大学物理知识总结习题答案(第八章)振动与波动(word文档良心出品)
- 格式:doc
- 大小:392.00 KB
- 文档页数:13
第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。
· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,ω 为角频率,(ωt+ϕ)称为谐振动的相位,t =0时的相位ϕ 称为初相位。
· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。
2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。
· 阻尼振动的动力学方程为222d d 20d d x xx t tβω++= 其中,γ是阻尼系数,2mγβ=。
(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。
(2) 当22ωβ=时,不再出现振荡,称临界阻尼。
(3) 当22ωβ<时,不出现振荡,称过阻尼。
4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。
8-1.已知波源在原点(x=0)的平面简谐波的方程为)cos(Cx Bt A y -=式中A,B,C 为正值恒量.试求:(1)波的振幅,波速,频率,周期与波长;(2)写出传播放向上距离波源l 处一点的振动方程;(3)试求任何时刻,在波传播放向上相距为D 的两点的位相差;解:(1) ∵A 、B 、C 为正值恒量,所以该波沿X 轴正方向传播,与平面简谐波的波动方程)(cos cxt A y -=ω比较系数,可得波的振幅为A ,B =ω, π2B f =, B T π2=, C c=ω,C B C c ==ω ,因为f c λ=,所以C B C B CT ππλ22=⋅==. 所以该波的振幅为A,波速为CB,频率为π2B ,周期为B π2,波长为C π2.(2)传播方向上距波源l 处一点的振动方程为:)cos(Cl Bt A y -=.(3)设t 时刻,传播方向上相距为D 的两点分别为x 1,x 2. 那么这两点所对应的波动方程分别为: )cos(11Cx Bt A y -= )cos(22Cx Bt A y -= 所以这两点的相位差Δφ为CD x x C =-=-=∆1221φφφ.8-2. 一列横波沿绳子传播时的波动方程为)410cos(05.0x t y ππ-=,式中x,y 以m 计,t 以s 计.(1)求此波的振幅、波速、频率、和波长;(2)求绳子上各质点振动时的最大速度和最大加速度;(3)求x=0.2m 处的质点在t=1s 时的相位,它是原点处质点在哪一时刻的位相. 这一位相所代表的运动状态在t=1.25s 时刻到达哪一点?在t=1.5s 时刻到达哪一点?(4)分别图示t=1s,1.1s,1.25s,1.5s 各时刻的波形.解:(1)通过与平面简谐波的波动方程比较系数,可得 此波的振幅为:A=0.05m, 波速为:ππ410=c =2.5(m/s). 频率为:ππ210=f =5(HZ). 波长为:f c =λ=0.5(m).答:该波的振幅为0.05m, 波速为2.5m/s, 频率为5HZ,波长为0.5m.(2) ∵平面简谐波的波动方程为:)(cos cxt A y -=ω.∴绳子上各质点的振动速度为: )(sin cxt A t y v --=∂∂=ωω.绳子上各质点的振动加速度为: )(cos 222c xt A ty a --=∂∂=ωω.∴绳子上各质点振动时的最大速度为 ωA v =max =0.5π=1.57(m/s). 绳子上各质点振动时的最大加速度为 2m ax ωA a = =52π=49.35(m/s 2). 答:绳子上各质点振动时的最大速度为1.57m/s ,最大加速度为49.35m/s 2. (3)X=0.2m 处的质点在t=1s 时的位相: φ=9.2π 设该位相是原点处质点在t 时刻的位相,可得 φ=9.2π=10πt t=0.92(s) 这一位相代表的运动状态在t=1.25s 时距离原点的位置为: )(825.0)125.1(2.02.0m c t c x =-+=∆+=同理,在t=1.5s 时,该位相所代表的运动状态,距离原点的位置为: t c x '∆+=2.0=1.45 (m). (4)t=1s 时,x y π4cos 05.0=. t=1.1s 时,x y π4cos 05.0-=. t=1.25s 时,x y π4sin 05.0=. t=1.5s 时,x y π4cos 05.0-=.8-3. 