数学人教版七年级上册数轴上两点间的距离
- 格式:doc
- 大小:137.50 KB
- 文档页数:5
压轴题:动点问题以及绝对值问题总结一、填空题1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)数轴上表示3和5两点之间的距离是________,数轴上表示2和-5两点之间的距离是________.(2)在数轴上表示数x的点与﹣2的点距离是3,那么x=________.(3)如果x表示一个有理数,那么|x+4|+|x﹣2|的最小值是________.(4)如果x表示一个有理数,当x=________时,|x+3|+|x﹣6|=11.2.阅读下列内容:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=________,若|x﹣2|=|x+1|,则x=________;(2)若|x﹣2|+|x+1|=3,则x的取值范围是________;(3)若|x﹣2|+|x+1|=5,则x的值是________;(4)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是________.二、综合题3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=________;B,C两点间距离=________;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?4.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=________,BC=________;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.5.已知a是最大的负整数,与互为相反数,在数轴上,所对应的点分别为A,B,C,点P为该数轴上一动点,其对应的数为x.(1)a=________,b=________,c=________;(2)化简:;(3)三个点在数轴上运动,其中点A以每秒3个单位长度的速度向左运动,同时,点B与点C分别以每秒2个单位长度和5个单位长度的速度向右运动,试求几秒后B点到点A、点C的距离相等?6.已知A,B在数轴上对应的数分别用a,b表示,且|2b+20|+|a-0|=0,P是数轴上的一个动点,0为原点。
七年级数学两点间距离公式
七年级数学两点间距离公式有:
(1)|AB|=|x2-x1|;
(2)d=√[(x1-x2)²+(y1-y2)²]
例题1:|x+3|+|x-1|<4
解:∵|x+3|+|x-1|表示数轴上到-3和1对应点的距离之和,而和-3对应的点为A,和1对应点为B,|AB|=4。
当x<-3时,与x对应的点P到A、B两点的距离之和|PA|+|PB|>|AB|=4。
当-3≤x≤1时,与x对应的点P到A、B两点的距离之和为|AB|=4。
当x>1时,与x对应的点P到A、B两点的距离之和|PA|+|PB|>|AB|=4。
∴到-3和1对应点的距离之和小于4的点不存在。
例题2:
设两个点A、B以及坐标分别为A(x1,y1)、B(x2,y3),则A和B两点之间的距离为:d=√[(x1-x2)²+(y1-y2)²]。
数轴,为一种特定几何图形。
直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。
正因为它们的这个共性,所以用直线上无数个点来表示实数。
这时就用一条规定了原点、正方向和单位长度的直线来表示实数。
规定右边为正方向时,在这条直线上的两个数,右边上点表示的数总大于左边上点表示的数,正数大于零,零大于负数。
2021-2022学年度人教版七年级数学上册练习八1.2.2 数轴-数轴的三要素及其画法1.一只蚂蚁从数轴上点 A 出发,爬了 4 个单位长度到了原点,则 A 所表示的数是_____。
2.操作探究:已知纸面上有一数轴(如图所示),折叠纸面,使-1表示的点与3表示的点重合,那么5表示的点一定与-3表示的点重合,若数轴上A,B两点之间的距离是11,且A,B两点经过折叠后重合,则点A表示的数是_________.3.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(在2-,3-的正中间)两点的位置,分别写出它们所表示的有理数A:________,B:_______;(2)若这条数轴可以折叠,那么折叠后A点与3-表示的点重合,则B点与数________表示的点重合;(3)若数轴上M,N两点之间的距离为9(M在N的左侧),且M、N两点经过(2)中折叠后重合,则M、N两点表示的数分别是:M:__________,N:_________.4.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.若a,b在数轴上的位置如图所示,化简a⊙b=_____5.观察有理数a、b、c在数轴上的位置并比较大小:c﹣b_____0,a+b_____0.6.有理数ɑ、b在数轴上位置如图,则ɑ+b__0,ɑb___0.(填>,<,=)7.a、b在的位置如图所示,则数a、-a、b、-b的大小关系为______ .8.已知a 、b 均为有理数,且它们在数轴上的位置如图所示,比较大小:a _____b .9.数轴上表示整数的点叫作整点.某数轴的单位长度为1厘米,若在这条数轴上随意画出一条长度为2017厘米的线段,则线段盖住的整点个数为_______.10.点A 的初始位置位于数轴表示1的点,现对点A 做如下移动,第一次向左移动3个单位长度至点B ,第2次从点B 向右移动6个单位长度至点C ,第3次点C 向左移动9个单位长度至点D ,第4次从点D 向右移动12个单位长度至点E .以此类推,这样第_____次移动到原点的距离为2023.11.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长度,n x 表示第n 秒时机器人在数轴上的位置所对应的数.给出下列结论:①33x =;②51x =;③108104x x <;④20192020x x >.其中,正确结论的序号是_______.12.如图,半径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(注:结果保留π)() 1把圆片沿数轴向左滚动半周,点B 到达数轴上点C 的位置,点C 表示的数是________数(填“无理”或“有理”),这个数是________() 2圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:2+,1-,4+,6-,3+①第________次滚动后,A 点距离原点最远②当圆片结束运动时,此时点A 所表示的数是________.13.如果数轴上表示2的点为M ,那么将点M 向左平移4个单位后的点所对应的数是______.14.小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,判断墨迹盖住的整数共有______个.15.A 为数轴上表示-1的点,将点A 沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为-3.(____)16.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是_______.17.如图,数轴上点P 表示的数为-1,将点P 沿数轴移动3个单位长度,得到点P',则点P'表示的数为 ______________________.18.在数轴上,点A ,B 表示的数分别是8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.19.如果在数轴上A 点表示﹣2,那么在数轴上与点A 距离3个长度单位的点所表示的数是_______.20.数轴上A 表示7,B 表示为15-,则线段AB 的长为_________,AB 中点表示的数是__________.21.数轴上,在原点的右边表示与5的距离为3的点表示的数是______.22.点A 、B 在数轴上,点A 对应的数是﹣3,O 为原点,已知OB =2AB ,则点B 对应的数是_____.23.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____.24.已知点A 、B ,均在数轴上,点A 对应的数为2,点A 与点B 的距离为3,则点B 对应的数为________.25.同学们都知道,|1(2)|--表示1与2-之差的绝对值,实际上也可理解为1与2-两数在数轴上所对应的两点之间的距离.同样道理|1||2|x x ++-表示数轴上数x 所对应的点到1-和2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得|1||2|3x x ++-=,这样的整数是________.26.在数轴上表示4与3-的两个点之间的距离是__________________.27.点A 在数轴上表示的数是2,点B 在数轴上,并且AB=6,C 是AB 的中点,则点C 表示的数是_______.28.数轴上点A 、点B 表示的数分别是-2和6,则点A 、点B 之间的距离是______.29.已知数轴上点A 表示的数为3-,点B 表示的数为4,若点C 到A 的距离与点C 到B 的距离相等,则点C 表示的有理数是______.30.