线性代数维向量空间
- 格式:ppt
- 大小:1017.00 KB
- 文档页数:20
向量空间的基底与维数在线性代数中,向量空间是一个具有特定运算规则的集合。
在向量空间中,基底是一组线性无关的向量,它们可以生成该向量空间中的任意向量。
维数则是指向量空间中基底的个数。
本文将介绍向量空间的基底与维数的概念及其相关性质。
一、基底的定义与性质基底是向量空间中的一组线性无关的向量。
具体来说,如果向量空间V中的向量集合B={b1, b2, ..., bn}满足以下两个条件:1. B中的向量相互独立,即对于任意不全为0的标量c1, c2, ..., cn,有c1b1 + c2b2 + ... + cnbn ≠ 0;2. B中的向量可以生成向量空间V中的任意向量,即对于向量v∈V,存在标量c1, c2, ..., cn,使得v = c1b1 + c2b2 + ... + cnbn。
根据基底的定义,我们可以得出一些基本性质:1. 基底中的向量个数是唯一的。
换言之,一个向量空间只有一个维数。
2. 基底中的向量个数与向量空间中的任意一组基底的向量个数相等。
3. 如果一个向量空间有有限维,则其基底中的向量个数也是有限的。
二、维数的定义与性质维数是指向量空间中基底的个数。
记作dim(V)。
如果向量空间V中存在一组基底包含m个向量,那么V的维数就是m。
维数具有以下性质:1. 维数是向量空间的基本属性,不依赖于具体的表示方式。
2. 同一个向量空间中的不同基底具有相同的维数。
3. 对于向量空间R^n,其维数为n。
三、基底和维数的关系与应用基底和维数在线性代数中具有重要的应用价值。
首先,基底的存在性保证了向量空间中的向量可以用基底中的向量线性表示出来,这对于求解线性方程组、解决线性相关与线性无关的问题非常有帮助。
其次,维数在研究向量空间的结构和性质时起到了关键作用。
例如,两个向量空间V和W的维数相等,则它们同构;若维数不相等,则它们不同构。
此外,在计算机科学、信号处理以及物理学等领域中,基底和维数的概念也被广泛应用,如图像压缩、数据降维等。
线性代数中的向量空间线性代数是数学中的一个重要分支,研究的是向量和线性方程组的性质。
在线性代数中,向量空间是一个基本的概念,它在许多数学和科学领域中都有重要的应用。
本文将介绍关于向量空间的定义、性质以及应用。
一、向量空间的定义在线性代数中,向量空间是指由一组向量构成的集合,其中包含了向量加法和标量乘法两种运算,并满足以下八个性质:1. 零向量存在性:向量空间中存在一个特殊的向量,被称为零向量,记为0,它满足对于任意向量v,有v + 0 = v。
2. 向量加法封闭性:对于任意向量v和w,它们的和v + w也属于向量空间。
3. 向量加法结合律:对于任意向量u、v和w,有(u + v) + w = u + (v + w)。
4. 向量加法交换律:对于任意向量u和v,有u + v = v + u。
5. 标量乘法封闭性:对于任意标量k和向量v,k * v也属于向量空间。
6. 标量乘法结合律:对于任意标量k和l以及向量v,有(k * l) * v = k * (l * v)。
7. 向量与标量加法的分配律:对于任意标量k和向量v、w,有k * (v + w) = k * v + k * w。
8. 向量与标量乘法的分配律:对于任意标量k和l以及向量v,有(k + l) * v = k * v + l * v。
满足以上八个性质的集合即可称为向量空间。
二、向量空间的性质在向量空间中,还有一些重要的性质:1. 零向量的唯一性:向量空间中的零向量是唯一的,即任意向量空间中的零向量都相等。
2. 负向量的存在性:对于任意向量v,在向量空间中存在一个向量-u,使得v + (-u) = 0。
这里的-u被称为v的负向量。
3. 数乘的零乘性:对于任意标量k和向量v,在向量空间中,有0 * v = 0,其中0表示标量的零。
4. 数乘的单位元性:对于任意向量v,在向量空间中,有1 * v = v,其中1表示标量的单位元。
三、向量空间的应用向量空间的概念和性质在数学和科学中有广泛的应用。
向量空间的维数
向量的维数是指:向量在分量的个数。
如:(a,b,c)这就是一个三维向量。
向量维数与空间维数的区别:
所谓空间维数指的是空间基当中向量的个数,并不是由向量的维数确定的。
如{x|x=k(a,b,c),k为任意常数}这就是一维向量空间。