已知平面余弦波波源的振动周期T=21s,所激起的波的波长λ=10m,振幅为0.1m,当t=0时,波源处振动的位移恰为正方向的最大值,取波源处为原点并设波沿+X 方向传播,求: (1)此波的方程;(2)沿波传播方向距离波源为2λ处的振动方程; (3)当4T t =时,波源和距离波源为 4λ,2λ,43λ及λ的各点各自离开平衡位置的位移;(4)当4T t =时,波源和距离波源为 4λ,2λ,43λ及λ的各点自离开平衡位置的位移;并根据(3)(4)计算结果画出波形(y-x)曲线; (5)当4T t =和2T 时,距离波源4λ处质点的振动速度. 解:(1)根据题意可知,该平面余弦波的振幅 A=0.1m, 频率f =2(HZ),波速f c λ==20(m/s),初相位φ0=0. 当取波源为原点并沿该波沿+X 方向传播时,波动方程为 )54cos(1.0x t y ππ-=.(2)沿波传播方向距离波源为λ/2处的振动方程为: )254cos(1.0λππ⋅-=t y =-0.1cos4πt.(3)距离波源分别为4λ,2λ,43λ和λ的各点的振动方程为 t y π4sin 1.0=, t y π4cos 1.0-= t y π4sin 1.0-=, t y π4cos 1.0=当4Tt =时,它们各自离开平衡位置的位移为 44sin 1.01Ty ⋅=π=0.1(m), 2y =0(m),3y =-0.1(m), 4y =0(m)(4)与(3)的方法类似,易求得 4λ=x 时, y=0(m). 2λ=x 时, y=0.1(m).43λ=x 时,y=0(m). λ=x 时,y=-0.1(m).(5)各质点的振动速度,)54sin(4.0x t t y v πππ--=∂∂= 当4Tt =时,距离波源4λ处质点的振动速度为: )4544sin(4.0λπππ⨯-⨯-=T v =0(m/s)同理,当2T t =时,距离波源4λ处质点的振动速度为:v =-0.4π(m/s)答:当4Tt =和2T 时,距离波源4λ处质点的振动速度分别为0m/s 和-0.4πm/s. 8-4. 一波源做简谐振动,周期为1001s,经平衡位置向正方向运动时,作为计时起点.设此振动以c=400m/s 的速度沿直线传播,求: (1)这波沿某一波线的方程;(2)距波源为16m 处和20m 处质点振动方程和初位相; (3)距波源为15m 和16 m 的两质点的位相差是多少?解:(1)根据题意可知,该简谐波的频率为ƒ=100(HZ), 波速c=400m/s, 初相位20πφ-=, 设该平面简谐波的波动方程为 )22cos(0φλπλπ+-=x ct A y 将上面的结果代入可得,)222cos(πλππ--=x t T A y =)22200cos(πππ--x t A(2)距波源为16m 和20m 处质点振动方程为:将x=16m 代入上式,得 )2200()2216200cos(1πππππ-=-⨯-=t Aos t A y同理,)2200cos()2220200cos(2πππππ-=-⨯-=t A t A y 初相位分别为:t=0时,210πφ-=,220πφ-=.(3)距波源为15m 和16m 的两质点的位相差: λπφ2⨯∆=∆x =2π. 8-5. 已知某平面简谐波的波源振动方程为)2sin(06.0πt y =,式中y 以m 计,t 以s计.设波速为2m/s,试求离波源5m 处质点的振动方程.这点的位相所表示的运动状态相当波源在哪一时刻的运动状态?解:离波源5m 处质点的振动方程为:将X=5m 代入波动方程得 )5(2sin06.0c t y -=π=)452sin(06.0ππ-t 设该点的位相所代表的运动状态相当波源在t ′时刻的运动状态,所以 t t '=-2452πππ可得 t ′=(t-2.5)(s).8-6.如图所示,A 和B 是两个同位相的波源,相距d=0.10m,同时以30Hz 的频率发出波动,波速为0.50m/s.P 点位于AB 上方,AP 与AB 夹角为30o ,且PA=4m ,求两波通过P 点位相差.