数轴上与表示-2的点距离1个单位长度的点所表示的数___________.参考答案1.4或-4解析:一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示0的点B,因为蚂蚁可能从左向右爬,也可能从右向左爬,因此要分两种情况,所以点A所表示的数是:4或-4.详解:解: 若右向左爬,则0+4=4;若从左向右爬,则0-4=-4.故A点所表示的数是:4或-4故答案为:4或-4点睛:本题考查的是数轴上点的位移,熟练掌握位移的方法是解题的关键.2.132或-92解析:根据−1表示的点与3表示的点重合,得到折痕点为1,根据A、B两点之间距离为11,则A点表示1113122+=或1191--22=.详解:由对称性可知,A,B两点离对称点的距离为112,而对称点为1∴A表示的数为:1113122+=或1191--22=∴A表示的数为132或-92故答案为:132或-92.点睛:考查了数轴上点的对称,通过点的对称,发现对称点的规律,题目设计新颖,难易程度适中,适合课后训练.3.1 -2.5 0.5 -5.5 3.5解析:(1)根据数轴上的点表示的数,可得答案;(2)根据A点与-3表示的点重合,可得对称点,可得对应点;(3)根据对称的关系:对应点到对称点的距离相等,可得答案.详解:解:(1)观察图象可知A表示1,B表示-2.5.故答案为:1,-2.5;(2)∵经过折叠,A点与-3表示的点重合,∴两点的对称点是-1,-1×2-(-2.5)=0.5,∴B点与数0.5重合;(3)∵两点的对称点是-1,数轴上M、N两点之间的距离为9(M在N的左侧),∴M、N两点表示的数分别是:-4.5-1=-5.5,4.5-1=3.5.点睛:本题考查数轴、两点间距离等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.﹣2a解析:根据数轴判断绝对值中式子的正负情况,然后去绝对值即可.详解:解:根据题意可知:a<0<b,且∣a∣>∣b∣,∴a+b<0,a﹣b<0,则a⊙b=|a+b|+|a﹣b|=﹣a﹣b+b﹣a=﹣2a.故答案为:﹣2a.点睛:本题考查绝对值与数轴,解此题的关键在于根据数轴上点的位置,判断绝对值中的式子的正负情况.5.><解析:根据数轴表示数得到a<0<b<c,|b|<a|<|c|,根据有理数的加减运算得出答案即详解:解:由题意可知:a<0<b<c,|b|<a|<|c|,所以c﹣b>0,a+b<0.故答案为:>,<.点睛:本题考查了数轴,掌握数轴上数的排列特点和有理数的加减运算的方法是解决问题的关键.6.﹤,﹤解析:由数轴的性质可知101a b<-<<<,然后进行判断即可.详解:解:根据题意,由数轴可知:101a b<-<<<,∴0ab<;+<,0a b故答案为:<,<.点睛:本题考查了利用数轴比较两个数的大小,解题的关键是:知道数轴上表示的两个数右边的总比左边的大.7.-a<b<-b<a解析:先根据各点在数轴上上的位置判断出a、b的符号及绝对值的大小,再用不等式好连接起来即可.详解:解:∵由图可知,b<0<a,|b|<a,∴-a<b<-b<a.故答案为:-a<b<-b<a.点睛:本题考查有理数的大小比较,解题的关键是熟知数轴上右边的数总比左边的大.8.<解析:观察数轴,根据到原点的距离大的绝对值大,即可判断.根据数轴可得b<-1,0<a<1,点b到原点的距离大,可得a b<,故答案为:<.点睛:有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.9.2017或2018个解析:分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.详解:解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2017+1=2018,∴2017厘米的线段AB盖住2017或2018个整点.故答案为:2017或2018.点睛:本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.10.1348解析:按照题目要求,找出已知规律,计算即可;详解:第1次点A向左移动3个单位长度至点B,则B表示的数是132-=-,第2次从点B向右移动6个单位长度至点C,则C表示的数为264-+=,第3次从点C向左移动9个单位长度至点D,则D表示的数为495-=-,由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:1(31)2n-+,当移动次数为偶数时,点在数轴上所表示的数满足:322n+,∴当移动次数为奇数时,1(31)20232n-+=-,解得:40453n=(舍去),当移动次数为偶数时,3220232n+=,解得:1348n=,故答案为:1348.点睛:本题主要考查了数轴的知识点,准确分析计算是解题的关键.11.①②④解析:“前进3步后退2步”这5秒组成一个循环结构,先根据题意列出几组数据,从数据找寻规律:第一个循环节结束的数即x5=1,第二个循环节结束的数即x10=2,第三个循环节结束的数即x15=3,…,第m个循环节结束的数就是第5m个数,即x5m=m.然后再根据“前进3步后退2步”的运动规律来求取对应的数值.详解:根据题意可知:x 1=1,x2=2,x3=3,x4=2,x5=1,x 6=2,x7=3,x8=4,x9=3,x10=2,x 11=3,x12=4,x13=5,x14=4,x15=3,…由上列举知①②正确,符合题意;由上可知:第一个循环节结束的数即x5=1,第二个循环节结束的数即x10=2,第三个循环节结束的数即x15=3,…,即第m个循环节结束的数即x5m=m.∵x100=20,∴x101=21,x102=22,x103=23,x104=22,∵x105=21,∴x106=22,x107=23,x108=24故x108>x104,故③错误,不合题意;∵x2015=403,∴x2016=404,x2017=405,x2018=406,x2019=405,x2020=404,故x2019>x2020,故④正确.符合题意.故答案为:①②④.点睛:本题考查了规律型——数字的变化类,主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来.前进3步后退2步”这5秒组成一个循环结构,让n÷5看余数,余数是几,那么第n秒时就是循环节中对应的第几个数.12.无理 -π 3 π解析:(1)直接利用圆的周长公式结合数轴得出答案;(2)①利用滚动方向和滚动周数结合数轴即可得出答案;②直接利用滚动方向和滚动周数结合数轴即可得出答案.详解:(1)∵半径为1个单位的圆片上有一点A与数轴上的原点重合,把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,∴点C表示的数是:﹣π,为无理数,故答案为无理数;﹣π;(2)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:2+,1-,4+,6-,3+,∴第3次滚动后,点A距离原点最远,距离为5个圆的周长;②∵21463-+-+=2,∴表示圆向右滚动了2周,∴当圆片结束运动时,此时点A所表示的数是:2π×1×2=4π,故答案为3;4π.13.-2解析:根据题意画出数轴,即可得出移到后M表示的数.详解:解:∵点M向左移动4个单位长度,∴2-4=-2,∴平移后M表示的数为-2.故答案为:-2.点睛:本题考查了数轴的知识,熟记向右移动加,向左移动减是解题的关键.14.9.解析:解:结合数轴,得墨迹盖住的整数共有-6,-5,-4,-3,-2,1,2,3,4共9个.15.对解析:根据题意画出数轴便可直接解答详解:解:如图所示:将点A沿数轴向左移动2个单位长度到B点,则B点所表示的数为-3.故答案为:√.点睛:本题考查的是数轴的特点,利用数形结合解答此类题目的关键.16.1-7或解析:分该点在A点左侧和右侧分别计算.详解:解:当该点在A点左侧时,该点表示的数是-4-3=-7;当该点在A点右侧时,该点表示的数是-4+3=-1.故答案为-1或-7.点睛:分两种情况考虑是易错点.17.-4或2解析:因为移动方向不确定,所以分向左和向右移动进行讨论.详解:若点P 向左移动,则P'表示的数为-1-3=-4,若点P 向右移动,则P'表示的数为-1+3=2,故答案为-4或2.点睛:本题考查数轴上点的移动,若一个点向左移动n 个单位长度,则将表示这个点的数减去n ,若向右移动n 个单位长度,则将表示这个点的数加上n.18.125解析:根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值. 详解:解:由题意表示P,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤) Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 点睛:本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.19.-5或1解析:在数轴上表示出A 点,找到与点A 距离3个长度单位的点所表示的数即可.详解:根据数轴可以得到在数轴上与点A 距离3个长度单位的点所表示的数是:-5或1.点睛:本题考查了数轴上的距离,此类题注意两种情况:要求的点可以在已知点-2的左侧或右侧.20.224-解析:试题解析:∵数轴上A表示7,B表示-15,∴线段AB长为:7-(-15)=22,∵15+74 2-=-∴AB中点表示的数是-4.