飞机基本结构123
- 格式:doc
- 大小:32.50 KB
- 文档页数:4
机身的构造形式
蒙皮骨架式机身
结构特点
桁梁式机身:桁梁承受大部分弯矩
桁条式机身:蒙皮较厚,桁条较密,并承受全部载荷
硬壳式机身:只有蒙皮和隔框,载荷全部由蒙皮承受
^77
•严r丫土三n
蘇度普通隅無f
”/桁樂式机身
加强隔眶
桁条
桁条锐机身哽壳武机畀
作用在机翼上的外载荷
整体壁板式机身和夹芯机身
飞机基本构造:机翼
翼梁承受的弯矩和剪力
B)横向骨架、蒙皮与接头
普通翼肋:维持翼面形状,把蒙皮和桁条传来的气动载荷传给翼梁加强
翼肋:除普通翼肋的功用外,还起加强作用.
蒙皮:维持气动外形,承受气动载荷,承受扭矩和部分弯矩剪力
接头:将力从一个构件传给另一构件
翼肋受力蒙皮受力3•机翼的基本构造形式
蒙皮骨架式机翼i—mu.!—3—f.i
夹层机翼整体壁板机翼
起落装置
1•起落装置的功用:
用于起飞和着陆滑行停放并吸收撞击能量,改善滑行性
2•起落装置的配置形式及其特点
后三点:尾轮易于安装,结构简单,易“拿发动机喷气烧坏跑道,飞行员视界好。
但前地,滑跑距离长,前起落架需加转向机大顶”。
滑跑距离较长,操纵困难,滑行稳轮尺寸大易出现摆振现象构
定性差,向下视界不好
3•起落架的组成及其各部分功用
4.改善飞机起落性能的装置。
飞机的基本构造飞机是一种能够在大气中飞行的航空器,它是人类工程师多年来对飞行原理的深入研究和技术发展的结晶,能够在空中快速、高效地进行航空运输和军事任务。
飞机的基本构造包括机身、机翼、发动机、弹射椅和座舱等组成部分。
1. 机身:机身是飞机的主要承载结构,由舱段和连接这些舱段的框架组成。
它通常由轻质且高强度的材料,如铝合金或复合材料制成。
机身的前部通常包含座舱和驾驶舱,以及飞机操纵系统的控制装置。
机身的中部通常是客舱或货舱,用于载人或载货。
机身的后部通常包含燃油箱、发动机和尾部组件。
2. 机翼:机翼是产生升力的关键部件。
它通常采用翼型外形,其上面凸起,下面平坦,其特殊弯曲形状使得气流在上表面的流速变快、压强变小,从而产生向上的升力。
机翼还具有翼尖、翼根和副翼等构件。
机翼通常由铝合金或者复合材料制成,可以通过支柱或滑轨与机身连接。
3. 发动机:发动机是飞机的动力装置,通常由一台或多台燃气涡轮发动机组成。
发动机通过燃烧燃料来产生高温高压的气体,并通过喷口将这些气体向后排出,推动飞机前进。
发动机通常位于机翼下方的机身后部,有专门的机翼瘤或吊舱容纳。
4. 弹射椅:弹射椅是飞机上必不可少的安全装备之一。
它通常安装在座舱内,用于紧急情况下飞行员或乘客迅速逃生。
当飞机遭遇危险状况时,弹射椅会通过瞬间推力将乘员弹射出机舱,以确保乘员的生命安全。
5. 座舱:座舱是乘客和机组人员的区域。
它通常位于机身的前部,提供舒适的座位和必要的设施,如气候控制、娱乐设施、厕所等。
座舱还包括乘员的舱门和逃生装置,以确保乘客的安全。
除了这些基本构造外,飞机还包括许多其他部件,如起落架、翼舱、机身结构支撑等。
飞机的设计和构造是多学科交叉融合的产物,涵盖了力学、材料科学、航空学、空气动力学等多个领域的知识。
飞机的构造和设计的不断发展和创新,使得现代飞机具有更好的性能、更高的安全性和更大的便利性。
飞机的基本结构
飞机是一种由机身、发动机、起落架、航行系统等组成的复杂机械装置,用来在空中进行飞行。
机身:飞机的机身是飞机的支架、框架和外壳的基本结构,它的功能是支撑发动机、起落架和航行系统等装置,为它们提供动力,并起到承载和保护机载及外部其它设备的作用。
发动机:飞机发动机是提供飞行动力的重要组成部分,它的型号有多种,但最常见的发动机是涡轮压气发动机,这种发动机可以提供大量的推力。
起落架:飞机起落架是复杂的液压、机械系统,它能够支撑飞机在跑道上地面上进行起飞和着陆,并提供安全。
航行系统:航行系统由控制单元、方向舵、流体、调节器及气动元件等组成,它可以把飞机控制在指定的航线上,使飞机能够在一个稳定的航向上航行和飞行。
