴平移后的图象与反比例函数图象的交坐标为1(,3)3和(1,1)--. 19.(1)∵(1,4)A 在反比例函数图象上, ∴把(1,4)A 代入反比例函数1ky x=,得 解得4k =.∴反比例函数表达式为4y x=. ∵(2,)B m -在反比例函数图象上, ∴把(2,)B m -代入反比例函数表达式, 可得2m =-. ∴(2,2)B --.把(1,4)A 和(2,2)B --代入一次函数表达式2y ax b =+,得422a b a b +=⎧⎨-+=-⎩,解得22a b =⎧⎨=⎩.∴一次函数表达式为22y x =+. (2)根据图象,得2x <-或01x <<.20. (1)∵3y x m =+由31y x =+向下平移1个单位得到的, ∴0m =.∵点A 的横坐标为1,且在3y x =上, ∴(1,3)A . ∵点A 在ky x=上,∴3k =.(2)由图象,知10x -<<或1x >.21.(1)依题意,把(1,3)A 分别代入y x b =-+和ky x=(0)x >, 即可求得43b k =⎧⎨=⎩, ∴4y x =-+,3y x =. (2)∵点(3,)B m 在3y x=的图象上,∴(3,1)B .∵点P 是线段AB 上一点, ∴设点(,4)P n n -+. ∴13n ≤≤. ∴2111(4)(2)2222S OD PD n n n ==⨯⨯-+=--+g . ∵102-<且13n ≤≤, ∴当2n =时,2S =最大; 当1n =或3n =时,32S =最小. ∴S 的取值范围是322S ≤≤. 22.(1)∵函数ky x =(0)x >的图象与直线2y x =-交于点(3,)A m ,如图2, ∴321m =-= 把(3,1)A 代入k y x=, 得313k =⨯=.(2)当1n =时,(1,1)P . 令1y =,代入2y x =-, 得3x =. ∴(3,1)M . ∴2PM = 令1x =,代入3y x=, 得3y =. ∴(1,3)N . ∴2PN =. ∴PM PN =.。
2018年中考中真题汇编--反比例函数一、单选题1.【黑龙江省哈尔滨市2018年中考数学试题】已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.22.【江苏省无锡市2018年中考数学试题】已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n3.【江苏省淮安市2018年中考数学试题】若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.64.【湖北省黄石市2018年中考数学试卷】已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4 B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4 D.x<﹣1或0<x<45.【湖北省宜昌市2018年中考数学试卷】如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p16.【山东省威海市2018年中考数学试题】若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.【浙江省湖州市2018年中考数学试题】如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)8.【山东省聊城市2018年中考数学试卷】春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过集中喷洒药物,室内空气中的含药量最高达到B.室内空气中的含药量不低于的持续时间达到了C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内9.【浙江省宁波市2018年中考数学试卷】如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A.8 B.C.4 D.10.【云南省昆明市2018年中考数学试题】如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.11.【湖南省郴州市2018年中考数学试卷】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.112.【吉林省长春市2018年中考数学试卷】如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2C.2 D.13.【湖南省怀化市2018年中考数学试题】函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.二、填空题14.【上海市2018年中考数学试卷】已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是_____.15.【山东省东营市2018年中考数学试题】如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.16.【广西钦州市2018年中考数学试卷】如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于_____.17.【湖北省荆门市2018年中考数学试卷】如图,在平面直角坐标系xOy中,函数y=(k >0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.18.【湖北省孝感市2018年中考数学试题】如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为__________.19.【湖南省邵阳市2018年中考数学试卷】如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是_____.20.【湖北省随州市2018年中考数学试卷】如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.21.【山东省烟台市2018年中考数学试卷】如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.22.【江苏省盐城市2018年中考数学试题】如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________23.【四川省内江市2018年中考数学试卷】已知,A、B、C、D是反比例函数y=(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是__________(用含π的代数式表示).24.【山东省威海市2018年中考数学试题】如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为__.25.【湖南省张家界市2018年初中毕业学业考试数学试题】如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数的图象上,则矩形ABCD的周长为________.26.【广西壮族自治区桂林市2018年中考数学试题】如图,矩形OABC的边AB与x轴交于点D,与反比例函数(k>0)在第一象限的图像交于点E,∠AOD=30°,点E的纵坐标为1,ΔODE的面积是,则k的值是________27.【四川省眉山市2018年中考数学试题】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(-10,0),对角线AC和OB相交于点D且AC·OB=160.若反比例函数y=(x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE∶S△OAB=________ .三、解答题28.【湖南省湘西州2018年中考数学试卷】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.29.【湖南省长沙市2018年中考数学试题】如图,在平面直角坐标系xOy中,函数y=(m 为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.30.【浙江省台州市2018年中考数学试题】如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.31.【四川省达州市2018年中考数学试题】矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.32.【山东省淄博市2018年中考数学试题】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.33.【北京市2018年中考数学试卷】在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.(1)求的值;(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内恰有4个整点,结合函数图象,求的取值范围.34.【湖北省襄阳市2018年中考数学试卷】如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.35.【湖北省恩施州2018年中考数学试题】如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.36.【山东省聊城市2018年中考数学试卷】如图,已知反比例函数的图象与反比例函数的图象关于轴对称,,是函数图象上的两点,连接,点是函数图象上的一点,连接,.(1)求,的值;(2)求所在直线的表达式;(3)求的面积.37.【2018年湖南省湘潭市中考数学试卷】如图,点M在函数y=(x>0)的图象上,过点M分别作x轴和y轴的平行线交函数y=(x>0)的图象于点B、C.(1)若点M的坐标为(1,3).①求B、C两点的坐标;②求直线BC的解析式;(2)求△BMC的面积.38.【江苏省泰州市2018年中考数学试题】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.。