故答案为:22,-4.21.2或8解析:试题分析:在5的左边与5距离为3的点表示的数是5-3=2;在5的右边与5距离为3的点表示的数是5+3=8.即在原点的右边表示与5的距离为3的点表示的数是2或8.故答案为:2或8.22.﹣6或﹣2解析:设点B对应的数是x,分①B在A的左边,②B在A的右边两种情况进行讨论可求点B 对应的数.详解:解:设点B对应的数是x,①B在A的左边,﹣x=2(﹣3﹣x),解得x=﹣6;②B在A的右边,|x|=2(x+3),解得x=﹣2.故点B对应的数是﹣6或﹣2.故答案为﹣6或﹣2.点睛:本题考查了实数与数轴,注意分类思想的运用.23.-3解析:根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.详解:数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.点睛:本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.24.5或1-解析:根据数轴的定义即可得.详解:设点B对应的数为bb-=由数轴的定义得:23则23b-=或23b-=-解得5b=或1b=-故答案为:5或1-.点睛:本题考查了数轴的定义,熟记定义是解题关键.25.-1、0、1、2解析:把|x+1|+|x-2|=3理解为:在数轴上数x所对应的点到-1和2所对应的点的距离之和为3,然后根据数轴写出满足条件的整数x即可.详解:∵|x+1|+|x-2|=3可理解为:在数轴上数x所对应的点到-1和2所对应的点的距离之和为3,∴-1≤x≤2,∴这样的整数是-1、0、1、2,故答案为:-1、0、1、2点睛:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.也考查了数轴.26.7解析:数轴上两点间的距离为:这两个点表示的数的差的绝对值.详解:--=+=,解:数轴上表示4与3-的两个点之间的距离是4(3)437故答案为:7.点睛:本题考查数轴上两点间的距离,是重要考点,难度较易,掌握相关知识是解题关键.27.-1或5解析:分两种情况讨论:①当B在A的右边时;②当B在A的左边时,分别列式计算即可.详解:分两种情况讨论:①当B在A的右边时,B表示的数是2+6=8.∵C是AB的中点,∴点C表示的数是(2+8)÷2=5;②当B在A的左边时,B表示的数是2-6=-4.∵C是AB的中点,∴点C表示的数是(-4+2)÷2=-1.故答案为:-1或5.点睛:本题考查了数轴,分类讨论是解答本题的关键.28.8;解析:根据绝对值的意义解答即可.详解:∵点A、点B表示的数分别是-2和6,--=8.∴点A、点B之间的距离是6(2)故答案为:8点睛:本题考查数轴及绝对值的意义,熟练掌握数轴上的点的特征是解题关键.29.0.5解析:设点C表示的数为x,根据两点间的距离公式列方程求解可得.详解:设点C表示的数为x,则x-(-3)=4-x,解得:x=0.5,故答案为0.5.点睛:本题主要考查数轴和有理数,解题的关键是熟练掌握两点间的距离公式.30.-1或-3.解析:当此点在﹣2的点的左侧时,此点表示的点为﹣2﹣1=﹣3;当此点在﹣2的点的右侧时,此点表示的点为﹣2+1=-1.故答案为﹣1或-3.。
数轴上两点间距离 专题训练〖规律归纳〗数轴上点A 表示的数是a ,点B 表示的数是b ,则: ①到点A 与点B 的距离相等(即线段AB 的中点)的点表示的数是a+b 2;②若能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为:大数减小数; ③若不能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为|a −b |或|b −a | 例1.【思考】数轴上,点C 是线段AB 的中点,请填写下列表格: 【发现】通过表格可以得到,数轴上一条线段的中点表示的数是这两条线段端点表示的数的 ; 【表达】若数轴上A 、B 两点表示的数分别为m 、n ,则线段AB 的中点表示的数是 ;【应用】如图,数轴上点A 、C 、B 表示的数分别为﹣2x 、13x ﹣4、1,且点C 是线段AB 的中点,求x 的值.练习:如图,点A ,B 在数轴上表示的数分别为﹣2与+6,动点P 从点A 出发,沿A →B 以每秒2个 单位长度的速度向终点B 运动,同时,动点Q 从点B 出发,沿B →A 以每秒4个单位长度的速度向 终点A 运动,当一个点到达时,另一点也随之停止运动. (1)当Q 为AB 的中点时,求线段PQ 的长; (2)当Q 为PB 的中点时,求点P 表示的数.例2.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为﹣5,b ,4.某同学将 刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻 度5.4cm .(1)在图1的数轴上, AC = 个长度单位;数轴上的一个长度单位对应刻度尺上的 cm ; (2)求数轴上点B 所对应的数b ;(3)在图1的数轴上,点Q 是线段AB 上一点,满足AQ =2QB ,求点Q 所表示的数.练习:在数轴上,点A 代表的数是﹣12,点B 代表的数是2,AB 代表点A 与点B 之间的距离. (1)①AB = ;②若点P 为数轴上点A 与B 之间的一个点,且AP =6,则BP = ; ③若点P 为数轴上一点,且BP =2,则AP = .(2)若C 点为数轴上一点,且点C 到点A 点的距离与点C 到点B 的距离的和是35,求C 点表示的数.(3)若P 从点A 出发,Q 从原点出发,M 从点B 出发,且P 、Q 、M 同时向数轴负方向运动,P 点的运动速度是每秒6个单位长度,Q 点的运动速度是每秒8个单位长度,M 点的运动速度是每秒2个单位长度,当P 、Q 、M 同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?A 点表示的数B 点表示的数C 点表示的数2 6 ﹣1﹣5 ﹣31例3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?练习:如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?〖尝试反馈〗1.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.2.如图,已知数轴上点A,O,B对应的数分别为﹣2,0,6,点P是数轴上的一个动点.(1)设点P对应的数为x.①若点P到点A和点B的距离相等,则x的值是;②若点P在点A的左侧,则PA=,PB=(用含x的式子表示);(2)若点P以每秒1个单位长度的速度从点O向右运动,同时点A以每秒3个单位长度的速度向左运动,点B以每秒12个单位长度的速度向右运动,在运动过程中,点M和点N分别是AP 和OB的中点,设运动时间为t.求MN的长(用含t的式子表示);3.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.4.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.5.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q 是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?6.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.7.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.8.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C的距离相等.参考答案例1.(1)4,﹣3,﹣1;(2)和的一半;(3)n+m 2;(4)由题意得,−2x+12=13x −4,解得:x =278.练习:(1)PQ =2﹣0=2,(2)设点Q 移动的时间为t 秒,则移动后点Q 所表示的数为6﹣4t ,移动后点P 所表示的数为﹣2+2t , 当Q 为PB 的中点时,有−2+2t+62=6−4t ,解得,t =45,此时.点P 为﹣2+2×45=﹣25.例2:(1)9;0.6.(2)点B 所对应的数b 为﹣2;(3)设点Q 所表示的数是x ,依题意有 x ﹣(﹣5)=2(﹣2﹣x ),解得x =﹣3.故点Q 所表示的数是﹣3. 练习:(1)①14.②BP =AB ﹣AP =14﹣6=8.③P 在数轴上点A 与B 之间时,AP =AB ﹣BP =14﹣2=12;当P 不在数轴上点A 与B 之间时,因为AB =14,所以P 只能在B 右侧,此时BP =2,AP =AB+BP =14+2=16.(2)假设C 为x ,当C 在A 左侧时,AC =﹣12﹣x ,BC =2﹣x ,AC+BC =35,解得x =−452; 当C 在B 右侧时,AC =x ﹣(﹣12),BC =x ﹣2,AC+BC =35,解得x =252.(3)设经过时间T 秒,则P 点坐标为﹣12﹣6T ,Q 点坐标为﹣8T ,M 点坐标为2﹣2T .当Q 在P 和M 的正中间,即Q 为PM 的中点时,2(﹣8T )=(﹣12﹣6T )+(2﹣2T ),解得T =54s .当P 在Q 和M 的正中间,即P 为QM 的中点时,2(﹣12﹣6T )=(﹣8T )+(2﹣2T ),解得T =﹣13<0,不合题意,舍掉.