解:依题意可知,PA=4m,AB=0.1m, 利用余弦定理,可得 PB=3.91(m),两波通过P 点相位差: λπφ2)(⨯-=∆PB PA又∵fc=λ ∴Δφ=10.8π. 8-7. S 1和S 2是两个相干波源,相距41波长,S 1比S 2的位相超前2π.设两列波在 S 1,S 2连线方向的强度相同且不随距离变化,问S 1,S 2连线上在S 1外侧各点处的合成波的强度如何?又在S 2外侧各点的强度如何?解:两列相干波在空间任意点P 所形成的振动的振幅为 α∆=cos A 2A +A +A 212221A其中Δα为两列相干波在空间任一点所引起的两个振动的位相差 λπααα2)(1212⨯---=∆r r当P 点在S 1外侧时,根据题中所给的条件,可得 πλλππλπααα-=⨯--=⨯---=∆4222)(1212r r∴0)cos(-2A 2A 2020=+=πA 又∵波的强度与振幅的平方成正比 ∴I=0. 同理,当P 点在S 2外侧时, 02)4(22)(1212=⨯---=⨯---=∆λπλπλπαααr r ⇒A=2A 0 ∴04I I =答:S 1,S 2连线上在S 1外侧各点处的合成波的强度为0,而在S 2外侧合成波的强度为4I 0.8-8.图所示,设平面横波1沿BP 方向传播,它在B 点的振动方程为t y πcos 102.021-⨯=,平面横波2沿AP 方向传播,A 点的振动方程为)2cos(102.022ππ+⨯=-t y ,两式中y 以m计,t以s计,P处与B相距0.40m ,与A 相距0.05m,波速为0.20m/s.求: (1)两波传到P 处的为相差; (2)在P 处合振动的振幅;(3)如果在P 处相遇的两横波,振动方向是互相垂直的,则合振动的振幅又如何?解:(1)两波传到P 处的位相差Δα: λπααα2)(1212⨯---=∆r r由题中给出A,B 两点的振动方程可知,A 比B 的位相超前π ∴ππωππλππα5.22)(22)(-=⨯-⨯-=--=∆CPB PA PB PA (2)在P 处合振动的振幅为:α∆++=cos A 2A A A 2010220210A 21083.2-⨯= (m). (3)由于两列横波振幅相同,频率相同,相位差Δα=25π, 所以,当振动方向相互垂直时,合成的结果是圆周运动. ∴A=A 10=0.2×10-2(m).8-9. 一列正弦式空气波,沿直径为0.14m 的圆柱形管行进,波的平均强度为18*10-3J/s ·m 2,频率为300Hz,波速为300m/s,问: (1)波中的平均能量密度和最大能量密度是多少?(2)每两个相邻的,相位差为2π的同相面(亦即相距1波长的两同相面)之间的波段中有多少能量?解:(1)根据题中所给的条件,由C I ω= 则cI=ω=300/10183-⨯=5106-⨯(J ·m -3). 由)(sin 222c rt A -=ωωρω 可得ωωρω222max ==A =4102.1-⨯(J ·m -3)(2)V W ∆⋅=ωd r 2πω==9.23×710-(J)8-10. 为了保持波源的振动不变,需要消耗4W 的功率,如果波源发出的是球面波,且认为媒质不吸收波的 能量,求距离波源1m 和2m 处的能流密度. 解:因为IS P =,所以距离波源1m 处的能流密度为ππ1442111===r S P I =0.318(w ·m -2)距离波源2m 处的能流密度为222244r S P I π===0.08(w ·m -2). 8-11. 两个波在一根很长的细绳上传播,它们的方程设为 )4(cos 06.01t x y -=π,)4(cos 06.02t x y +=π,式中x,y 以m 计,t 以s 计;(1) 求各波的频率,波长,波速和传播方向;(2) 试求这细绳上是做驻波式振动,求节点的位置和腹点的位置; (3)波腹处的振幅多大?在x=1.2m 处振幅多大?解:(1)与波动方程形式)cos(crt A y -=ω作比较,可得)4(4cos 06.01x t y -=π, )4(4cos 06.02xt y +=ππω41= ⇒πω211=f =2(Hz), s m c /41= 111T c =λ=2(m) 传播方向沿x 轴正方向 πω42=, ƒ2=2(Hz), C 2=-4m/s.222T c =λ =2(m). 