化学反应工程-第二章 复合反应与反应器选型
- 格式:pdf
- 大小:1.02 MB
- 文档页数:80
绪论.1、化学反应工程是一门研究()的科学.(化学反应的工程问题)2.()和()一起,构成了化学反应工程的核心。
〔三传;反应动力学〕3。
不论是设计、放大或控制,都需要对研究对象作出定量的描述,也就要用数学式来表达个参数间的关系,简称( )。
(数学模型)4.化学反应和反应器的分类方法很多,按反应系统涉及的相态分类,分为:()和( )。
5.化学反应和反应器的分类方法很多,按操作方法分为()操作、( )操作和()操作.6.化学反应和反应器的分类方法很多,按传热条件分为()、()和().选择1. ()“三传一反”是化学反应工程的基础,其中所谓的一反是指。
A 化学反应B 反应工程C 反应热力学D 反应动力学,2. ()“三传一反”是化学反应工程的基础,下列不属于三传的是。
A能量传递B质量传连C 热量传递D 动量传递3. ()按反应器的型式来分类,高径比大于30的为A。
管式反应器B槽式反应器C塔式反应器D釜式反应器三、判断1.物理过程不会改变化学反应过程的动力学规律,即化学反应速率与温度浓度之间的关系并不因为物理过程的存在而发生变化。
()2.流体流动、传质、传热过程不会影响实际反应的温度和参与反应的各组分浓度在时间、空间上的分布,最终影响反应结果。
( )四、简答1.利用数学模型解决化学反应工程问题的步骤?第一章均相单一反应动力学和理想反应器1.均相反应是指()。
2。
如果反应体系中多于一个反应物,在定义转化率时,关键组分A的选取原则是()。
3. 当计量方程中计算系数的代数和等于零时,这种反应称为( ),否则称为( ) .4. 化学反应速率式为,如用浓度表示的速率常数为,用压力表示的速率常数则=()。
5。
活化能的大小直接反映了()对温度的敏感程度。
6。
化学反应动力学方程有多种形式。
对于均相反应,方程多数可以写成()或().7。
对于反应器的开发根据()来选择合适的反应器,结合( )和()两方面特性来确定操作方式和优化操作条件。
化学反应工程课程教案
从本质上说,物理过程不改变反应过程的动力学规律。
也就是说,反应的动力学方程并不因为物理过程的存在而发生变化。
但是,流体的流动、传质、传热过程会影响实际反应场所的浓度和温度在时间、空间上的分布,从而影响实际反应场的浓度和温度在时间、空间上的分布,从而影响反应的最终结果。
对某个具体反应,选择反应器、操作条件和操作方式主要考虑化学反应本身的特征与反应器特征,最终选择的依据将取决于所有过程:一是反应器的大小,二是产物分布济性。
过程的经济性主要受两个因素影响;而对于复合反应,首先要考虑产物分布。
2.1单一不可逆反应过程与反应器
2.1.1单一不可逆反应过程平推流反应器与全混流反应器的比较
在反应器设计评比中,只考虑如何有利于反应速率的提高。
当然,其中一个重要因素是,考察反应器的大小.