当PQ 重合时,即M 到P 、Q 距离相等时,此时MP =MQ , ∴﹣12﹣6T =﹣8T ,∴T =6s .因此,当T =54秒时,此时,M =﹣12,Q =﹣10,P =﹣392. 当T =6秒时,此时,M =﹣10,Q =﹣48,P =﹣48. 例3:(1)如图所示:(2)CD =3.5﹣1=2.5,BC =1﹣(﹣2)=3;(3)MN =|a ﹣b|;(4)①依题意有2t ﹣t =3,解得t =3.故t 为3秒时P ,Q 两点重合;②依题意有2t ﹣t =3﹣1,解得t =2;或2t ﹣t =3+1,解得t =4.故t 为2秒或4秒时P ,Q 两点之间的距离为1.故答案为:2.5,3;|a ﹣b|. 练习:(1)∵AB =6,BC =2,∴点A 对应的数是1﹣6=﹣5,点C 对应的数是1+2=3.(2)∵动点P 、Q 分别同时从A 、C 出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动, ∴点P 对应的数是﹣5+2t ,点Q 对应的数是3+t ;(3)①当点P 与点Q 在原点两侧时,若OP =OQ ,则5﹣2t =3+t ,解得:t =23;②当点P 与点Q 在同侧时,若OP =OQ ,则﹣5+2t =3+t ,解得:t =8,当t 为23或8时,OP =OQ . 〖尝试反馈〗1.(1)6,4.(2)5t ,3t .(3)由题意:(5﹣3)t =6,∴t =3. (4)由题意:6+3t ﹣5t =5或5t ﹣(6+3t )=5,解得t =12或112, 2.(1)①−2+62=2,②根据数轴上两点之间距离的计算公式得:﹣2﹣x ,6﹣x ;(2)①移动后,点A 表示的数为﹣2﹣3t ,点B 表示的数为6+12t ,点P 表示的数为t , ∵点M 是AP 的中点,∴点M 在数轴上所表示的数为−2−3t+t2=−1−t ;∵点N 是OB 的中点,∴点N 在数轴上所表示的数为6+12t+02=3+6t ;∴MN =3+6t ﹣(﹣1﹣t )=4+7t .3.(1)根据题意得2t+t =28,解得t =283,∴AM =563>10,∴M 在O 右侧,且OM =563﹣10=263,∴当t =283时,P 、Q 两点相遇,相遇点M 所对应的数是263; (2)由题意得,t 的值大于0且小于7.若点P 在O 左边,则10﹣2t =7﹣t ,解得t =3.若点P 在O 右边,则2t ﹣10=7﹣t ,解得t =173. (3)∵N 是AP 的中点,∴AN =PN =12AP =t ,∴CN =AC ﹣AN =28﹣t ,PC =28﹣AP =28﹣2t , 2CN ﹣PC =2(28﹣t )﹣(28﹣2t )=28.4.(1)C 点对应的数为﹣5+4×6=19,(2)点D 对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.5.(1)点N所对应的数是1;(2)点P所对应的数是﹣3.5或1.5.(3)①点P在点Q的左边:(4+2×5﹣2)÷(3﹣2)=12(秒),点P对应的数是﹣3﹣5×2﹣12×2=﹣37,点Q对应的数是﹣37+2=﹣35;②点P在点Q的右边:(4+2×5+2)÷(3﹣2)=16(秒);点P对应的数是﹣3﹣5×2﹣16×2=﹣45,点Q对应的数是﹣45﹣2=﹣47.6.(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.综上所述 m=8或﹣40.7.(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=23,符合题意.综上所述,t的值为23或4.8.(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=185,答:经过185或10秒,点P、点Q到点C的距离相等.。
2023-2024学年人教版数学七年级上册期末动点问题压轴题专项训练(五)1.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为 .2.已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x。
(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧有点P,使点P到点A、点B的距离之和为8。
请直接写出x的值。
x= 。
(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动。
当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?3.已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由.(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?4.如图,在长方形ABCD中,点E是AB边上一个定点,点P是BC边上一个动点,连结EP,将△BEP 沿EP折叠至△B'EP.(1)若∠AEB '比∠BEP 大15°,求∠AEP 的大小.(2)连结PD ,若PD ⊥PE ,请判断∠B 'PD 和∠CPD 的大小关系,并说明理由.5.已知A ,B 在数轴上对应的数分别用a ,b 表示,且|2b+20|+|a-20|=0,P 是数轴上的一个动点,0为原点。
(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离。
要想掌握数轴上的动点问题,首先应明确两点:一、点左右移动如何表示例如,数轴上有一点A,表示的数是1,这个点向左移动2个单位长度是,向右移动3个单位长度是数轴上有一点A,表示的数是a,这个点向左移动2个单位长度是,向右移动3个单位长度是数轴上一个点向左移动,应该,向右移动,应该二、数轴上两点之间距离的表示;(1)两个定点之间的距离:例如,数轴上表示1和7两点之间的距离是算式表示为,用右边的减去左边的数(即大-小=大小之间的距离).那么数轴上A、B两点,分别用a,b来表示。
A在B的左边,A,B两点之间的距离就可以表示为(2)一个定点和一个动点之间的距离:例如.数轴上A、B两点分别表示1、7。
点P从点A出发,以每秒2个单位长度的速度向右动,t秒后,点P表示的数为 ,求A、P两点及B、P两点间的距离.(3)两个动点之间的距离:例如,数轴上A.B两点分别表示1、7。
点P从点A出发,以每秒2个单位长度的速度向右运动,点Q 从点B出发,以每秒4个单位长度的速度向左运动。
t秒后,点P表示的数为,点Q示的数为,求P、Q两点之间的距离为练习1:数轴上A.B两点分别表示-1、8。
点P从点A出发,以每秒2个单位长度的速度向右运动,点Q从点B出发,以每秒5个单位长度的速度向右运动。
t秒后,点P表示的数为,点Q示的数为,求P、Q两点之间的距离为 (提示:看一下P点能不能追上Q点,如果追不上,PQ两点之间的距离就只有一种情况,或者也可以说不用加绝对值)练习2:数轴上A.B两点分别表示-1、10。
点P从点A出发,以每秒6个单位长度的速度向右运动,点Q从点B出发,以每秒4个单位长度的速度向右运动。
t秒后,点P表示的数为,点Q示的数为,求P、Q两点之间的距离为 (提示:看一下P点能不能追上Q点,如果追得上,PQ两点之间的距离就只有两种种情况,或者也可以说需要加绝对值)练习3:数轴上A.B两点分别表示-10、8。
点P从点A出发,以每秒5个单位长度的速度向左运动,点Q从点B出发,以每秒3个单位长度的速度向右运动。
精品文档数轴上的运动问题在讲这个问题之前,我们先来看一道行程问题。
分钟,小明的平均速度为多少米每秒?米,小明从甲地步行到乙地,用时 3 1】甲乙两地相距200 【题这个问题的本质,就是把实际生活中的问题剥离出来,抽象成了简单的数学问题,很多学生都会【分析】解;初学时,老师会画线段图,用线段的长度来将两点间的距离具象化,如下:小明乙地甲地10 ?200 ?180 (米/ 秒)【解法一】直接利用:速度=路程÷时间解决。
910x ?秒200 ? 180x x米/ ,根据路程=时间×速度,得:。
,解得【解法二】用方程解。
设速度为9如果在线段图上,用一个具体的数来表示甲地和乙地,从甲往乙的方向规定为正方向建立数轴,这个问题就转化为数轴上的运动问题了。
200 0 出 A ,一只电子蚂蚁 A 表示的数为P ,点 B 表示的数为从2【题】如图,数轴上有两点A、B,点1。
B 点运动停止。
设运动时间为tB 个单位每秒的速度由A 往运动,到发,以运动的距离;t 的代数式表示电子蚂蚁P (1)用含表示的数;t 的代数式表示电子蚂蚁P (2)用含的距离。
到数 B (3)用含t 的代数式表示电子蚂蚁P的三等分点?为线段AB (4)当电子蚂蚁运动多少时间后,点P引入数轴后,其本质是把线段图换成了带方向带单位长度的直线,将有限的实际距离推广到了无【分析】轴上=速度×时间。
其余的点的距离,利用数限的距离问题。
所以,对于运动的点,处理的核心思想依然是路程两点间距离公式解决。
t ?AP ;=速度×时间,有:)根据路程(1t t AP ?;,故点P (2)表示的数为t t PB ? 200 ?,点P ,且P 在B 表示的数为左边,故。
(3)点B 表示的数为200 的三等分点,有两种情况:)若P 为AB (4400???? 2 ?t 200 ?t t ,解得,即:①AP=2PB秒; 3200?t t t 2? 200 ?,解得②2AP=PB,即:秒; 3一般化为在数轴上的一条定长线段,便得到如下的题:2】一般化,线段AB 现在,我们将【题b a 200 的距离为B 表示的数为,且数A 和数B ,点【题3】如图,数轴上有两点A、B A 表示的数为,点1点运动停止。