反比例函数一.选择题1. (2018·广西贺州·3分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b 是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.2. (2018·湖北十堰·3分)如图,直线y=﹣x与反比例函数y=的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y=的图象于另一点C,则的值为()A.1:3 B.1:2C.2:7 D.3:10【分析】联立直线AB与反比例函数解析式成方程组,通过解方程组可求出点A.B的坐标,由BD∥x轴可得出点D的坐标,由点A.D的坐标利用待定系数法可求出直线AD的解析式,联立直线AD与反比例函数解析式成方程组,通过解方程组可求出点C的坐标,再结合两点间的距离公式即可求出的值.【解答】解:联立直线AB及反比例函数解析式成方程组,,解得:,,∴点B的坐标为(﹣,),点A的坐标为(,﹣).∵BD∥x轴,∴点D的坐标为(0,).设直线AD的解析式为y=mx+n,将A(,﹣)、D(0,)代入y=mx+n,,解得:,∴直线AD的解析式为y=﹣2+.联立直线AD及反比例函数解析式成方程组,,解得:,,∴点C的坐标为(﹣,2).∴==.故选:A.【点评】本题考查了反比例函数与一次函数的交点问题、两点间的距离公式以及待定系数法求一次函数解析式,联立直线与反比例函数解析式成方程组,通过解方程组求出点 A.B.C 的坐标是解题的关键.3.(2018·云南省昆明·4分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB.OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2018·云南省曲靖·4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.6【解答】解:如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=,解得:k=3.故选:C.5.(2018·辽宁省沈阳市)(2.00分)点A(﹣3,2)在反比例函数y=(k≠0)的图象上,则k的值是()A.﹣6 B.﹣ C.﹣1 D.6【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A(﹣3,2)在反比例函数y=(k≠0)的图象上,∴k=(﹣3)×2=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.5.(2018·辽宁省盘锦市)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A.C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形OABC 的两边AB.BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是()A.△ONC≌△OAMB.四边形DAMN与△OM N面积相等C.ON=MND.若∠MON=45°,MN=2,则点C的坐标为(0, +1)【解答】解:∵点M、N都在y=的图象上,∴S△ONC=S△OAM=k,即OC•NC=OA•AM.∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴NC=AM,∴△OCN≌△OAM,∴A 正确;∵S△OND=S△OAM=k,而S△OND+S四边形DAMN=S△OAM+S△OMN,∴四边形DAMN与△MON面积相等,∴B正确;∵△OCN≌△OAM,∴ON=OM.∵k的值不能确定,∴∠MON的值不能确定,∴△ONM只能为等腰三角形,不能确定为等边三角形,∴ON≠MN,∴C错误;作NE⊥OM于E点,如图所示:∵∠MON=45°,∴△ONE为等腰直角三角形,∴NE=OE,设NE=x,则ON=x,∴OM=x,∴EM=x﹣x=(﹣1)x.在Rt△NEM中,MN=2.∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2,∴x2=2+,∴ON2=(x)2=4+2.∵CN=AM,CB=AB,∴BN=BM,∴△BMN为等腰直角三角形,∴BN=MN=,设正方形ABCO 的边长为a,则OC=a,CN=a﹣.在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a﹣)2=4+2,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0, +1),∴D正确.故选C.6.(2018·辽宁省阜新市)反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)【解答】解:∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A.(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B.(3,2),此时xy=3×2=6,不合题意;C.(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D.(﹣2,3),此时xy=﹣2×3=6,符合题意;故选D.7.(2018·辽宁省抚顺市)(3.00分)如图,菱形ABCD的边AD与x轴平行,A.B两点的横坐标分别为1和3,反比例函数y=的图象经过A.B两点,则菱形ABCD的面积是()A.4 B.4 C.2 D.2【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【解答】解:作AH⊥BC交CB的延长线于H,∵反比例函数y=的图象经过A.B两点,A.B两点的横坐标分别为1和3,∴A.B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=4,故选:A.【点评】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.8. (2018•乐山•3分)如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点,∴S△PAB=S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选B.9.(2018·江苏镇江·3分)如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A.B.C.D.【解答】解:连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣=;故选:C.10.(2018·吉林长春·3分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A.B 分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.11.(2018·辽宁大连·3分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b<时,x的取值范围为()A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 解:由图象可知,当k1x+b<时,x的取值范围为0<x<2或x>6.故选D.二.填空题1. (2018·广西梧州·3分)已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此进行解答.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.2. (2018·湖北荆州·3分)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD.BC 分别与x轴交于E.F,连接BE.DF,若正方形ABCD有两个顶点在双曲线y=上,实数a 满足a3﹣a=1,则四边形DEBF的面积是.【解答】解:由a3﹣a=1得a=1,或a=﹣1,a=3.①当a=1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=6②当a=﹣1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=1,四边形DEBF的面积是2x•y=2×1×1=2;③当a=3时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=10,故答案为:6或2或10.3.