就是空间当中的一条直线。
向量空间又称线性空间,是线性代数的中心内容和基本概念之一。
在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念。
譬如,实系数多项式的集合在定义适当的运算后构成向量空间,在代数上处理是方便的。
单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。
向量空间它的理论和方法在科学技术的各个领域都有广泛的应用。
向量空间的基与维数在线性代数中,向量空间是一个具有特定性质的数学结构,它由一组向量组成,并满足一些线性运算规则。
在向量空间中,我们经常讨论两个重要的概念,即基和维数。
一、基的定义和性质向量空间的基是指一组线性无关的向量,它们能够生成该向量空间中的所有向量。
具体而言,设V是一个向量空间,S={v1,v2,...,vn}为V 中的向量组,如果满足以下两个条件:1. 向量组S中的向量线性无关;2. 向量空间V中的每一个向量都可以由向量组S线性表示,则称S 为向量空间V的基。
基的性质包括:1. 基的向量个数是确定的。
如果两个基包含的向量个数不同,那么它们所在的向量空间也是不同的。
2. 基的向量组中的向量个数是向量空间的维数。
二、维数的定义和性质在向量空间中,维数是指该向量空间的基中所含向量的个数。
通常用符号dim(V)表示,其中V是一个向量空间。
维数的性质包括:1. 如果V是一个向量空间,那么V的两个基所含向量的个数相同。
也就是说,向量空间的维数是唯一确定的。
2. 一个向量空间的维数是非负整数。
3. 如果向量空间的维数是有限的,则称该向量空间为有限维向量空间。
否则,称该向量空间为无限维向量空间。
三、例子和应用1. 二维平面上的向量空间R^2,其基可以选择为{(1,0),(0,1)},其中(1,0)和(0,1)分别是R^2的两个标准单位向量。
因此,R^2的维数为2。
2. 三维空间中的向量空间R^3,其基可以选择为{(1,0,0),(0,1,0),(0,0,1)},其中(1,0,0)、(0,1,0)和(0,0,1)分别是R^3的三个标准单位向量。
因此,R^3的维数为3。
基和维数的概念不仅在线性代数中有着重要的应用,也在其他数学领域和物理学、工程学等各个领域得到广泛应用。
它们帮助我们更好地理解和描述向量空间的结构和性质,为解决实际问题提供了强有力的工具和方法。
总结起来,向量空间的基是一组线性无关的向量,它们能够生成该向量空间中的所有向量;维数是该向量空间基所含向量的个数。
向量空间的维数与基底的选择向量空间是线性代数中一个重要的概念,它描述了一组具备加法和数乘运算的向量的集合。
在向量空间中,维数与基底是两个相互关联的概念,它们在向量空间的研究和应用中具有重要的作用。
一、向量空间的维数向量空间的维数是指向量空间中一组线性无关的基向量的个数,用n表示。
一般情况下,向量空间的维数等于基向量的个数。
向量空间的维数决定了向量空间的性质和特征。
二、基底的选择在向量空间中,基底是指一组线性无关的向量,通过它们可以表示向量空间中的任意向量,并且表示方式是唯一的。
基底的选择对于向量空间的研究和应用具有重要的影响。
1. 基底的存在性和唯一性对于任意一个向量空间,都存在一个基底。
但是,基底并不唯一,可以有多组不同的基底表示同一个向量空间。
例如二维平面中,可以选择{(1, 0), (0, 1)}或者{(2, 0), (0, 2)}作为基底。
2. 基底的选择原则在选择基底时,有一些原则可以遵循:a. 线性无关性:基底中的向量必须线性无关,即不能由其中的其他向量线性表出。
b. 极小性:基底中的任意一个向量都不能由其他向量组成,即基底是极小集合。
c. 覆盖性:基底中的向量能够覆盖整个向量空间,即向量空间中的任意向量都可以由基底线性表示。
d. 简洁性:基底的个数应该尽可能地少,以便于计算和理解。
基于以上原则,我们可以选择不同的基底来表示向量空间,但是一组合适的基底应具备线性无关性、极小性、覆盖性和简洁性。
三、维数与基底的关系在向量空间中,维数与基底有以下关系:1. 维数等于基底的个数:对于一个n维向量空间,它具有n个线性无关的基向量。
2. 基变换:对于同一个向量空间,不同的基底之间可以进行线性变换。
基变换可以通过矩阵乘法实现,使得在不同基下的向量能够进行相互转化。