专题02 数轴上的三种动点问题数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。
那么,本专题对其中常考的三种题型(求时间、求距离或者对应点、定值问题)做出详细分析与梳理。
【知识点梳理】1.数轴上两点间的距离数轴上A 、B 两点表示的数为分别为a 、b ,则A 与B 间的距离AB=|a -b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a 表示的点向右移动b 个单位长度后到达点表示的数为a+b ;向左移动b 个单位长度后到达点表示的数为a -b.类型一、求值(速度、时间、距离)例1.如图在数轴上A 点表示数a ,B 点表示数b ,a ,b 满足2a ++6b -=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则C 点表示的数 ;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后 (忽略球的大小,可看作一点) 以原来的速度向相反的方向运动,设运动的时间为t (秒),请分别表示出甲,乙两小球到原点的距离 (用t 表示).【答案】(1)-2;6;(2)103或14 (3)甲球与原点的距离为:t +2;当03t 时,乙球到原点的距离为62t -;当3t >时,乙球到原点的距离为26t -【解析】(1)解:∵|a +2|+|b −6|=0,∵a +2=0,b −6=0,解得,a =−2,b =6,∵点A 表示的数为−2,点B 表示的数为6.故答案为:−2;6.(2)设数轴上点C 表示的数为c ,∵AC =2BC ,∵|c −a |=2|c −b |,即|c +2|=2|c −6|,∵AC =2BC >BC ,∵点C 不可能在BA 的延长线上,则C 点可能在线段AB 上和线段AB 的延长线上, ①当C 点在线段AB 上时,则有−2∵c ∵6,得c +2=2(6−c ),解得:c =103; ②当C 点在线段AB 的延长线上时,则有c >6,得c +2=2(c −6),解得c =14,故当AC =2BC 时,c =103或c =14;故答案为:103或14. (3)∵甲球运动的路程为:1∵t =t ,OA =2,∵甲球与原点的距离为:t +2;乙球到原点的距离分两种情况:①当0<t ∵3时,乙球从点B 处开始向左运动,直到原点O ,∵OB =6,乙球运动的路程为:2∵t =2t ,乙到原点的距离:6−2t (0∵t ∵3);②当t >3时,乙球从原点O 处开始一直向右运动,此时乙球到原点的距离为:2t −6(t >3).例2.如图,数轴上两个动点A ,B 起始位置所表示的数分别为8-,4,A ,B 两点各自以一定的速度在数轴上运动,已知A 点的运动速度为2个单位/秒.(1)若A ,B 两点同时出发相向而行,正好在原点处相遇,请直接写出B 点的运动速度.(2)若A ,B 两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?(3)若A ,B 两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,如果在运动过程中,始终有2CA CB =,求C 点的运动速度.【答案】(1)1个单位/秒;(2)4秒和20秒;(3)43个单位/秒 【解析】(1)解:B 点的运动速度为:8422OA OB ÷=÷=1个单位/秒. (2)∵OA +OB =8+4=12>8,且A 点运动速度大于B 点的速度,∵分两种情况,①当点B 在点A 的右侧时,运动时间为1281821OA OB -+-=-=4秒. ②当点A 在点B 的右侧时,运动时间为1281821OA OB +++=-=20秒, 综合①②得,4秒和20秒时,两点相距都是8个单位长度;(3)设点C 的运动速度为x 个单位/秒,运动时间为t ,根据题意得知8+(2-x )×t =[4+(x -1)×t ]×2,整理,得2-x =2x -2,解得x =43, 故C 点的运动速度为43个单位/秒.【变式训练1】如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-10,点B 表示10,点C 表示18,我们称点A 和点C 在数轴上相距28个长度单位.动点P 、Q 同时出发,点P 从点A 出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;动点Q 从点C 出发,以1单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒.问:(1)动点P 从点A 运动至点C 需要多少时间?(2)求P 、Q 两点相遇时,t 的值和相遇点M 所对应的数.【答案】(1)动点P 从点A 运动至点C 需要19秒;(2)P 、Q 两点相遇时,t 的值为313秒,相遇点M 所对应的数是163. 【解析】(1)解:由图可知:动点P 从点A 运动至C 分成三段,分别为AO 、OB 、BC ,AO 段时间为102=5,OB 段时间为101=10,BC 段时间为82=4, ∵动点P 从点A 运动至C 点需要时间为5+10+4=19(秒),答:动点P 从点A 运动至点C 需要19秒;(2)解:点Q 经过8秒后从点B 运动到OB 段,而点P 经过5秒后从点A 运动到OB 段,经过3秒后还在OB 段,∵P 、Q 两点在OB 段相遇,设点Q 经过8秒后从点B 运动到OB 段,再经进y 秒与点P 在OB 段相遇,依题意得:3+y +2y =10,解得:y =73,∵P 、Q 两点相遇时经过的时间为8+73=313(秒), 此时相遇点M 在“折线数轴”上所对应的数是为3+73=163; 答:P 、Q 两点相遇时,t 的值为313秒,相遇点M 所对应的数是163. 【变式训练2】如图,已知A 、B 、C 是数轴上三点,点B 表示的数为4,8AB =,2BC =.(1)点A 表示的数是______,点C 表示的数是______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 的运动时间为t (0t >)秒.①用含t 的代数式表示:点P 表示的数为______,点Q 表示是数为______;②当1t =时,点P 、Q 之间的距离为______;③当点Q 在C B →上运动时,用含t 的代数式表示点P 、Q 之间的距离;④当点P 、Q 到点C 的距离相等时,直接写出t 的值.【答案】(1)4-,6;(2)①42t -+,6t -;②7;③103t -;④t 的值为103或10 【解析】(1)解:A 点在B 点左边,B 点表示4,AB =8,∵A 点表示的数,4-8=-4;C 点在B 点右边,BC =2,∵C 点表示的数为:4+2=6;(2)解:①P 点向右运动,∵P 点表示的数为-4+2t ;Q 点向左运动,∵Q 点表示的数为6-t ;②t =1时,P 点-2,Q 点5,两点距离=5-(-2)=7;③∵Q 点在右,P 点在左,∵两点距离=6-t -(-4+2t )=10-3t ,④当P ,Q 相遇时,两点到C 点距离相等,此时2t +t =10,解得:t =103, 当P 点在C 点右边,Q 点在C 点左边时,-4+2t -6=6-(6-t ),解得:t =10,∵t 的值为103或10; 【变式训练3】如图,点A 、B 为数轴上的点(点A 在数轴的正半轴),8AB =,N 为AB 的中点,且点N 表示的数为2.(1)点A 表示的数为______,点B 表示的数为______;(2)点M 为数轴上一动点,点C 是AM 的中点,若1CM =,求点M 表示的数,并画出点M 的位置;(3)点P 从点N 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,设运动时间为()0t t >秒.在运动过程中,点P 、Q 之间的距离为3时,求运动时间t 的值.【答案】(1)6,﹣2;(2)8或4;(3)1秒或7秒.【解析】(1)解:∵8AB =,N 为AB 的中点,∵AN =BN =12AB =4∵点N表示的数为2,点A在点N的右侧,点B在点N的左侧∵点A表示的数为2+4=6,点B表示的数为2-4=﹣2,即点A表示的数为6,点B表示的数为﹣2,故答案为:6,﹣2(2)解:当点M在点A的右侧时,如图1所示,∵ C是AM的中点,CM=1,∵AM=2CM=2,∵点M表示的数是6+2=8;当点M在点A的左侧时,如图2所示,∵ C是AM的中点,CM=1,∵AM=2CM=2,∵点M表示的数是6-2=4.故点M表示的数是8或4;(3)解:当点P在点Q的右侧,即点P还没追上点Q时,如图3,由题意得t+4-2t=3,解得t=1,当点P在点Q的左侧,即点P追上点Q并超过点Q时,如图4所示,由题意得2t-t-4=3,解得t=7,∵点P、Q之间的距离为3时,运动时间t=1秒或7秒.类型二、定值问题例1.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);②请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.