传播方向沿x 轴负方向(2)由于两列波同频率,同振幅,同振动方向,并且传播速率相同方向相反,故满足驻波条件,所以做的是驻波式振动t x y y y ππ4cos cos 12.021⋅=+= 节点的位置: 2)12(ππ+=k x (k=0,±1, ±2,………) ⇒2)12(+=k x . 腹点的位置: ππk x = (k=0,±1, ±2, ……) ⇒k x =. (3)波腹处的振幅为0.12m.x=1.2m 处的振幅: )2.1cos(12.0π=0.097(m). 8-12. 设入射波的波动方程为)(2cos 1λπxT t A y +=,在x=0处发生反射,反射点为一自由端.求: (1)反射波的波动方程;(2)合成波(驻波)的方程,并由合成波方程说明哪些点是波腹,哪些点是波节.解:(1)反射波的波动方程为: )(2cos 2λπxT t A y -=(2) )2cos()2cos(221T tx A y y πλπ⋅=+波腹点:πλπk x =2 (k=0,±1, ±2,………) ⇒2λk x =.波节点位置:2)12(2πλπ+=k x (k=0,±1, ±2,………) ⇒4)12(λ+=k x8-13. 在实验室中做驻波试验时,将一根长3米的弦线的一端系于电动音叉的一个臂上,这音叉在 垂直于眩线长度的方向撒谎那个以60Hz 的频率做振动,眩线的质量为60*0.001kg.如果使这根弦线产生有四个波腹的振动,必须给这根弦线施多大的力.解:由8.14题的结论可知 μυTl n n 2=(n=1, 2,3,………) 根据题中所给的已知条件,可得 l =3m,n=44υ=60HZ, μ=60·10-3/3=kg 2102-⨯. 代入上式,解得24)2(nlT υμ==162(N).8-14. 把两端固定的一根弦线波动一下,就有横向振动弦线的两固定端传去,并被反射回来形成驻波图样, 一根长度为l 的弦线,它的驻波图样是一定的,所以它可按呈现一个波腹,二个波腹,三个波腹,……的形式做振动或这种基本振动叠加.试证明:一根长度为l 的弦线只能发出下列一些固有频率.μυTl n n 2=n=1,2,3,….. 式中μ是弦线单位的质量,T 是绳中的张力.证明:假设长度为l 的弦线,它的驻波图样可以产生n 个波腹,则n 2λ=l ① 又因波在弦线中传播的速率为 μTc =其中T 是绳中的张力,μ是弦线单位长度的质量μυυλTc nn == ②联立①②,解得 μυTl n n 2=. 故结论得证. 8-15. (1)有一支频率未知的音叉和一支频率已知为384Hz 的标准音叉一起振动时每秒产生三个拍,当这音叉上涂上少量石蜡时,拍频减少,沃尔玛这支音叉频率是多少?(2)某一波形可以用下式表示:11sin sin 3sin 535Y A x A x A x =+++试分别作出该级数前三项的图形,并作出叠加之后的图形. 解:(1)由拍频的定义,可知 123υυυ-==∴ 312±=υυ 即2υ=387或381(Hz). (2)图如下:11。
习题精解8-1 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图8.3所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。
解 建立如图8.3所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅= 通过矩形面积CDEF 的总磁通量为 00ln 22bm ai il bldx x aμμφππ==⎰由法拉第电磁感应定律有0ln cos 2m d il bt dt aφμωεωπ=-=- 8-2 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小线圈中感应的电动势。
解 无限长直螺线管内部的磁场为0B nI μ= 通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ== 由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-3 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。