3. 基底的扩充和缩减:当基底的个数小于维数时,可以通过向量的线性组合扩充基底;当基底的个数大于维数时,可以通过去掉冗余向量缩减基底。
第四章 向量的线性相关性§1n 维向量一个含有0,1的数集P ,如果对于P 中任意两个数的四则运算结果仍在这个数集中(除数不为0),则称该数集P 为一数域。
容易验证整数集不是数域;有理数集Q 、实数集R 、复数集C 均为数域,以后分别称之为有理数域、实数域和复数域。
对于任一数域P ,有Q P C ⊂⊂。
定义1:数域P 中n 个数构成的有序数组12(,,,)n a a a L 称为数域P 上的n 维向量,向量常用希腊字母,,αβγ等表示。
其中i a 称为向量的第i 个分量。
若n 维向量12(,,,)n a a a α=L 和12(,,,)n b b b β=L 的对应分量相等,即i ia b =(1,2,i n =L ),称向量α与β相等,记为αβ=。
向量12(,,,)n a a a α=L 也称为n 维行向量。
n 维行向量可视为1n ⨯矩阵来定义加法与数乘。
矩阵中关于加法与数乘的性质也适合向量的加法与数乘。
向量有时为了方便也写成列的形式()1212,,,nn a a a a a a ⎛⎫ ⎪' ⎪= ⎪ ⎪⎝⎭L M 。
称为n 维列向量。
作为列向量时可视为1n ⨯矩阵来定义加法与数乘。
数域P 上全体n 维向量的集合对于线性运算称为数域P 上的n 维向量空间,记为n P 。
§2 线性相关性一、线性表示定义2:设12,,,s αααL 是一组n 维向量,12,,,s k k k L 是一组数,称向量1122s s k k k ααα+++L 为向量组12,,,s αααL 的一个线性组合。
如果某一向量α可表示成1122s s k k k αααα=+++L ,则称向量α可由12,,,s αααL 线性表示。
例如向量组()11,2,1α=-,()22,3,1α=-,()30,1,1α=-,有3122ααα=-,称3α可由12,αα线性表示。
注意:线性方程组AX B =的增广矩阵可写成分块矩阵形式12(,,,|)s αααβL 。
第五章n 维向量空间习题一1. 解:a-b = a+(-b)= (1,1,0)T +(0,-1,-1)T = (1,0,-1)T3a+2b-c = 3a+2b+(-c)= (3,3,0)T +(0,2,2)T +(-3,-4,0)T = (0,1,2)T2. 解: 3(a 1-a)+2(a 2+a) = 5(a 3+a) 3a 1+2a 2+(-3+2)a = 5a 3+5a 3a 1+2a 2+(-a) = 5a 3+5a3a 1+2a 2+(-a)+a+(-5)a 3 = 5a 3+5a+a+(-5)a 3 3a 1+2a 2+(-5)a 3 = 6a61[3a 1+2a 2+(-5)a 3] = 61⨯6a 21a 1+31a 2+(-65)a 3 = a将a 1=(2,5,1,3)T ,a 2=(10,1,5,10)T ,a 3=(4,1,-1,1)T 代入a =21a 1+31a 2+(-65)a 3 中可得: a=(1,2,3,4)T .3. (1) V 1是向量空间.由(0,0,…,0)∈V 1知V 1非空.设a=(x 1,x 2,…,x n )∈V 1,b=(y 1,y 2,…,y n )∈V 1,则有x 1+x 2+…+x n =0,y 1+y 2+…+y n =0.因为(x 1+y 1)+(x 2+y 2)+…+(x n +y n )= (x 1+x 2+…+x n )+( y 1+y 2+…+y n )=0所以a+b=( x 1+y 1,x 2+y 2,…,x n +y n )∈V 1.对于k ∈R ,有 kx 1+kx 2+…+kx n =k(x 1+x 2+…+x n )=0所以ka=( kx 1,kx 2,…,kx n ) ∈V 1.因此V 1是向量空间.(2) V 2不是向量空间.因为取a=(1, x 2,…,x n )∈V 2 ,b=(1, y 2,…,y n )∈V 2,但a+b=(2, x 2+y 2,…,x n +y n )∉V 2.因此V 2不是向量空间.习 题 二1. 