一、理想流动反应器的体积比较
基本条件:
和反应温度均相同;等容过程。
V R ,V RP ,V RM 分别表示间歇反应器体积、平推流反应器
体积和全混流反应器体积,则:
当转化率越大,则两者的差距
较大,所以可采用低转化率操作。
1、对同一单一的正级
数反应,在相同工艺
00,,A Af V C x Af A 0A00A x R dx V V C r =⎰Af A 0A00A x Rp
dx V V C r =⎰00()A Af RM A f
V C x V
r =0000[]
[]
Rp A RM A V V C OABD V V C OCBD ==1
<RM RP
V V。
第二章 均相反应动力学基础均相反应 均相反应是指参予反应的各物质均处同一个相内进行化学反应。
在一个相中的反应物料是以分子尺度混合的,要求:①必须是均相体系 (微观条件) ②强烈的混合手段 (宏观条件) ③反应速率远小于分子扩散速度一、计量方程反应物计量系数为负,生成物计量系数为正。
计量方程表示物质量之间关系,与实际反应历程无关; 计量系数只有一个公因子;用一个计量方程表示物质量之间关系的体系称为单一反应,反之称为复合反应。
二、化学反应速率单位时间、单位反应容积内组分的物质的量(摩尔数)的变化称之为该组分的反应速率。
反应物:生成物:对于反应三、化学反应速率方程r 是反应物系的组成、温度和压力的函数。
32223NH H N =+032223=--N H NH A A Adn r Vd d t C dt=-=-R R Rdn r Vdt dC dt==A B S R A B S Rαααα+=+SABRABSRr r r r αααα===AA AB r [k (T)][f(C ,C ,)]=有两类;双曲函数型和幂函数型。
k -化学反应速率常数; a(b)-反应级数。
(1)反应级数(i) 反应级数与反应机理无直接的关系,也不等于各组份的计量系数; (ii) 反应级数表明反应速率对各组分浓度的敏感程度;(iii) 反应级数是由实验获得的经验值,只能在获得其值的实验条件范围内加以应用。
(2)反应速率常数k[k]: s -1·(mol/m 3)1-nE :是活化能,把反应分子“激发”到可进行反应的“活化状态”时所需的能量。
E 愈大,通常所需的反应温度亦愈高,反应速率对温度就愈敏感。
k 0 —指前因子,其单位与 反应速率常数相同;E— 化学反应的活化能,J/mol ; R — 气体常数,8.314J/(mol .K)。
a b A A B r kC C=2220.512H Br HBrHBrBr k c c r c k c =+0exp[]E k k RT=-01ln ln E k k R T=-⨯ln klnk 0 slop=-E/R1/T⏹ 反应速率的温度函数关系● 活化能越高,斜率越大,该反应对温度越敏感; ● 对于一定反应,低温时反应速率对温度变化更敏感。
第一章绪论1.1 化学反应工程学的范畴和任务1.1.1化学反应工程发展简述自然界的物质的运动或变化过程由物理或化学的两类,物理过程不牵涉化学反应,但化学过程却总是与物理因素有着紧密联系。
所以化学反应过程是物理与化学两类因素综合体。
远溯古代,陶瓷制作、酿酒等工艺,但直到本世纪五十年代一直还未形成一门专门研究的独立学科,到1957年举行的第一次欧洲反应工程会议上确立了这一学科的名称。
1.1.2 化学反应工程的范畴和任务化学反应工程学:是一门研究化学反应的工程问题的科学,既以化学反应作为研究对象,又以工程问题为研究对象,把二者结合起来的学科体系。
一、研究的范畴1.化工热力学:确定物系的各种物性常数(热容、研所引资、反应热等),看化学反应是否能进行及其反应程度。
2.反应动力学:专门阐明学反应速率与各项物理因素(如温度、压力、催化剂等)之间的定量关系。
为实现某一反应,要选定合易的条件及反应器的结构型式、尺寸和处理能力等,这些都依赖于对反应动力学特性的认识。
3.催化剂4.设备型式、操作方法和流程有小试到扩是出现放大效应,因此工业装置的反映条件必须结合工程上的考虑才能合理的确定。
反应器型式:管式、釜式、塔式、固定床或流化床等。
操作方式:分批式、连续式或半连续式。