解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-4 如图8.4所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。
若令AB 边以速率15.0v m s -=∙向右运动,试求线圈中感应电动势的大小及感应电流的方向。
解 利用动生电动势公式0.20()50.6sin(60)0.30()2BAv B dl dl V πε=⨯∙=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-5 如图8.5所示,两段导体AB 和CD 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
第七章 电磁感应本章提要1. 法拉第电磁感应定律· 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中就将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。
· 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化石,回路中产生地感应电动势i e 与磁通量m Φ变化率的关系为d d t=-F e其中Φ为磁链,负号表示感应电动势的方向。
对螺线管有N 匝线圈,可以有m N Φ=Φ。
2. 楞次定律· 楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。
3. 动生电动势· 磁感应强度不变,回路或回路的一部分相对于磁场运动,这样产生的电动势称为动生电动势。
动生电动势可以看成是洛仑兹力引起的。
· 由动生电动势的定义可得:()d bab ae 醋ò=v B l· 洛伦兹力不做功,但起能量转换的作用。
4. 感生电动势·当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。
d dd d d d L S t te F =??蝌Ñ-=-i E r B S 其中E i 为感生电场强度。
5. 自感· 当回路中的电流发生变化,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:d d L iL te =-(L 一定时)负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。
· 自感系数表达式为:L iY =· 自感磁能212m W LI =6. 互感· 对于两个临近的载流回路,当其中一回路中的电流变化时,电流所激发的变化磁场在另一回路中产生感应电动势。
大学物理第八章答案8-1 解:取固定坐标xOy ,坐标原点O 在水面上(图题所示)设货轮静止不动时,货轮上的A 点恰在水面上,则浮力为S ρga .这时 ga s Mg ρ= 往下沉一点时,合力 )(y a g s Mg F +-=ρ gy s ρ-=. 又 22d d tyMMa F == 故0d d 22=+gy s ty M ρ022=+y M gs dtdy ρ 故作简谐振动M g s ρω=2)(35.68.910102101022223334s g s M T =⨯⨯⨯⨯⨯===πρπωπ8-2 解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:)(1.0sin 0m kmg l ==θ(1) (1) A 物体共受三力;重mg, 支持力N, 张力T.不计滑轮质量时,有 T =kx列出A 在任一位置x 处的牛顿方程式220d d )(sin sin txm x l k mg T mg =+-=-θθ将(1)式代入上式,整理后得0d d 22=+x m ktx 习题8-1图故物体A 的运动是简谐振动,且)rad/s (7==mkω 由初始条件,000⎩⎨⎧=-=v l x 求得,1.00⎩⎨⎧===πϕml A 故物体A 的运动方程为x =0.1cos(7t+π)m(2) 当考虑滑轮质量时,两段绳子中张力数值不等,如图所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221d d sin txm T mg =-θ (2)对滑轮列出转动方程为:22221d