飞机的基本构造飞机的基本构造是指飞机的主要组成部分以及它们之间的连接和排列。
以下是飞机基本构造的相关参考内容:1. 机翼(Wing):机翼是飞机最主要的承载结构,通常为平面状的支撑面,它通过产生升力来支持整个机身。
机翼通常由前缘、后缘、上表面和下表面组成,并且配备有襟翼(Flap)、副翼(Aileron)等控制面。
2. 机身(Fuselage):机身是飞机的主体部分,承载乘客、货物以及各个系统和设备。
机身通常为长方体或圆柱形,由舱段组成,包括机头、客舱和机尾等部分。
机身内部包括座椅、货舱、厕所等设施。
3. 尾翼(Tail):尾翼包括垂直尾翼和水平尾翼。
垂直尾翼通常位于机尾顶部,用于提供稳定性和方向控制;水平尾翼通常位于垂直尾翼的顶部,用于控制飞机的俯仰。
4. 起落架(Landing Gear):起落架用于飞机的地面支撑和起降过程中的减震。
它一般由前起落架和主起落架组成,前起落架通常位于机身前部,主起落架通常位于机身下方。
5. 发动机(Engine):发动机是飞机提供推力的设备。
根据不同的飞机类型,可以有单发、双发或多发的配置。
发动机通常安装在机翼下方或尾部机身上。
6. 控制系统(Control System):控制系统是用来操纵飞机飞行姿态和进行操作的一系列设备和机构。
包括操纵杆、脚蹬、襟翼、副翼、方向舵等,通过操纵这些设备可以调整飞机的姿态和航向。
7. 电气系统(Electrical System):电气系统为飞机提供电力供应,并驱动各个系统、设备的正常运行。
电气系统包括发电机、电池、电气线路、配电盘等。
8. 燃油系统(Fuel System):燃油系统用于储存和输送燃油到发动机。
它包括燃油箱、燃油泵、燃油滤清器等设备。
9. 液压系统(Hydraulic System):液压系统用于驱动飞机上的一些关键系统和设备,如起落架的收放、襟翼的伸缩等。
液压系统由液压控制装置、液压泵、液压油箱等组成。
10. 舱门和窗户(Doors and Windows):舱门和窗户是飞机上的出入口,同时也是通风和观景的窗口。
飞机基本结构
飞机结构一般由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置(主要介绍机翼和机身)。
机翼
薄蒙皮梁式
主要的构造特点是蒙皮很薄,常用轻质铝合金制作,纵向翼梁很强(有单梁、双梁或多梁等布置).纵向长桁较少且弱,梁缘条的剖面与长桁相比要大得多,当布置有一根纵梁时同时还要布置有一根以上的纵墙。
该型式的机翼通常不作为一个整体,而是分成左、右两个机翼,用几个梁、墙根部传集中载荷的对接接头与机身连接。
薄蒙皮梁式翼面结构常用于早期的低速飞机或现代农用飞机、运动飞机中,这些飞机的翼面结构高度较大,梁作为惟一传递总体弯矩的构件,在截面高度较大处布置较强的梁。
多梁单块式
从构造上看,蒙皮较厚,与长桁、翼梁缘条组成可受轴力的壁板承受总体弯矩;纵向长桁布置较密,长桁截面积与梁的横截面比较接近或略小;梁或墙与壁板形成封闭的盒段,增强了翼面结构的抗扭刚度,为充分发挥多梁单块式机翼的受力特性,左、右机翼最好连成整体贯穿机身。
有时为使用、维修的方便,可在展向布置有设计分离面,分离面处采用沿翼盒周缘分散连接的形式将全机翼连成一体,然后整个机翼另通过几个接头与机身相连。
多墙厚蒙皮式(有时称多梁厚蒙皮式,以下统简称为多墙式)
这类机翼布置了较多的纵墙(一般多于5个);蒙皮厚(可从几毫米到十几毫米);无长桁;有少肋、多肋两种。
但结合受集中力的需要,至少每侧机翼上要布置3—5个加强翼肋。
当左、右机翼连成整体时,与机身的连接与多梁单块式类似。
但有的与薄蒙皮梁式类似,分成左右机翼,在机身侧边与之相连,此时往往由多墙式过渡到多梁式,用少于墙数量的几个梁的根部集中对接接头在根部与机身相连。
蒙皮
蒙皮的直接功用是形成流线形的机翼外表面。
为了使机翼的阻力尽量小,蒙皮应力求光滑,减小它在飞行中的凹、凸变形。