(2018·四川省攀枝花·3分)如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE 的面积为4,则k= .解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=4,∴BC•EO=4,即BC×OE=8=BO×AB=|k|.∵反比例函数图象在第一象限,k>0,∴k=8.故答案为:8.4.(2018·云南省·3分)已知点P(a,b)在反比例函数y=的图象上,则ab= 2 .【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5. (2018•陕西•3分)若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为:y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.6.(2018·江苏镇江·2分)反比例函数y=(k≠0)的图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而增大.(填“增大”或“减小”)【解答】解:∵反比例函数y=(k≠0)的图象经过点(﹣2,4),∴4=,解得k=﹣8<0,∴函数图象在每个象限内y随x的增大而增大.故答案为:增大.三.解答题1. (2018·湖北江汉·8分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.2. (2018·湖北荆州·8分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为,它的另一条性质为;(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为.【解答】解:(1)由图象可得,函数y=x+(x>0)的最小值是2,它的另一条性质是:当x>1时,y随x的增大而增大,故答案为:2,当x>1时,y随x的增大而增大;(2)∵y=x+(x>0),∴y=,∴当时,y取得最小值,此时x=1,y=2,即函数y=x+(x>0)的最小值是2;(3)∵y=x+(x>0,a>0)∴y=,∴当时,y取得最小值,此时y=2,故答案为:2.3.(2018·四川省攀枝花)如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C.D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;(3)求S△OEB.解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6.∵cos∠OAB═=,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,).∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx.∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;(3)S△OEB=OB•|y E|=×8×3=12.4.(2018·浙江省台州·8分)如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.【分析】(1)将点P(2,m)代入y=x,求出m=2,再将点P(2,2)代入y=,即可求出k 的值;(2)分别求出A.B两点的坐标,即可得到线段AB的长.【解答】解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4﹣1=3.【点评】本题考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.5.(2018·辽宁省葫芦岛市) 如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x 轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC与y轴交于点D,求△BCD的面积.【解答】解:(1)∵AB⊥x轴于点B,点A(m,2),∴点B(m,0),AB=2.∵点C(﹣1,0),∴BC=﹣1﹣m,∴S△ABC=AB•BC=﹣1﹣m=3,∴m=﹣4,∴点A(﹣4,2).∵点A在反比例函数y=(a≠0)的图象上,∴a=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣.将A(﹣4,2)、C(﹣1,0)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x﹣.(2)当x=0时,y=﹣x﹣=﹣,∴点D(0,﹣),∴OD=,∴S△BCD=BC•OD=×3×=1.6. (2018•呼和浩特•6分)已知变量x、y对应关系如下表已知值呈现的对应规律.(2)在这个函数图象上有一点P(x,y)(x<0),过点P分别作x轴和y轴的垂线,并延长与直线y=x﹣2交于A.B两点,若△PAB的面积等于,求出P点坐标.解:(1)由图可知:y=(2)设点P(x,),则点A(x,x﹣2)由题意可知△PAB是等腰三角形,∵S△PAB=,∴PA=PB=5,∵x<0,∴PA=y P﹣y A=﹣x+2即﹣x+2=5解得:x1=﹣2,x2=﹣1∴点P(﹣2,1)或(﹣1,2)7. (2018•乐山•10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB.BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得:x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.8. (2018•广安•6分)如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k为常数,k≠0)的图象交于A.B两点,过点A作AC⊥x轴,垂足为C,连接OA,已知OC=2,tan ∠AOC=,B(m,﹣2)(1)求一次函数和反比例函数的解析式.(2)结合图象直接写出:当y1>y2时,x的取值范围.【分析】(1)求得A(2,3),把A(2,3)代入y2=可得反比例函数的解析式为y=,求得B(﹣3,﹣2),把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得一次函数的解析式为y=x+1.(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.【解答】解:(1)∵OC=2,tan∠AOC=,∴AC=3,∴A(2,3),把A(2,3)代入y2=可得,k=6,∴反比例函数的解析式为y=,把B(m,﹣2)代入反比例函数,可得m=﹣3,∴B(﹣3,﹣2),把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得,解得,∴一次函数的解析式为y=x+1.(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.【点评】本题考查一次函数与反比例函数的交点问题,解题的关键是学会利用待定系数法确定函数解析式,知道两个函数图象的交点坐标可以利用解方程组解决,学会利用图象确定自变量取值范围.9. (2018·湖北咸宁·8分)如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.(1)试说明点N也在函数y=(x>0)的图象上;(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x>0)的图象仅有一个交点时,求直线M'N′的解析式.【答案】(1)说明见解析;(2)直线M'N′的解析式为y=﹣x+2.【解析】【分析】(1)根据矩形OABC的顶点B的坐标为(4,2),可得点M的横坐标为4,点N的纵坐标为2,把x=4代入y=﹣x+,得y=,可求点M的坐标为(4,),把y=2代入y=﹣x+,得x=1,可求点N的坐标为(1,2),由函数y=(x>0)的图象过点M,根据待定系数法可求出函数y=(x>0)的解析式,把N(1,2)代入y=,即可作出判断;(2)设直线M'N′的解析式为y=﹣x+b,由得x2﹣2bx+4=0,再根据判别式即可求解.【详解】(1)∵矩形OABC的顶点B的坐标为(4,2),∴点M的横坐标为4,点N的纵坐标为2,把x=4代入y=﹣x+,得y=,∴点M的坐标为(4,),把y=2代入y=﹣x+,得x=1,∴点N的坐标为(1,2),∵函数y=(x>0)的图象过点M,∴k=4×=2,∴y=(x>0),把N(1,2)代入y=,得2=2,∴点N也在函数y=(x>0)的图象上;(2)设直线M'N′的解析式为y=﹣x+b,由得x2﹣2bx+4=0,∵直线y=﹣x+b与函数y=(x>0)的图象仅有一个交点,∴△=(﹣2b)2﹣4×4=0,解得b=2,b2=﹣2(舍去),∴直线M'N′的解析式为y=﹣x+2.【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的性质,直线与双曲线的交点等,综合性较强,弄清题意熟练掌握和灵活运用反比例函数的相关知识进行解题是关键. 10.(2018·江苏常州·8分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,∴AC•OC=4,∴AC=OC=2,∴点A的坐标为(2,2);(2)∵四边形ABOC的面积是3,∴(OB+2)×2÷2=3,解得OB=1,∴点B的坐标为(0,1),依题意有,解得.故一次函数y=kx+b的表达式为y=x+1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k值的几何意义、梯形的面积、待定系数法求一次函数解析式.。