【答案】(1)-1,1,5;(2)①4t+6;②不会变化,2【解析】(1)解:由题意得,单项式-xy2的系数a=-1,最小的正整数b=1,多项式2m2n-m3n2-m-2的次数c=5;故答案为:-1,1,5(2)①t秒后点A对应的数为a-t,点B对应的数为b+t,点C对应的数为c+3t,故AC=|c+3t-a+t|=|5+4t+1|=6+4t;故答案为:6+4t②∵BC=5+3t-(1+t)=4+2t,AB=1+t-(-1-t)=2+2t;∵BC-AB=4+2t-2-2t=2,故BC-AB的值不会随时间t的变化而改变.其值为2.AB=.动点P从点A出发,【变式训练1】如图,已知数轴上点A表示的数为12,B是数轴上一点.且20t t>秒.以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)(1)写出数轴上点B表示的数___,点P表示的数___(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问点P运动多少秒时追上点Q;(3)若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.【答案】(1)﹣8,12﹣5t;(2)点P运动10秒时追上点Q;(3)线段MN的长度不发生变化,都等于10;理由见解析.【解析】(1)解:∵点A 表示的数为12,B 在A 点左边,AB =20,∵点B 表示的数是12-20=-8,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为t (t >0)秒, ∵点P 表示的数是12-5t .故答案为:-8,12-5t ;(2)解:设点P 运动x 秒追上点Q ,Q 表示的数是-8-3t ,根据题意得:12-5x =-8-3x ,解得:x =10,∵点P 运动10秒时追上点Q ;(3)解:线段MN 的长度不发生变化,都等于10;理由如下:∵点A 表示的数为12,点P 表示的数是12-5t ,M 为AP 的中点,∵M 表示的数是1212551222t t +-=-, ∵点B 表示的数是-8,点P 表示的数是12-5t ,N 为PB 的中点,∵N 表示的数是81255222t t -+-=-, ∵MN =(12-52t )-(2-52t )=10. 【变式训练2】如图,已知数轴上点A 表示的数为9,B 是数轴负方向上一点,且15AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为(0)t t >秒.(1)数轴上点B 表示的数为_____,点P 表示的数为________;(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,问t 为何值时,点P 追上点Q ?此时P 点表示的数是多少?(3)若点M 是线段AP 的中点,点N 是线段BP 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变化,请求出MN 的长度;【答案】(1)6-,95-t ;(2)-16;(3)不发生变化,152【解析】(1)解:∵数轴上点A 表示的数为8,且AB =14,∵点B 表示的数为−6,点P 表示的数为95-t ,故答案为:6-,95-t .(2)解:设点P 运动t 秒时,在点C 处追上点Q ,如图,则5,2==AC t BC t ,因为AC BC AB -=,所以5215-=t t .解得5t =.所以点P 运动5秒时,在点C 处追上点Q .当5t =时,9592516-=-=-t .此时P 点表示的数是16-.(3)解:不发生变化.理由是:因为M 是线段AP 的中点,N 是线段BP 的中点,所以11,22==PM AP PN BP . 分两种情况:①当点P 在点A 、B 两点之间运动时,如图所示,所以111115()22222=+=+=+==MN MP NP AP BP AP BP AB . ②当点P 运动到点B 的左侧时,如图所示,所以111115()22222=-=-=-==MN MP NP AP BP AP BP AB . 综上所述,线段MN 的长度不发生变化,其值为152. 【变式训练3】点A 、B 在数轴上对应的数分别为a 、b ,且a 、b 满足2130a b ++-=.(1)如图1,求线段AB 的长;(2)若点C 在数轴上对应的数为x ,且x 是方程12122x x +=-的根,在数轴上是否存在点P 使PA PB BC +=,若存在,求出点P 对应的数,若不存在,说明理由;(3)如图2,点P 在B 点右侧,P A 的中点为M ,N 为PB 靠近于B 点的四等分点,当P 在B 的右侧运动时,有两个结论:①2PM BN -的值不变;②23PM BN -的值不变,其中只有一个结论正确,请判断正确的结论,并直接写出该值.【答案】(1)4;(2)存在,当点P 表示的数为-1.5或3.5时,PA PB BC +=;理由见解析(3)结论①正确,2PM BN -=2【解析】(1)解:∵|a +1|+(b -3)2=0,∵a +1=0,b -3=0,∵a =-1,b =3,∵AB =|-1-3|=4.答:AB 的长为4;(2)解:存在,∵12122x x +=-,∵x =-2,∵BC =23--=5. 设点P 在数轴上对应的数是m ,∵PA PB BC +=,∵|m +1|+|m -3|=5,令m +1=0,m -3=0,∵m =-1或m =3.①当m ≤-1时,-m -1+3-m =5,m =-1.5;②当-1<m ≤3时,m +1+3-m =5,(舍去);③当m >3时,m +1+m -3=5,m =3.5.∵当点P 表示的数为-1.5或3.5时,PA PB BC +=;(3)解:设P 点所表示的数为n ,∵P A =n +1,PB =n -3.∵P A 的中点为M ,∵PM =12P A =12n +. ∵N 为PB 的四等分点且靠近于B 点,∵BN =14PB =34n -,∵①PM -2BN =12n +-2×34n -=2(不变), ②PM +23BN =12n ++23×34n -=23n (随点P 的变化而变化), ∵正确的结论为①,且PM -2BN =2.类型三、点之间的位置关系问题例1.如图,已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且12AB =.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P 的运动时间为t 秒.(1)解决问题:①当1t =时,写出数轴上点B ,P 所表示的数;②若点P ,Q 分别从A ,B 两点同时出发,问点P 运动多少秒与点Q 相距3个单位长度?(2)探索问题:若M 为AQ 的中点,N 为BP 的中点.当点P 在A ,B 两点之间运动时,探索线段MN 与线段PQ 的数量关系(写出过程).【答案】(1)①点B 表示-4,点P 表示5;②1.8秒或3秒(2)2MN+PQ=12或2MN-PQ=12,过程见解析【解析】(1)解:①∵点A表示的数为8,B在A点左边,AB=12,∵点B表示的数是8-12=-4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∵点P表示的数是8-3×1=5.②设点P运动x秒时,与Q相距3个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB-3,∵3x+2x=9,解得:x=1.8,∵AP+BQ=AB+3,∵3x+2x=15,解得:x=3.∵点P运动1.8秒或3秒时与点Q相距3个单位长度.(2)2MN+PQ=12或2MN-PQ=12;理由如下:P在Q右侧时有:MN=MQ+NP-PQ=12AQ+12BP-PQ=12(AQ+BP-PQ)-12PQ=12AB-12PQ=12(12-PQ),即2MN+PQ=12.同理P在Q左侧时有:2MN-PQ=12.例2.如图,在数轴上A点表示的数为a,B点表示的数为b,C点表示的数为c,b是最大的负整数,且a,c 满足|a+3|+(c﹣9)2=0.点P从点B出发以每秒3个单位长度的速度向左运动,到达点A后立刻返回到点C,到达点C后再返回到点A并停止.(1)a=,b=;(2)点P从点B离开后,在点P第二次到达点B的过程中,经过x秒钟,P A+PB+PC=13,求x的值.(3)点P从点B出发的同时,数轴上的动点M,N分别从点A和点C同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t秒钟时,P、M、N三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t的值.【答案】(1)﹣3,﹣1;(2)13或1或53或233;(3)1,2617,167,8.【解析】(1)解:b是最大的负整数,即b=﹣1,|a+3|+(c﹣9)2=0,∵|a+3|=0,(c﹣9)2=0,∵a=﹣3,c=9,故答案为:﹣3,﹣1;(2)解:AB=2,BC=10,AC=12,P A+PB+PC=13,P A+PC=12,则PB=1,∵此时P点位置为﹣2或0,根据P的运动轨迹得:由B到A时:x=1÷3=13,由A到B时:x=3÷3=1,由B到C时:x=5÷3=53,由C到B时:x=23÷3=233;故x的值为:13或1或53或233.