从受力看,气动载荷直接作用在蒙皮上,因此蒙皮受有垂直于其表面的局部气动载荷。
此外蒙皮还参与机翼的总体受力-它和翼梁或翼墙的腹板组合在一起,形成封闭的盒式薄壁结构承受机翼的扭矩;当蒙皮较厚时,它与长桁一起组成壁板,承受机翼弯矩引起的轴力。
壁板有组合式或整体式。
某些结构型式(如多腹板式机翼)的蒙皮很厚,可从几mm到十几mm,常做成整体壁板形式,此时蒙皮将成为最主要的,甚至是惟一的承受弯矩的受力元件。
长桁
长桁(也称桁条)是与蒙皮和翼肋相连的构件。
长桁上作用有气动载荷。
在现代机翼中它一般都参与机翼的总体受力—承受机翼弯矩引起的部分轴向力,是纵向骨架中的重要受力构件之一。
除上述承力作用外,长桁和翼肋一起对蒙皮起一定的支持作用。
翼肋
普通翼肋构造上的功用是维持机翼剖面所需的形状。
一般它与蒙皮、长桁相连,机翼受气动载荷时,它以自身平面内的刚度向蒙皮、长桁提供垂直方向的支持。
同时翼肋又沿周边支持在蒙皮和梁(或墙)的腹板上,在翼肋受载时,由蒙皮、腹板向翼肋提供各自平面内的支承剪流。
加强翼肋虽也有上述作用,但其主要是用于承受并传递自身平面内的较大的集中载荷或由于结构不连续(如大开口处)引起的附加载荷。
翼梁
翼梁由梁的腹板和缘条(或称凸缘)组成(图3.11)。
翼梁是单纯的受力件,主要承受剪力Q和弯矩M。
在有的结构型式中,它是机翼主要的纵向受力件,承受机翼的全部或大部分弯矩。
翼梁大多在根部与机身固接。
纵墙
纵墙(包括腹板)的缘条比梁缘条弱得多,一般与长桁相近,纵墙与机身的连接为铰接,腹板即没有缘条。
墙和腹板一般都不能承受弯矩,但与蒙皮组成封闭盒段以承受机翼的扭矩,后墙则还有封闭机翼内部容积的作用。
机身
机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。
桁梁式
桁梁式机身结构特点是有几根(如四根)桁梁,桁梁的截面面积很大。
在这类机身结构上长桁的数量较少而且较弱,甚至长桁可以不连续。
蒙皮较薄。
这种结构的机身,由弯曲引起的轴向力主要由桁梁承受,蒙皮和长桁只承受很小部分的轴力。
剪力则全部由蒙皮承受。
桁条式
这种型式机身的特点是长桁较密、较强;蒙皮较厚。
此时弯曲引起的轴向力将由许多桁条与较厚的蒙皮组成的壁板来承受;剪力仍全部由蒙皮承受。
硬壳式
硬壳式机身结构是由蒙皮与少数隔框组成。
其特点是没有纵向构件,蒙皮厚。
由厚蒙皮承受机身总体弯、剪、扭引起的全部轴力和剪力。
隔框用于维持机身截面形状,支持蒙皮和承受、扩散框平面内的集中力。
这种型式的机身实际上用得很少,其根本原因是因为机身的相对载荷较小.而且机身不可避免要大开口,会使蒙皮材料的利用率不高,开口补强增重较大。
所以只在机身结构中某些气动载荷较大、要求蒙皮局部刚度较大的部位,如头部、机头罩、尾锥等处有采用。
具体构造也有用夹层结构或整体旋压件等形式。
(a)桁条式;(b)桁梁式;(c)硬壳式
1--长桁;2--桁梁;3--蒙皮;4--隔框
隔框
隔框分为普通框与加强框两大类。
普通框用来维持机身的截面形状。
一般沿机身周边空气压力为对称分布,此时空气动力在框上自身平衡,不再传到机身别的结构去。
加强框,其主要功用是将装载的质量力和其他部件上的载荷经接头传到机身结构上的集中力加以扩散,然后以剪流的形式传给蒙皮。
长桁与桁梁
长桁作为机身结构的纵向构件,在桁条式机身中主要用以承受机身弯曲时产生的轴力。
另外长桁对蒙皮有支持作用,它提高了蒙皮的受压、受剪失稳临界应力;其次它承受部分作用在蒙皮上的气动力并传给隔框,与机翼的长桁相似。
桁梁的作用与长桁相似,只是截面积比长桁大。
蒙皮
机身蒙皮在构造上的功用是构成机身的气动外形,并保持表面光滑,所以它承受局部空气动力。
蒙皮在机身总体受载中起很重要的作用。
它承受两个平面内的剪力和扭矩;同时和长桁等一起组成壁板承受两个平面内弯矩引起的轴力,只是随构造型式的不同,机身承弯时它的作用大小不同。