d 2121t x Mr r a Mr J r T r T =⎪⎭⎫ ⎝⎛==-β (3)式中,T 2=k (l 0+x ) (4)由式(3)、(4)知2201d d 21)(txM x l k T ++=代入(2)式知 22021)(sin dtxd m M x l k mg ⎪⎭⎫ ⎝⎛+=+-θ又由(1)式知0sin kl mg =θ故0d d )21(22=++kx t xm M即0)2(d d 22=++x m M ktxm M k +=22ω可见,物体A 仍作简谐振动,此时圆频率为:rad/s)(7.52=+=m M k ω由于初始条件:0,000=-=v l x可知,A 、ϕ不变,故物体A 的运动方程为:m t x )7.5cos(1.0π+=习题8-2图由以上可知:弹簧在斜面上的运动,仍为简谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率.8-3 解:简谐振动的振动表达式:)cos(ϕω+=t A x由题图可知,m 1042-⨯=A ,当t=0时,将m 1022-⨯=x 代入简谐振动表达式,得:21cos =ϕ 由)sin(ϕωωυ+-=t A ,当t=0时,ϕωυsin A -= 由图可知,υ>0,即0sin <ϕ,故由21cos =ϕ,取3πϕ-= 又因:t=1s 时,,1022m x -⨯=将其入代简谐振动表达式,得213cos ,3cos 42=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=πωπω由t=1s 时,⎪⎭⎫⎝⎛--=3sin πωωυA <0知,03sin >⎪⎭⎫ ⎝⎛-πω,取33ππω=-,即 s 32πω= 质点作简谐振动的振动表达式为m t x ⎪⎭⎫ ⎝⎛-⨯=-332cos 1042ππ8-4 解:以该球的球心为原点,假设微粒在某一任意时刻位于遂道中的位矢为r,由高斯定理可知304R rQ E πε=,则微粒在此处受电场力为:r R Qq F 304πε-=式中,负号表明电场F的方向与r的正方向相反,指向球心.由上式及牛顿定律,得:04d d 04d d 043022302230=+⇒=+=+r mRQqt r r R Qq t r mr RQqF πεπεπε令 mR Qq3024πεω=则 0d d 222=+r trω 习题8-3图故微粒作简谐振动,平衡点在球心处.由ωπ2=T知: QqmR T 3042πεπ=8-5 解:(1)取弹簧原长所在位置为O '点.当弹簧挂上物体A 时,处于静止位置P 点,有:P O k Mg '=将A 与B 粘合后,挂在弹簧下端,静止平衡所在位置O 点,取O 点为原坐标原点如图题8-5所示,则有:g m M O O k )(+='设当B 与A 粘在一起后,在其运动过程的任一位置,弹簧形变量x O O +',则A 、B 系统所受合力为:kx x O O k g m M F -=+'-+=)()(即 0d d )(22=++kx txm M可见A 与B 作简谐和振动. (2) 由上式知,rad/s)(10=+=mM kω以B 与A 相碰点为计时起点,此时A 与B 在P 点,由图题8-5可知kmgk Mg g k m M P O O O OP =-+='-'= 则t=0时,m 02.00-=-=-=kmgOP x (负号表P 点在O 点上方) 又B 与A 为非弹性碰撞,碰撞前B 的速度为:m/s 2220101=-='gh υυ 碰撞后,A 、B 的共同速度为:m/s 4.0010=+'=mM m υυ (方向向上)则t=0时,⎩⎨⎧=-=s m mx /4.002.000υ可求得:)m (0447.02220=+=ωυx Aπωυϕ65.0arctan 00=⎪⎪⎭⎫⎝⎛-=x 可知A 与B 振动系统的振动表达式为:m t x )65.010cos(0447.0π+=习题8.5图(3) 弹簧所受的最大拉力,应是弹簧最大形变时的弹力,最大形变为:m A g kmM A O O x 1447.0=++=+'=∆则最大拉力 N 4.72max ==x k F ∆ 5-6 解:(1) 已知A=0.24m, 22ππω==T ,如选x 轴向下为正方向. 