中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。
反比例函数一.选择题1. (2018·湖南郴州·3分)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S△AOB=3.【解答】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故选:B.【点评】本题考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.2. (2018·湖南怀化·4分)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.【分析】根据当k>0、当k<0时,y=kx﹣3和y=(k≠0)经过的象限,二者一致的即为正确答案.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.3.(2018•江苏徐州•2分)如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)【分析】将(3,﹣4)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:因为点(3,﹣4)在反比例函数y=的图象上,k=3×(﹣4)=﹣12;符合此条件的只有C:k=﹣2×6=﹣12.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.4.(2018•江苏无锡•3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.【点评】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.5.(2018•江苏淮安•3分)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,利用函数图象上点的坐标满足函数解析式是解题关键.6.(2018•江苏苏州•3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3A.OA=4a,在表示出点D.E的坐标,由反比例函数经过点D.E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3A.OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D.E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D.E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.8.(2018•内蒙古包头市•3分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为 3 .【分析】由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=3,根据OA=OB可得答案.【解答】解:如图,∵双曲线y=(x>0)经过点D,∴S△ODF=k=,则S△AOB=2S△ODF=,即OA•BE=,∴OA•BE=3,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=3,故答案为:3.【点评】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.9.(2018•遂宁•4分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<3【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当1<x<3时,y1>y2.故选:A.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.10.(2018•湖州•3分)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.11. (2018•嘉兴•3分)如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,且,的面积为1.则的值为()A. 1B. 2C. 3D. 4【答案】D【解析】【分析】过点C作轴,设点,则得到点C 的坐标,根据的面积为1,得到的关系式,即可求出的值.【解答】过点C作轴,设点,则得到点C的坐标为:的面积为1,即故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.12. (2018•广西玉林•3分)如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2 C.4 D.3【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.【解答】解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.13. (2018·黑龙江大庆·3分)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A.B.C.D.【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限.故选:B.14. (2018·黑龙江哈尔滨·3分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.15.(2018·黑龙江龙东地区·3分)如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B.C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C.D.【分析】连接OC.OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k 的几何意义得到•|3|+•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【解答】解:连接OC.OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=•|3|+•|k|,∴•|3|+•|k|=2,而k<0,∴k=﹣1.故选:A.【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.16.(2018•贵州铜仁•4分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.17.(2018•海南•3分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.18.(2018•贵州遵义•3分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.19. (2018•遂宁•4分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<3【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:当1<x<3时,y1>y2.故选:A.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.二.填空题1. (2018·湖北随州·3分)如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A.B 两点,与x轴交与点C,若tan∠AOC=,则k的值为 3 .【分析】根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A.B两点,可以求得a的值,进而求得k的值,本题得以解决.【解答】解:设点A的坐标为(3a,a),∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A.B两点,∴a=3a﹣2,得a=1,∴1=,得k=3,故答案为:3.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.(2018•江苏宿迁•3分)如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、(k>1)的图象分别交于点A.B,若∠AOB=45°,则△AOB的面积是________.