(3)解:当P点由B到A运动时P=﹣3t-1(0≤t<23),当P点由A到C运动时P=﹣3+(3t-2)=3t-5(23≤t<143),当P点由C到B运动时P=9-(3t-14)=﹣3t+23(143≤t≤8),当M点由A到C运动时M=4t-3,当N点由C到A运动时N=﹣5t+9,PM相遇时3t+4t=2,t=27,MN相遇时4t+5t=12,t=43,PN相遇时3t+5t=12+2,t=74,0≤t<27,P在中间,则4t-3﹣5t+9=2(﹣3t-1)解得t=﹣85舍去;2 7<t<23,M在中间,则﹣5t+9﹣3t-1=2(4t-3)解得t=78舍去;2 3≤t<43,M在中间,则﹣5t+9+3t-5=2(4t-3)解得t=1;4 3<t<74,N在中间,则4t-3+3t-5=2(﹣5t+9)解得t=2617;7 4<t<143,P在中间,则4t-3﹣5t+9=2(3t-5)解得t=167;14 3≤t≤8,P在中间,则4t-3﹣5t+9=2(﹣3t+23)解得t=8;故t的值为:1,2617,167,8.【变式训练1】如图,已知A、B、C是数轴上三点,点O为原点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A、B表示的数;(2)动点P、Q分别从A、C同时出发,沿数轴向右匀速运动.点P的速度是每秒6个单位长度,点Q的速度是每秒3个单位长度,点M为AP的中点,点N在线段CQ上,且CN=13CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②当M、B、N三个点中的其中一个点是另两点构成的线段的中点的时候,求t的值.【答案】(1)A点表示-10,B表示2,(2)①点M表示的数为:-10+3t,点N表示的数为:6+t,②t的值为:2秒或285秒或20秒;【解析】(1)解:∵O为原点,C表示6,BC=4,∵B表示2,∵AB=12,∵A点表示-10;(2)解:①∵点P从A点以每秒6个单位长度沿数轴向右匀速运动,∵P点表示的数为-10+6t,∵点M为AP的中点,∵点M表示的数为:12(-10-10+6t)=-10+3t,∵点Q从C点以每秒3个单位长度沿数轴向右匀速运动,∵Q点表示的数为6+3t,∵点N为13CQ,∵点N表示的数为:6+13×(6+3t-6)=6+t,②当M是B、N中点,B点在左侧时,BM=MN,即-10+3t-2=6+t-(-10+3t),解得:t=285,当B是M、N中点,M点在左侧时,BM=BN,即2-(-10+3t)=6+t-2,解得:t=2,当N是B、M中点,B点在左侧时,BN=MN,即6+t-2=-10+3t-(6+t),解得:t=20,∵t的值为:2秒或285秒或20秒;【变式训练2】已知,如图1:数轴上有A、B、C三点,点A表示的数为-5,点B表示的数为13,点C 表示的数为-2,将一条长为9个单位长度的线段MN放在该数轴上(点M在点N的左边).(1)求线段AB中点表示的数;(2)如图2:若从点M与点A重合开始,将线段MN以0.3个单位长度/秒的速度沿数轴向右移动,经过x秒后,点N恰为线段BC的中点,求x的值;(3)如图3:在(2)的基础上,若线段MN向右移动的同时,动点P从点C开始以0.6个单位长度/秒的速度也沿数轴向右移动,设移动的时间为t秒,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,求t的值.【答案】(1)4;(2)5;(3)703或803【解析】(1)解:线段AB中点表示的数为51342-+=,∵线段AB中点表示的数为4;(2)解:点N表示的数为:-5+9=4线段BC中点表示的数为:2135.52-+=根据题意,得4+0.3x=5.5,解得:x=5,∵点N恰为线段BC的中点重合时,x的值为5;(3)解:当点N恰为线段BP的中点时,根据题意,得20.61340.32tt-++=+,方程无解,当点P恰为线段BN的中点时,根据题意,得40.31320.62tt++=-+,解得:t=703,当点B恰为线段PN的中点时,根据题意,得20.640.3132t t-+++=,解得:t=803,综上,当P、N、B三个点中恰有一个点为另两个点所组成线段的中点时,t的值为703或803.【变式训练3】已知A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C 是(),A B的优点.例如:如图1,A,B为数轴上两点,点A表示的数为-1,点B表示的数为2,表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是(),A B的优点;表示数0的点D到点C的距离是1,到点B的距离是2,那么点D是(),B C的优点.(1)在图1中,点C是(),A B的优点,也是(A,_____________)的优点;点D是(),B C的优点,也是(B,_____________)的优点;(2)如图2,A ,B 为数轴上两点,点A 所表示的数为-2,点B 所表示的数为4.设数x 所表示的点是(),A B 的优点,求x 的值;(3)如图3,A ,B 为数轴两点,点A 所表的数为-20,点B 所表示的数为40.现有一只电子蚂蚁Р从点B 出发,以5个单位每秒的速度向左运动,到达点A 停止,设点Р的运动时间为t 秒,在点Р运动过程中,是否存在P 、A 和B 中恰有一个点为其余两点的优点﹖如果存在请求出t 的值;如果不存在,说明理由.【答案】(1)D ,A ;(2)10或2;(3)当4t =或6t =或8t =时,P 、A 和B 中恰有一个点为其余两点的优点【解析】(1)解:A ,B 为数轴上两点,点A 表示的数为-1,点D 表示的数为0,表示数1的点C 到点A 的距离是2,到点D 的距离是1,那么点C 是(),A D 的优点;表示数0的点D 到点B 的距离是2,到点A 的距离是1,那么点D 是A 的优点,故答案为:D ;A ;(2)解:由题意得()224x x --=-,∵()224x x +=-或()224x x +=--,解得10x =或2x =;(3)解:由题意得运动t 秒时点P 表示的数为405t -,∵()40520605PA t t =---=-,()=404055PB t t --=,()402060AB =--=,当A 是(B ,P )的优点时,∵()602605t =-,解得6t =;当B 为(A ,P )的优点时6025t =⋅,解得6t =;当P 为(A 、B )的优点时60525t t -=⋅,解得4t =;当P 为(B ,A )的优点时()52605t t =-,解得8t =;综上所述,当4t =或6t =或8t =时,P 、A 和B 中恰有一个点为其余两点的优点专题02 数轴上的三种动点问题数轴的动点问题,无论在平时练习,还是月考,期中期末考试中属于压轴题的版块,其过程复杂,情况多变。
人教版七年级上册数学期末复习专题---数轴类动点问题(4)1.根据下面给出的数轴,解答下面的问题:①请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:;B:;②观察数轴,与点A的距离为4的点表示的数是:;③若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合;④若数轴上M、N两点之间的距离为2014(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N表示的数分别是:M:;N:.2.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=.(2)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x+6|是否有最小值?如果有,写出最小值,如果没有,说明理由.3.根据给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:,B:.(2)观察数轴,与点A的距离为4的点表示的数是:.(3)若将数轴折叠,使得A点与﹣2表示的点重合,则:①B点与哪个数表示的点重合?②若数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,求M、N两点表示的数分别是多少?4.某中学位于东西方向的北京路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:(1)聪聪家与刚刚家相距多远?(2)如果把这条北京路看作一条数轴,以向东为正方向,以校门口为原点.请你画出这条数轴,并在数轴上标出他们三家与学校的大概位置(数轴上一格表示50米)(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)如果数轴上有两点A、B,点A所表示的数是x1,点B所表示的数是x2,你认为可用一个怎样的式子来求数轴上AB两点之间的距离d?请用含有x1,x2的式子把d表示出来.5.对数轴上的点P进行如下操作:先把点P表示的数乘以3,再把所得数对应的点向左平移1个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图,若点A表示的数是1,则点A′表示的数是;若点B′表示的数是﹣4,则点B表示的数是;(2)若数轴上的点M经过上述操作后,位置不变,则点M表示的数是.并在数轴上画出点M的位置.6.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:;B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:N:.7.一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)若货车每千米耗油0.5升,这趟路货车共耗油多少升?8.