反应器的型式与特性表型式适用反应优缺点搅拌槽液相、液—液、液—固相适用性大,操作弹性大,温度、浓度易控制,产品质量均一管式气相、液相返混小,反应器容积小,比传热面大空塔或搅拌塔液相、液—液相结构简单,返混程度与高/径比及搅拌有关,轴向温差大鼓泡塔或挡板鼓泡塔气—液相,气—液—固相气相返混小,液相返混大,温度较易调节,气体压降大,流速有限制填料塔液相、气—液相结构简单,返混小,压降小,有温差,填料装卸麻烦板式塔气—液相逆流接触,气液返混均小,流速有限制,如需传热,常另加传热面喷雾塔气—液相快速反应结构简单,液体表面积大,停留时间受塔高限制,气流速度有限制固定床气—固相返混小,催化剂用量少,不易磨损,装卸麻烦,传热控温不易流化床气—固相,特别是催化剂失活很快的反应传热好,温度均匀,易控制,催化剂有效系数大,磨损大,返混大,对转化率不利,操作条件限制大移动床同上固体返混小,固气比可变性大,床内温差大,调节困难滴流床气—液—固相催化剂带出少,分离易,气液分不要均匀,温度调节困难蓄热床气相,以固相为热载体结构简单,调节范围较广,切换频繁,温度波动大,收率低喷嘴式气相,高速反应的液相传热、传质速度快,流体混合好,反应物急冷易分批式(或间歇)操作:是指一批反应物料投入反应器内后,让它经过一定的反应,然后再取出的操作方法。
化学反应工程知识点#化学反应工程知识点—郭锴主编1、化学反应工程学不仅研究化学反应速率与反应条件之间的关系,即化学反应动力学,而且着重研究传递过程对宏观化学反应速率的影响,研究不同类型反应器的特点及其与化学反应结果之间的关系。
2、任何化工生产,从原料到产品都可以概括为原料的预处理、化学反应过程和产物的后处理这三个部分,而化学反应过程是整个化工生产的核心。
3.化学反应工程的基本研究方法是数学模型法。
数学模型法是对复杂的、难以用数学全面描述的客观实体,人为地做某些假定,设想出一个简化模型,并通过对简化模型的数学求解,达到利用简单数学方程描述复杂物理过程的目的。
模型必须具有等效性,而且要与被描述的实体的那一方面的特性相似;模型必须进行合理简化,简化模型既要反映客观实体,又有便于数学求解和使用。
4.反应器按型式来分类可以分为管式反应器、槽式反应器(釜式反应器)和塔式反应器。
5反应器按传热条件分类,分为等温反应器、绝热反应器和非等温非绝热反应器。
第一章 均相单一反应动力学和理想反应器1、目前普遍使用关键组分A 的转化率来描述一个化学反应进行的程度,其定义为:00A A A A A A n n n x -==组分的起始量组分量转化了的 2、化学反应速率定义(严格定义)为单位反应体系内反应程度随时间的变化率。
其数学表达式为dtd V r ξ1=。
3、对于反应D C B A 432+=+,反应物A 的消耗速率表达式为dtdn V r A A 1-=-;反应产物C 的生成速率表达式为:dt dn V r C C 1= 4.反应动力学方程:定量描述反应速率与影响反应速率之间的关系式称为反应动力学方程。
大量的实验表明,均相反应的速率是反应物系的组成、温度和压力的函数。
5.阿累尼乌斯关系式为RT E C C e k k -=0,其中活化能反应了反应速率对温度变化的敏感程度。
6、半衰期:是指转化率从0变为50%所需时间为该反应的半衰期。
化学反应工程知识点—郭锴主编1、化学反应工程学不仅研究化学反应速率与反应条件之间的关系,即化学反应动力学,而且着重研究传递过程对宏观化学反应速率的影响,研究不同类型反应器的特点及其与化学反应结果之间的关系。
2、任何化工生产,从原料到产品都可以概括为原料的预处理、化学反应过程和产物的后处理这三个部分,而化学反应过程是整个化工生产的核心。
3.化学反应工程的基本研究方法是数学模型法。
数学模型法是对复杂的、难以用数学全面描述的客观实体,人为地做某些假定,设想出一个简化模型,并通过对简化模型的数学求解,达到利用简单数学方程描述复杂物理过程的目的。
模型必须具有等效性,而且要与被描述的实体的那一方面的特性相似;模型必须进行合理简化,简化模型既要反映客观实体,又有便于数学求解和使用。
4.反应器按型式来分类可以分为管式反应器、槽式反应器(釜式反应器)和塔式反应器。
5反应器按传热条件分类,分为等温反应器、绝热反应器和非等温非绝热反应器。
第一章 均相单一反应动力学和理想反应器1、目前普遍使用关键组分A 的转化率来描述一个化学反应进行的程度,其定义为:00A A A A A A n n n x -==组分的起始量组分量转化了的 2、化学反应速率定义(严格定义)为单位反应体系内反应程度随时间的变化率。
其数学表达式为dtd V r ξ1=。
3、对于反应D C B A 432+=+,反应物A 的消耗速率表达式为dt dn V r A A 1-=-;反应产物C 的生成速率表达式为:dtdn V r C C 1= 4.反应动力学方程:定量描述反应速率与影响反应速率之间的关系式称为反应动力学方程。