【答案】2【分析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2, y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2,y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2.【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x2, y2),∵A.B在反比例函数上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=,∴x1x2=×=2,∴y1=x2, y2=x1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2,故答案为:2.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.3.(2018•山东东营市•3分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A 的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.4.(2018•山东烟台市•3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k= ﹣3 .【分析】由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.【解答】解:过点P 做PE ⊥y 轴于点E∵四边形ABCD 为平行四边形 ∴AB=CD 又∵BD ⊥x 轴 ∴ABDO 为矩形 ∴AB=DO ∴S 矩形ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴 ∴四边形PDOE 为矩形面积为3 即DO•EO=3∴设P 点坐标为(x ,y ) k=xy=﹣3 故答案为:﹣3【点评】本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.5.(2018•山东济宁市•3分)如图,点 A 是反比例函数 y =x4(x >0)图象上一点,直线 y=kx+b过点 A 并且与两坐标轴分别交于点 B ,C ,过点 A 作 A D ⊥x 轴,垂足为 D ,连接DC,若△BOC 的面积是4,则△DOC 的面积是 2 ﹣2 .【解答】解:设A(a,)(a>0),∴AD=,OD=a,∵直线y=kx+b 过点A并且与两坐标轴分别交于点B,C,∴C(0,b),B(﹣,0),∵△BOC 的面积是4,∴S△BOC=OB×OC=××b=4,∴b 2=8k,∴k=①∴AD⊥x 轴,∴OC∥AD,∴△BOC∽△BDA,∴,∴,∴a 2k+ab=4②,联立①②得,ab=﹣4﹣4(舍)或a b=4﹣4,∴S△DOC=OD•OC=ab=2 ﹣2故答案为2﹣2.6. (2018•上海•4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.7. (2018•遂宁•4分)已知反比例函数y=(k≠0)的图象过点(﹣1,2),则当x>0时,y随x的增大而.【分析】把(﹣1,2)代入解析式得出k的值,再利用反比例函数的性质解答即可.【解答】解:把(﹣1,2)代入解析式y=,可得:k=﹣2,因为k=﹣2<0,所以当x>0时,y随x的增大而增大,故答案为:增大【点评】此题考查了反比例函数y=(k≠0),的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8. (2018•贵州安顺•4分)函数中自变量的取值范围是__________.【答案】【解析】试题解析:根据题意得,x+1>0,解得x>-1.故答案为:x>-1..9. (2018•贵州安顺•4分)如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式的解集是或.其中正确结论的序号是__________.【答案】②③④【解析】分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.10. (2018•广西南宁•3分)如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x >0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于9 .【分析】设出点A坐标,根据函数关系式分别表示各点坐标,根据割补法表示△BEF的面积,构造方程.【解答】解:设点B的坐标为(a,0),则A点坐标为(﹣a,0)由图象可知,点C(a,),E(﹣a,﹣),D(﹣a,),F(﹣,)矩形ABCD面积为:2a•=2k1∴S△DEF=S△BCF=S△ABE=∵S△BEF=7∴2k1+﹣+k1=7 ①∵k1+3k2=0∴k2=﹣k1代入①式得解得k1=9故答案为:9【点评】本题是反比例函数综合题,解题关键是设出点坐标表示相关各点,应用面积法构造方程.11. (2018·黑龙江齐齐哈尔·3分)已知反比例函数y=的图象在第一、三象限内,则k的值可以是1 .(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k的取值范围,写出一个符合题意的k即可.【解答】解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.【点评】本题主要考查反比例函数的性质,当k>0时,双曲线的两个分支在一,三象限,y随x的增大而减小;当k<0时,双曲线的两个分支在二,四象限,y随x的增大而增大.12.(2018•福建A卷•4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以A.b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S△ABC=AC•BC=m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.13.(2018•福建B卷•4分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以A.b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S△ABC=AC•BC=m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了函数图象上点的坐标特征,根与系数的关系,三角形的面积,二次函数的性质.14.(2018•广东•3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2.B3.B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2.B3.B4的坐标进而得出点B n的规律是解题的关键.15.(2018•广西北海•3分)如图,矩形ABCD 的顶点A, B 在x 轴上,且关于y 轴对称,反比例函数 y = k1 (x > 0) 的图像经过点C ,反比例函数xy = k2 (x < 0)的图像分别与 AD , CD 交于点 E , F ,x若S ∆BEF= 7, k 1 + 3k 2 = 0,则k 1 等于.【答案】k 1 = 9【考点】反比例函数综合题【解析】设 B 的坐标为(a ,0),则 A 为(-a ,0),其中 k 1 + 3k 2 = 0,即 k 1 = -3k 2根据题意得到C (a , k 1 ) a, E (-a ,- k 2 ), D (-a , a k 1 ) a, F (- a , 3 k 1 )a矩形面积= 2a ⨯ k1 = 2ka12a ⨯(- 2k 2 )S ∆DE F= DF ⨯ DE = 3 2a = - 2 k23 24a ⨯ k 1S =CF ⨯ BC= 3a = 2 k∆BCF2 2 312a ⨯(-k2)S∆AB E =AB ⨯AE=2a =-k22!S∆BEF =7∴2k +2k -2k +k = 713 231 2把k =-1k 代入上式,得到2314k +5⨯(-1k ) = 73 13 314k -5k = 731917k = 791k1 = 9【点评】该题考察到反比例函数中k 值得计算,设点是关键,把各点坐标求出来,根据割补法求面积列式,求出k1 的值。