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?9.已知在数轴上到表示数﹣3的点和表示数5的点距离相等的点表示数1,有这样的关系,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是.(3)已知在数轴上表示数x的点到表示数﹣2的点的距离是到表示数6的点的距离的2倍,求数x.10.邮递员骑摩托车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到C时,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若这辆摩托车每100km耗油2升,这趟路共耗油多少升?参考答案1.解:(1)由数轴可知,A点表示数1,B点表示数﹣2.5.故答案为:1,﹣2.5;(2)A点表示数1,与点A的距离为4的点表示的数是:﹣3或5.故答案为:﹣3或5;(3)当A点与﹣3表示的点重合,则B点与数0.5表示的点重合.故答案为:0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2014(M在N的左侧)可知,点M、N到﹣1的距离为2014÷2=1007,所以,M点表示数﹣1﹣1007=﹣1008,N点表示数﹣1+1007=1006.故答案为:﹣1008,1006.2.解:(1)7﹣(﹣7)=14,故答案为:14;(2)∵|x+3|+|x﹣1|=x+3+1﹣x=4,∴x+3≥0,且x﹣1≤0,∴﹣3≤x≤1,即符合条件的整数有±1,0,﹣2,﹣3,故答案为:±1、0、﹣2、﹣3.(3)有最小值.最小值为9,理由是:∵丨x﹣3丨+丨x+6丨可以理解为:在数轴上表示x到3和﹣6的距离之和,∴当x在3与﹣6之间的线段上(即﹣6≤x≤3)时:即丨x﹣3丨+丨x+6丨的值有最小值,最小值为3﹣(﹣6)=9.3.解:(1)利用数轴得出:A:1 B:﹣2.5;故答案为:1,﹣2.5;(2)分为两种情况:①当点在表示1的点的左边时,数为1﹣4=﹣3;②当点在表示1的点的右边时,数为1+4=5;故答案为:5和﹣3;(3)①∵A点与﹣2表示的点重合,∴A点与﹣2关于﹣0.5对称,∴B点与表示1.5的点重合,②∵数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,∴M、N两点表示的数分别是﹣1006,1005.4.解:(1)150+200=350(米);(2)如图所示:;(3)体育场所在点所表示的数是﹣110;(4)数轴上两点x1,x2之间的距离是d=|x1﹣x2|.5.解:(1)点A'表示的数是:1×3﹣1=2;设点B表示的数为x,则3x﹣1=﹣4,解得:x=﹣1,若点B'表示的数是:﹣4,则点B表示的数是﹣1;(2)设点M表示的数为y,则3y﹣1=y,解得:y=,即点M表示的数是:,在数轴上画出点M的位置如图所示:.6.解:(1)由数轴可知,A点表示数1,B点表示数﹣2.5.故答案为:1,﹣2.5;(2)A点表示数1,与点A的距离为4的点表示的数是:﹣3或5.故答案为:﹣3或5;(3)当A点与﹣3表示的点重合,则B点与数0.5表示的点重合.故答案为0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2010(M在N的左侧)可知,点M、N到﹣1的距离为2010÷2=1005,所以,M点表示数﹣1﹣1005=﹣1006,N点表示数﹣1+1005=1004.故答案为:﹣1006,1004.7.解:(1);(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,则耗油量是:20×0.5=10升.答:小明家距小彬家7.5千米,这趟路货车共耗油10升.8.解:(1)如图所示:A、B、C分别表示小明、小红、小刚家(2)小明家与小刚家相距:4﹣(﹣4.5)=8.5(千米);(3)这辆货车此次送货共耗油:(4+1.5+10+4.5)×0.05=1(升).答:小明家与小刚家相距8.5千米,这辆货车此次送货共耗油1升.9.解:(1)4﹣(﹣3)=7.(2)在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是:(a+b).(3)由x与﹣2的差的绝对值等于x与6的差的绝对值的2倍,得:x﹣(﹣2)=2(x﹣6),解得:x=14.x﹣(﹣2)=﹣2(x﹣6),解得:x=.10.解:(1)(2)C村离A村为:4﹣(﹣2)=4+2=6(km).答:C村离A村有6km.(3)邮递员实际一共走了|﹣2|+|﹣3|+|+9|+|9﹣5|=2+3+9+4=18(km),18÷100×2=0.36答:这趟路共耗油0.36升.。
两点间的距离
【学习目标】
会借助数轴理解绝对值的几何意义进而求数轴上两点间的距离.
【回顾】
1、数轴上两点A,B,
(1)若A点表示2,B点表示4,则A、B两点间的距离等于________;
-5 -4 -3 -2 -1 0 1 2 3 4 5(2)若A点表示2,B点表示4
-,则A、B两点间的距离等于________;
-5 -4 -3 -2 -1 0 1 2 3 4 5(3)若A点表示2
-,B点表示4
-,则A、B两点间的距离等于________.
-5 -4 -3 -2 -1 0 1 2 3 4 5
2、通过以上特例,可以发现:
数轴上两点间的距离等于这两点所对应的数的差的绝对值.
如图所示,点A,B在数轴上分别对应的数为a,b,则A,B两点间的距离表示
为|AB|= ______________ B A
例如5与2
-两数在数轴上所对应的两点之间的距离可列式为|5(2)|7.
--=
列式计算:
(1)若A点表示8,B点表示26,求A,B两点间的距离;(2)若A点表示8
-,B点表示26,求A,B两点间的距离;(3)若A点表示8
-,B点表示26
-,求A,B两点间的距离;
【应用】
3、我们知道|5(2)
--|表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对应的两点之间的距离.那么,
(1)|4-2|表示_________与________之差的绝对值,实际上也可理解为______与_____两数在数轴上所对应的两点之间的距离;
(2)|5(3)
---|表示_________与________之差的绝对值,实际上也可理解为
______与_____两数在数轴上所对应的两点之间的距离;
(3)|53
--|表示_________与________之差的绝对值,实际上也可理解为
______与_____两数在数轴上所对应的两点之间的距离;
(4)①数轴上表示x和3的两点A和B之间的距离是______________,如果|AB|=2,那么x的值是___________.
②数轴上表示x和1
-的两点A和B之间的距离是______________,如果|AB|=2,那么x的值是___________.
(5)
①找出所有符合条件的整数x,使得|x-5|+|x-2|=3,这样的整数x是
_____________;
②找出所有符合条件的整数x,使得|x-5|+|x|=5,这样的整数x是
_____________;
③找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数x是
_____________;
④找出所有符合条件的整数x,使得|x+5|+|x+2|=3,这样的整数x是
_____________;
(6) 找出所有符合条件的整数x,使得|x+5|+|x-2|=9,这样的整数x是
_____________;
(7)若|x+1|+|x-2|取最小值时,相应的x的取值是__________,此时最小值是___________.
【巩固练习】
1、利用数轴求下列每组数在数轴上对应点之间的距离:
(1) 如图所示,A,B 两点的距离为___________;
(2) 如图所示,C,D 两点的距离为___________;
(3) 如图所示,A,D 两点的距离为___________; D C B A -4 -3 -2 -1 0 1 2 3 4
(4)若在数轴上M 点表示的数为m,N 点表示的数为n ,如图所示,则点M 与点N 的距离为__________.
M N
m 0 n
2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为2,则所有满足条件的点B 与原点O 的距离之和为 _____________
3、已知数轴上两点A 、B 对应的数分别为-1、3,点P 为数轴上一动点,其对应的数为x .
(1)若点P 到点A ,点B 的距离相等,求点P 对应的数;
(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为6?若存在,请求出x 的值;若不存在,说明理由;
【课后反思】数轴上两点间的距离,实质是绝对值的知识,体现了数形结合的思想,在初中教学中是一个难点。
本节课先从数轴上特殊的两点间距离出发,求出两点间的距离,然后由特殊点到一般用字母表示的点,归纳出数轴上任意两点间的距离公式AB=|a-b|,熟练掌握公式后,公式的应用是重点,通过一组练习,加强训练。
讲解过特定的例题后,让学生上黑板板演习题,以锻炼他们的解题和计算能力,整堂课我给予学生比较多的时间去自主练习,让学生展示自己,使绝大多数学生参与到课堂中来,但极少数同学还是有一定的难度,解题能力有待提高,知识的综合运用能力欠缺。