大量的实验表明,均相反应的速率是反应物系的组成、温度和压力的函数。
5.阿累尼乌斯关系式为RT E C C e k k -=0,其中活化能反应了反应速率对温度变化的敏感程度。
6、半衰期:是指转化率从0变为50%所需时间为该反应的半衰期。
7、反应器的开发大致有下述三个任务:①根据化学反应动力学特性来选择合适的反应器型式;②结合动力学和反应器两方面特性来确定操作方式和优化操条件;③根据给定的产量对反应装置进行设计计算,确定反应器的几何尺寸并进行评价。
化学反应工程考试题库(分三个部分)(一)(综合章节)复习题一、填空题:1.所谓“三传一反”是化学反应工程学的基础,其中“三传”是指质量传递、热量传递和动量传递,“一反”是指反应动力学。
2.各种操作因素对于复杂反应的影响虽然各不相同,但通常温度升高有利于活化能高的反应的选择性,反应物浓度升高有利于反应级数大的反应的选择性。
3.测定非理想流动的停留时间分布函数时,两种最常见的示踪物输入方法为脉冲示踪法和阶跃示踪法。
4.在均相反应动力学中,利用实验数据求取化学反应速度方程式的两种最主要的方法为积分法和微分法。
5.多级混合模型的唯一模型参数为串联的全混区的个数N ,轴向扩散模型的唯一模型参数为Pe(或Ez / uL)。
6.工业催化剂性能优劣的三种最主要的性质是活性、选择性和稳定性。
7.平推流反应器的E函数表达式为,()0,t tE tt t⎧∞=⎪=⎨≠⎪⎩,其无因次方差2θσ=0 ,而全混流反应器的无因次方差2θσ= 1 。
8.某反应速率常数的单位为m3 / (mol⋅ hr ),该反应为 2 级反应。
9.对于反应22A B R+→,各物质反应速率之间的关系为 (-r A):(-r B):r R= 1:2:2 。
10.平推流反应器和全混流反应器中平推流更适合于目的产物是中间产物的串联反应。
11.某反应的计量方程为A R S→+,则其反应速率表达式不能确定。
12.物质A按一级不可逆反应在一间歇反应器中分解,在67℃时转化50%需要30 min, 而在80 ℃时达到同样的转化率仅需20秒,该反应的活化能为 3.46×105 (J / mol ) 。
13.反应级数不可能(可能/不可能)大于3。
14. 对于单一反应,在相同的处理量和最终转化率条件下,选择反应器时主要考虑 反应器的大小 ;而对于复合反应,选择反应器时主要考虑的则是 目的产物的收率 ; 15. 完全混合反应器(全混流反应器)内物料的温度和浓度 均一 ,并且 等于(大于/小于/等于)反应器出口物料的温度和浓度。
《化学反应工程》课程教学大纲课程名称:化学反应工程课程类型:必修课,专业课总学时:54 讲课学时:54 实验学时:0学分:3.0适用对象:化学工程、化学工艺先修课程:物理化学、化工工艺学、化工原理、化工热力学一、课程性质、目的和任务课程性质:化学反应工程是以化学反应器原理为要紧线索,要紧研究化学反应过程需要解决的工程问题,是化工生产的龙头、关键和核心,是一些基础学科诸如物理化学、传递过程、化学工艺等相互渗透与交叉而演变成的边缘学科,其内容要紧涉及化学反应动力学、反应器中传递特性、反应器类型结构、数学建模方法、操作分析及反应器设计,具有高度综合性、广泛基础性和自身专门性。
课程目的与任务:一是培养学生将物理化学、传递过程、化学工艺、化工热力学、操纵工程等学科知识用之于化学反应工程学的综合能力;二是使学生把握化学反应工程学科的理论体系、研究方法,了解学科前沿;三是使学生初步具备改进和强化现有反应技术和设备、开发新的反应技术和设备、解决反应过程中的工程放大问题以及实现反应过程中最优化的能力二、教学差不多要求通过本课程的教学,要使学生系统地把握化学反应动力学规律、传递过程对化学反应的阻碍规律,把握反应器设计、过程分析及最佳化方法。
四、课程的重点和难点绪论重点是化学反应工程的研究内容和方法。
第一章均相单一反应动力学和理想反应器重点:①化学反应动力学方程②理想反应器设计方程难点:动力学方称的建立;反应器设计运算第二章复合反应与反应器选型重点:复合反应动力学方程表达法;复合反应动力学特点分析;平推流反应器的串联和全混流反应器的串联。
难点:可逆反应吸热反应和放热反应动力学特点推导与分析;循环反应器设计方程的数学推导;复合反应(包括可逆反应、自催化反应、平行反应、连串反应)在PFR 和CSTR反应器的优化设计运算第三章非理想流淌反应器重点:停留时刻分布的概率函数及特点值;停留时刻分布的实验测定;解决均相反应过程问题的近似法即活塞流模型、全混流模型、凝聚流模型、多级混合槽模型、轴向扩散模型的推导、结论及应用比较。