一、单选题1.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A. ﹣5B. ﹣4C. ﹣3D. ﹣2【来源】江苏省连云港市2018年中考数学试题【答案】C∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选:C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.2.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A. 4B. 3C. 2D.【来源】浙江省温州市2018年中考数学试卷【答案】B详解: 把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2, ),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.点睛: 此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.3.如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )①;②;③若,则平分;④若,则A. ①③B. ②③C. ②④D. ③④【来源】广东省深圳市2018年中考数学试题【答案】B【详解】①显然AO与BO不一定相等,故△AOP与△BOP不一定全等,故①错误;②延长BP,交x轴于点E,延长AP,交y轴于点F,∵AP//x轴,BP//y轴,∴四边形OEPF是矩形,S△EOP=S△FOP,∵S△BOE=S△AOF=k=6,∴S△AOP=S△BOP,故②正确;③过P作PM⊥BO,垂足为M,过P作PN⊥AO,垂足为N,∵S△AOP=OA•PN,S△BOP=BO•PM,S△AOP=S△BOP,AO=BO,∴PM=PN,∴PO平分∠AOB,即OP为∠AOB的平分线,故③正确;④设P(a,b),则B(a,)、A(,b),S△BOP=BP•EO==4,∴ab=4,S△ABP=AP•BP==8,故④错误,综上,正确的为②③,故选B.【点睛】本题考查了反比例函数的综合题,正确添加辅助线、熟知反比例函数k的几何意义是解题的关键. 4.若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】B点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.5.在平面直角坐标系中,分别过点,作轴的垂线和,探究直线和与双曲线的关系,下列结论中错误..的是A. 两直线中总有一条与双曲线相交B. 当=1时,两条直线与双曲线的交点到原点的距离相等C. 当时,两条直线与双曲线的交点在轴两侧D. 当两直线与双曲线都有交点时,这两交点的最短距离是2【来源】江西省2018年中等学校招生考试数学试题【答案】D【点睛】本题考查了垂直于x轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.6.已知点、都在反比例函数的图象上,则下列关系式一定正确的是()A. B. C. D.【来源】江苏省扬州市2018年中考数学试题【答案】A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.7.给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【来源】山东省德州市2018年中考数学试题【答案】B点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.8.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为1,则的值为()A. 1B. 2C. 3D. 4【来源】2018年浙江省舟山市中考数学试题【答案】D【解析】【分析】过点C作轴,设点,则得到点C的坐标,根据的面积为1,得到的关系式,即可求出的值.【解答】过点C作轴,【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.9.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数(,)的图象上,横坐标分别为1,4,对角线轴.若菱形ABCD的面积为,则k的值为()A. B. C. 4 D. 5【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.二、填空题10.如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、(k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.【来源】江苏省宿迁市2018年中考数学试卷【答案】2【解析】【分析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2,y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2, y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2= ×2+ ×2=2.【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2,故答案为:2.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.11.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为__________.【来源】江苏省连云港市2018年中考数学试题【答案】y1<y2点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.12.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________【来源】江苏省盐城市2018年中考数学试题【答案】4点睛:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x 轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.13.如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为__________.【来源】湖北省孝感市2018年中考数学试题【答案】7【解析】分析:作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.详解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,当y=-4时,x=-,∴E(-,-4),∴EH=2-=,∴CE=CH-HE=4-=,∴S△CEB=CE•BM=××4=7.故答案为:7.点睛:本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.14.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”.当双曲线的眸径为6时,的值为__________.【来源】四川省成都市2018年中考数学试题【答案】详解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,点睛:本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、矩形的性质以及解一元一次方程,利用矩形的性质结合函数图象找出点P′的坐标是解题的关键.15.如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:①;②;③;④不等式的解集是或.其中正确结论的序号是__________.【来源】贵州省安顺市2018年中考数学试题【答案】②③④详解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.16.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.【来源】山东省滨州市2018年中考数学试题【答案】y2<y1<y3点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.17.已知反比例函数的图像经过点,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】【解析】分析:直接把点(-3,-1)代入反比例函数y=,求出k的值即可.详解::∵反比例函数y=的图象经过点(-3,-1),∴-1=,解得k=3.故答案为:3.点睛:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.如图,在平面直角坐标系中,为坐标原点,点是反比例函数图象上的一点,轴于点,则的面积为___________.【来源】湖南省娄底市2018年中考数学试题【答案】1【点睛】本题考查了反比例函数比例系数k的几何意义,用到的知识为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.19.如图,反比例函数与一次函数在第三象限交于点.点的坐标为(一3,0),点是轴左侧的一点.若以为顶点的四边形为平行四边形.则点的坐标为_____________.【来源】山东省德州市2018年中考数学试题【答案】(-4,-3),(-2,3)【解析】分析:联立直线和反比例函数解析式可求出A点的坐标,再分以AB为对角线、以OA为对角线和以OB为对角线三种情况,利用平行四边形的性质可分别求得满足条件的P点的坐标.详解:由题意得:,解得:或.∵反比例函数y=与一次函数y=x﹣2在第三象限交于点A,∴A(﹣1,﹣3).当以AB为对角线时,AB的中点坐标M为(﹣2,﹣1.5).∵平行四边形的对角线互相平分,∴M为OP中点,设P点坐标为(x,y),则=﹣2,=﹣1.5,解得:x=﹣4,y=﹣3,∴P(﹣4,﹣3).