已知初始条件0m,12.000<=υx 即 3,21cos ,cos 24.012.0πϕϕϕ±=== 而 ,0sin ,0sin 0><-=ϕϕωυA 取3πϕ=,故:m t x ⎪⎭⎫ ⎝⎛+=32cos 24.0ππ(2) 如图题所示坐标中,在平衡位置上方0.12m, 即x=-0.12m 处,有32322132cos πππππ±=+-=⎪⎭⎫ ⎝⎛+t t因为所求时间为最短时间,故物体从初始位置向上运动,0<υ.故0)32sin(>+ππt则取3232πππ=+t 可得:s t 32min =(3) 物体在平衡位置上方0.12m 处所受合外力0.3N x m =-=ωF ,指向平衡位置.8-7 解:子弹射入木块为完全非弹性碰撞,设u 为子弹射入木块后二者共同速度,由动量定理可知:m/s)(0.2=+=υmM mu不计摩擦,弹簧压缩过程中系统机械能守恒,即:20221)(21kx u m M =+ (x 0为弹簧最大形变量) m u kmM x 20100.5-⨯=+=由此简谐振动的振幅 20100.5-⨯==x A 系统圆频率rad/s)(40=+=mM kω习题8-6图若取物体静止时的位置O (平衡位置)为坐标原点,Ox 轴水平向右为正,则初始条件为: t =0时,x =0,0m/s 0.20>==u υ由,sin ,cos 00ϕωυϕA A x -==得:2πϕ-=则木块与子弹二者作简谐振动,其振动表达式为:m t x )240cos(100.52π-⨯=-8-8 解:当物体m 1向右移动x 时,左方弹簧伸长x ,右方弹簧缩短x ,但它们物体的作用方向是相同的,均与物体的位移方向相反,即)(21x k x k F +-=令F =-kx ,有:N/m 421=+=k k k 由 kmT π2= 得)kg (1.0442212211≈==ππkT k T m则粘上油泥块后,新的振动系统质量为:kg 20.021=+m m新的周期 )s (4.12212=+=km m T π在平衡位置时,m 2与m 1发生完全非弹性碰撞. 碰撞前,m 1的速度m/s 10.0111πωυ==A 设碰撞后,m 1和m 2共同速度为υ. 根据动量守恒定律,υυ)(2111m m m +=则m/s 05.0)(2111πυυ=+=m m m新的振幅 m)(035.0222===πυωυTA 8-9 解:(1)由振动方程)25sin(60.0π-=t x 知,5(rad/s)m,6.0==ωA故振动周期: )s (26.1)s (256.1522≈===πωπT (2) t=0时,由振动方程得:)25cos(0.3|m60.0000=-==-==πυt dt dx x t (3) 由旋转矢量法知,此时的位相:3πϕ-=速度 m/s)(6.2m/s )23(560.0sin =-⨯⨯-=-=ϕωυA 加速度 )m/s (5.7m/s 21560.0cos 2222-=⨯⨯-=-=ϕωA a 所受力 N)(5.1N )5.7(2.0-=-⨯==ma F(4)设质点在x 处的动能与势能相等,由于简谐振动能量守恒,即:221kA E E E p k ==+ 故有: )21(21212kA E E E p k ===即 22212121kA kx ⨯=可得: m)(42.022±=±=A x 8-10 解:(1)砝码运动到最高点时,加速度最大,方向向下,由牛顿第二定律,有:N mg ma -=maxN 是平板对砝码的支持力.故N)(74.1)4()()(22max =-=-=-=vA g m A g m a g m N πω砝码对板的正压力与N 大小相等,方向相反.砝码运动到最低点时,加速度也是最大,但方向向上,由牛顿第二定律,有:mg N ma -'=max故 N)(1.8)4()(22max =+=+='A v g m a g m N π 砝码对板的正压力与板对砝码的支持力N '大小相等,方向相反. (2)当N=0时,砝码开始脱离平板,故此时的振幅应满足条件:m)(062.040)4(22max max 2===-=v g A vA g m N ππ(3) 由22max 4vg A π=,可知,2max v A 与成反比,当v v 2='时,m 0155.041max max=='A A 8-11 解:(1)设振子过平衡位置时的速度为υ,由机械能守恒,有:222121υm kA = A mk=υ 由水平方向动量定理: ⇒='+υm u m m )(υm m mu '+=此后,系统振幅为A ',由机械能守恒,有:22)(2121u m m A k '+=' 得: A m m mA '+='有: km m T '+='π2 (2)碰撞前后系统总能量变化为:)21()1(2121212222kA m m m m m m kA kA A k E '+'-=-'+=-'=∆ 式中,负号表示能量损耗,这是泥团与物体的非弹性碰撞所致.