求向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式:(1) 解:设向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=k 1a 1+k 2a 2+k 3a 3+k 4a 4其中, k 1,k 2,k 3,k 4为待定常数.则将b=(0,2,0,-1)T ,a 1=(1,1,1,1)T ,a 2=(1,1,1,0)T ,a 3=(1,1,0,0)T ,a 4=(1,0,0,0)T 向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式中可得: (0,2,0,-1)T =k 1(1,1,1,1)T +k 2(1,1,1,0)T +k 3(1,1,0,0)T +k 4(1,0,0,0)T根据对分量相等可得下列线性方程组:⎪⎪⎩⎪⎪⎨⎧-====++++++1201213214321k k k k k k k k k k解此方程组可得:k 1=-1,k 2=1,k 3=2,k 4=-2.因此向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=-a 1+a 2+2a 3-2a 4 .(2) 与(1)类似可有下列线性方程组:⎪⎪⎩⎪⎪⎨⎧===-=+++++++++121332223212143214321k k k k k k k k k k k k k由方程组中的第一和第二个方程易解得:k 2=4,于是依次可解得:k 1=-2,k 3=-9, k 4=2.因此向量b 关于向量组a 1,a 2,a 3,a 4的线性组合表达式为: b=-2a 1+4a 2-9a 3+2a 4 .2.(1) 解:因为向量组中向量的个数大于每个向量的维数,由推论2知a 1,a 2 ,a 3,a 4线性相关.(2) 解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛=400510111220510111331621111321a a a因为()3321=a a a R所以a 1,a 2,a 3线性无关.(3) 解:()⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-=00021011142012601117131442111321a a a因为()32321<=a a a R所以a 1,a 2,a 3线性相关. (4) 解:()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=500410111320410111211301111321a a a因为()3321=a a a R所以a 1,a 2,a 3线性无关.3. 证明:假设有常数k 1,k 2,k 3,使 k 1b 1+k 2b 2+k 3b 3=0又由于b 1=a 1,b 2=a 1+a 2,b 3=a 1+a 2+a 3,于是可得 k 1a 1+k 2(a 1+a 2)+k 3(a 1+a 2+a 3)=0 即(k 1+k 2+k 3)a 1+ (k 2+k 3)a 2+k 3a 3=0 因为a 1,a 2,a 3线性无关,所以有⎪⎩⎪⎨⎧==+=++000332321k k k k k k 解得⎪⎩⎪⎨⎧===000321k k k因此向量组b 1,b 2,b 3线性无关.4. 设存在常数k 1,k 2,k 3,k 4使k 1b 1+k 2b 2+k 3b 3+k 4b 4=0因为b 1=a 1+a 2,b 2= a 2+a 3,b 3=a 3+a 4,b 4= a 4+a 1 于是可得:k 1 (a 1+a 2)+k 2(a 2+a 3)+k 3(a 3+a 4)+k 4(a 4+a 1)=0 整理得:(k 1+k 4)a 1+ (k 2+k 1)a 2+(k 2+k 3)a 3+(k 3+k 4)a 4=0, (下用两种方法解)法 一:因为a 1,a 2,a 3,a 4为同维向量,则 (1) 当向量组a 1,a 2,a 3,a 4线性无关时,k 1+k 4=0, k 2+k 1=0,k 2+k 3=0,k 3+k 4=0可解得:k 2=- k 1,k 4=- k 1,k 3=k 1取k 1≠0可得不为0的常数k 1,k 2,k 3,k 4使k 1b 1+k 2b 2+k 3b 3+k 4b 4=0 因此b 1,b 2,b 3,b 4线性相关。