当OB为对角线时,由O、B坐标可求得OB的中点坐标M(﹣,0),设P点坐标为(x,y),由平行四边形的性质可知M为AP的中点,结合中点坐标公式可得:=﹣=0,解得:x=﹣2,y=3,∴P (﹣2,3);点睛:本题考查的是反比例函数与一次函数的交点问题,熟知反比例函数图象上点的坐标特点、平行四边形的判定与性质及中点坐标公式是解答此题的关键.20.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【来源】安徽省2018年中考数学试题【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.21.过双曲线的动点作轴于点,是直线上的点,且满足,过点作轴的平行线交此双曲线于点.如果的面积为8,则的值是__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】12或4【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:设点A的坐标为:则点P的坐标为:点C的纵坐标为:,代入反比例函数,点C的横坐标为:解得:如图:设点A的坐标为:则点P的坐标为:点C的纵坐标为:,代入反比例函数,点C的横坐标为:解得:故答案为:12或4.【点评】考查反比例函数图象上点的坐标特征,注意数形结合思想在数学中的应用.22.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x 轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.【来源】浙江省衢州市2018年中考数学试卷【答案】5.详解:∵BD⊥CD,BD=2,∴S△BCD=BD•CD=3,即CD=3.∵C(2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B(5,2),代入反比例解析式得:k=10,即y=,则S△AOC=5.故答案为:5.点睛:本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.三、解答题23.如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b<的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.【来源】江苏省连云港市2018年中考数学试题【答案】(1)k2=﹣8,n=4;(2)﹣2<x<0或x>4;(3)8详解:(1)将A(4,-2)代入y=,得k2=-8.∴y=-,将(-2,n)代入y=-,得n=4.∴k2=-8,n=4点睛:本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题.24.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C 两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.【来源】山东省淄博市2018年中考数学试题【答案】(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得m=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.(1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.【来源】四川省成都市2018年中考数学试题【答案】(1).;(2)的坐标为或.(2)设,.当且时,以A,O,M,N为顶点的四边形为平行四边形.即:且,解得:或(负值已舍),的坐标为或.点睛:本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.26.如图,直线y=3x﹣5与反比例函数y=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积.【来源】山东省潍坊市2018年中考数学试题【答案】(1)k=3;(2)S△AOB =.【解析】分析:(1)先求出B点的坐标,再代入反比例函数解析式求出即可;(2)先求出直线与x轴、y轴的交点坐标,再求出即可.详解:(1)点在直线上,,解得,,反比例函数的图象也经过点,,解得;点睛:本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.27.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【来源】浙江省金华市2018年中考数学试题【答案】(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD 能是正方形,理由见解析.详解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4-t,+t),∴(4-t)(+t)=m,∴t=4-,∴点D的纵坐标为+2t=+2(4-)=8-,∴D(4,8-),∴4(8-)=n,∴m+n=32.点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.28.如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【来源】四川省宜宾市2018年中考数学试题【答案】(1)反比例函数的表达式为,一次函数的表达式y=﹣x﹣5;(2)7.5.【解析】分析:(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.(2)由,解得或,∴点P(-1,-4),在一次函数y=-x-5中,令y=0,得-x-5=0,解得x=-5,故点A(-5,0),S△OPQ=S△OPA-S△OAQ=×5×4−×5×1=7.5.点睛:本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.29.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.【来源】山东省滨州市2018年中考数学试题【答案】(1);(2);(3)x<﹣1或0<x<3.详解:(1)由点C的坐标为(1,),得到OC=2,∵四边形OABC是菱形,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例函数解析式为y=;(2)设直线AB的解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:则直线AB的解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数图象的交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.点睛:此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数图象的交点,熟练掌握待定系数法是解本题的关键.30.如图,反比例函数的图象与正比例函数的图象相交于(1,),两点,点在第四象限,∥轴,.(1)求的值及点的坐标;(2)求的值.【来源】江西省2018年中等学校招生考试数学试题【答案】(1),;(2)2.【详解】(1)∵点(1,)在上,∴=2,∴(1,),把(1,)代入得,【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD是关键.31.如图,一次函数的图象与反比例函数(为常数且)的图象交于,两点,与轴交于点.(1)求此反比例函数的表达式;(2)若点在轴上,且,求点的坐标.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】(1)反比例函数的表达式为;(2)点P(-6,0)或(-2,0).【解析】【分析】(1)把点A(-1,a)代入,得,得到A(-1,3),代入反比例函数,得,即可求得反比例函数的表达式.(2)联立两个函数表达式得,解得,.求得点B的坐标,当时,得.求得点C(-4,0).设点P的坐标为(,0).根据,列出方程求解即可.【点评】属于反比例函数和一次函数综合题,考查一次函数图象上点的坐标特征,待定系数法求反比例函数解析式,三角形的面积公式等,难度不大,熟练掌握各个知识点是解题的关键.32.如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【来源】山东省泰安市2018年中考数学试题【答案】(1),;(2).详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.。
反比例函数与几何综合求 k 值
1、如图 1,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其
中A 点的横坐标为 1,且两条直角边AB、AC 分别平行于x 轴、y 轴,若双曲线y k
k 0 x
与△ABC 有交点,则k的取值范围是。
2 、如图 2 ,将边长为 10 的正三角形 OAB 放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C ,D都在双曲线y=上(k>0,x>0),则k的值为。
3 、如图 3 ,A,B两点在反比例函数 y= 的图象上,C、D两
点在反比例函数 y= 的图象上,A C ⊥x 轴于点 E,B D⊥x 轴于点 F,A C= 2,BD= 3 ,E F= ,则 k 2﹣k1=。
图1图2图3
4、如图4,在Rt△AOB 中,两直角边OA、OB 分别在x轴的负半轴和
y 轴的正半轴上,将△AOB 绕点B逆时针旋转90°后得到△A′O′
B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为。
5、如图5,直线l⊥x 轴于点P,且与反比例函数y1= (x>0)及y2=(x
>0)的图象分别交于点A,B,连接OA,OB,已知△OAB 的面积为2,则k1﹣k2= .图4图5图6。
中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。
2018中考数学专题练习《反比例函数》(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分) 1.已知120k k <<,则函数11y k x =-和2k y x=的图象大致是( )2一次函数(0)y kx b k =+≠与反比例函数(0)ky k x=≠的图象在同一平面直角坐标系下的大致图象如图1所示,则,k b 的取值范围是( )A. 0,0k b >>B. 0,0k b <>C. 0,0k b <<D. 0,0k b ><3.如图2,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠相交于,A B 两点,若点B 的坐标为(1,2)--,则点A 的坐标为( )A. (2,1)B. (1,2)C. (1,1)D. (2,2)4.如图3,正比例函数1y 与反比例函数2y 相交于点(1,2)E -,若120y y <<,则x 的取值范围在数轴上表示正确的是( )5.如图4,已知P 为反比例函数4y x=图象上的一个动点,O 为坐标原点,过P 作x 轴的垂线,垂足为C ,连接OP ,则PCO ∆的面积为( )A.2B.4C.8D.不确定6.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一公共点,其横坐标为1,则一次函数y bx ac =+的图象可能是( )7.若0a ≠,则函数a y x=与2y ax a =-+在同一平面直角坐标系中的大致图象可能是( )8.如图5,若抛物线23y x =-+与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数(0)ky k x=>的图象是( )9.方程2310x x +-=的根为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程2310x x +-=的实数根0x 的取值范围是( )A. 0104x <<B. 01143x << C. 01132x << D. 0112x <<10.在平面直角坐标系中,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y x =和双曲线1y x=相交于点,A B ,且4AC BC +=,则OAB ∆的面积为( )A. 3或3B. 11C. 3D.1二、填空题(本大题共6小题,每小题4分,共24分)11.函数1y x =与24y x=的图象如图6所示,下列关于函数12y y y =+的结论:①函数的图象关于原点中心对称;②当2x >时,y 随x 的增大而增大;③当0x >时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 .12.如图7,直线y ax =与双曲线k y x =(0)x >交于点(1,2)A ,则不等式kax x <的解集是 .13.如图8,直线2x =与反比例函数3y x =和1y x=-的图象分别交于,A B 两点,若点P 是y 轴上的任意一点,则PAB ∆的面积是 .14.设函数3y x =与26y x =-+的图象的交点坐标为(,)a b ,则12a b+的值是 . 15.已知点(,)A a b 在双曲线5y x=上,若,a b 都是正整数,则图象经过(0,),(,0)B aC b 两点的一次函数表达式为 .16.如图9,已知一次函数3(0)y kx k =-≠的图象与x 轴、y 轴分别交于,A B 两点,与反比例函数6(0)y x x=>交于C 点,且AB AC =,则k 的值为 .三、解答题(本大题共6小题,共66分)17.(8分)已知一次函数1y x =+的图象与反比例函数(0)ky k x=≠的图象都经过点(,2)A a .(1)求a 的值及反比例函数表达式.(2)判断点(2B 是否在改反比例函数的图象上,请说明理由.18. (10分)已知一次函数32y x =-的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)求该反比例函数的表达式.(2)将一次函数32y x =-的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标.19. (10分)如图10,已知反比例函数1ky x=的图象与一次函数2y ax b =+的图象交于点(1,4)A 和点(2,)B m -.(1)求这两个函数的表达式.(2)根据图象直接写出一次函数的值小于反比例函数的值的x 的取值范围.20. (12分)如图11,将直线31y x =+向下平移1个单位,得到直线3y x m =+,若反比例函数ky x=的图象与直线3y x m =+相交于点A ,且点A 的横坐标是1. (1)求m 和k 的值.(2)结合图象,求不等式3kx m x+>的解集.21. (12分)如图12,一次函数y x b =-+与反比例函数ky x=(0)x >的图象交于点(1,3)A 和点(3,)B m .(1)填空:一次函数的表达式为 ,反比例函数的表达式为 .(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.22. (14分)如图13,在平面直角坐标系中,函数ky x=(0)x >的图象与直线2y x =-交于点(3,)A m . (1)求,k m 的值(2)已知点((,)(0)P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数ky x=(0)x >的图象于点N ,当1n =时,判断线段PM 与PN 的数量关系,并说明理由.参考答案1. C2. C3. B4. B5. A6. B7. D8. D9. C 10. A11. ①②③ 12. 01x <<13. 2 14. 2 15. 115y x =-+或55y x =-+ 16. 317.(1)将(,2)A a 代入1y x =+中, 得21a =+. 解得1a =, 即(1,2)A .将(1,2)A 代入反比例函数表达式ky x=中, 得2k =.所以反比例函数表达式为2y x=. (2)点B 在该反比例函数的图象上. 理由如下:将y =得2x =. ∴点B 在该反比例函数的图象上. 18. (1)把1x =代入32y x =-, 得1y =.设反比例函数的表达式为k y x=, 把1,1x y ==代入, 得1k =.∴该反比例函数的表达式为1y x=. (2)由题意,得平移后的图象对应的函数表达式为32y x =+.解方程组132y xy x ⎧=⎪⎨⎪=+⎩, 得133x y ⎧=⎪⎨⎪=⎩或11x y =-⎧⎨=-⎩, ∴平移后的图象与反比例函数图象的交坐标为1(,3)3和(1,1)--. 19.(1)∵(1,4)A 在反比例函数图象上, ∴把(1,4)A 代入反比例函数1ky x=,得 解得4k =.∴反比例函数表达式为4y x=. ∵(2,)B m -在反比例函数图象上, ∴把(2,)B m -代入反比例函数表达式, 可得2m =-. ∴(2,2)B --.把(1,4)A 和(2,2)B --代入一次函数表达式2y ax b =+,得422a b a b +=⎧⎨-+=-⎩,解得22a b =⎧⎨=⎩.∴一次函数表达式为22y x =+. (2)根据图象,得2x <-或01x <<.20. (1)∵3y x m =+由31y x =+向下平移1个单位得到的, ∴0m =.∵点A 的横坐标为1,且在3y x =上, ∴(1,3)A . ∵点A 在ky x=上,∴3k =.(2)由图象,知10x -<<或1x >.21.(1)依题意,把(1,3)A 分别代入y x b =-+和ky x=(0)x >, 即可求得43b k =⎧⎨=⎩, ∴4y x =-+,3y x =. (2)∵点(3,)B m 在3y x=的图象上,∴(3,1)B .∵点P 是线段AB 上一点, ∴设点(,4)P n n -+. ∴13n ≤≤. ∴2111(4)(2)2222S OD PD n n n ==⨯⨯-+=--+g . ∵102-<且13n ≤≤, ∴当2n =时,2S =最大; 当1n =或3n =时,32S =最小. ∴S 的取值范围是322S ≤≤. 22.(1)∵函数ky x =(0)x >的图象与直线2y x =-交于点(3,)A m ,如图2, ∴321m =-= 把(3,1)A 代入k y x=, 得313k =⨯=.(2)当1n =时,(1,1)P . 令1y =,代入2y x =-, 得3x =. ∴(3,1)M . ∴2PM = 令1x =,代入3y x=, 得3y =. ∴(1,3)N . ∴2PN =. ∴PM PN =.。