(3)当m 达到振幅A 时,m '竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A ,周期为km m '+π2,系统的振动总能量不变,为221kA (非弹性碰撞损耗的能量为源于碰撞前m '的动能). 物体系统过平衡位置时的速度υ'由:22)(2121υ''+=m m kA 得:A m m k'+±='υ8-12 解:(1)由放置矢量法可知,振子从2A 运动到2A -的位置处,角相位的最小变化为:3πϕ∆=则圆频率 rad/s 3π∆ϕ∆ω==t 周期 s T 62==ωπ由初始状态,在图示坐标中,初始条件为:m)(1.00m1.000=⇒⎩⎨⎧=-=A x υ则振幅 m 1.022020=+=ωυx A习题8-12图(2)因为E E p 41=又 2221,21kA E kx E p == 故 )21(412122kA kx =得: m)(05.0±=x 根据题意,振子在平衡位置的下方,取x =-0.05m.根据振动系统的能量守恒定律:222212121kA m kx =+υ 故 )s m (091.0122-⋅±=-±=x A ωυ根据题意,取m/s 091.0-=υ 再由 )sin()cos(ϕωωυϕω+-=+=t A t t A x)cos(d d 2ϕωω+-==t A tva x 2ω-=得: )m/s (055.02=a(3)t=0时,(J)108.681)21(41413222-⨯====mA kA E E p ω (J)102183)21(43433222-⨯====mA kA E E k ω(J)108.273-⨯=+=p k E E E (4)由简谐振动的振动表达式)cos(ϕω+=t A x 当t=0时,0m/s 091.0m,05.000<-=-=υx ,可得:πϕ32= 又 3,10.0πω==m A故 m t x )323cos(1.0ππ+= 8-13 解:(1)据题意,两质点振动方程分别为:mt x mt x Q P )3cos(1000.2)3cos(1000.522ππππ-⨯=+⨯=--(2)P 、Q 两质点的速度及加速度表达分别为:)m/s )(3sin(1000.52ππωυ+⨯⨯-==-t dt dx P P )m/s )(3sin(1000.22ππωυ-⨯⨯-==-t dt dx QQ )m/s )(3cos(1000.5222ππωυ+⨯⨯-==-t dt d a P P )m/s )(3cos(1000.2222ππωυ-⨯⨯-==-t dtd a Q Q当t=1s 时,有:)(m/s 1087.9/32cos 1000.2)(m/s 1068.24/34cos 1000.5(m/s)1044.5/32sin 1000.2(m/s)1060.13/34sin 1000.5(m)1000.132cos 1000.2)(m 105.234cos1000.5222222222222222222------------⨯=⨯⨯-=⨯=⨯⨯-=⨯-=⨯⨯-=⨯=⨯⨯-=⨯-=⨯=⨯=⨯=s m a s m a s m s m m x m x Q P Q P Q P ππππππυππυππ(3)由相位差32)3(3)()(πππϕϕϕωϕωϕ∆=--=-=+-+=Q P Q P t t 可见,P 点的相比Q 点的相位超前32π. 8-14 解:(1)由题意得初始条件:⎪⎩⎪⎨⎧<=02100υA x 可得:3πϕ=(由旋转矢量法可证出)在平衡位置的动能就是质点的总能量)J (1008.3212152222-⨯====⇒=A m kA E m k m kωωω可求得:s rad m E A /221πω==则振动表达式为:m t x )32cos(1000.52ππ+⨯=-(2) 初始位置势能)32(cos 21212222ππω+==t A m kx E P 当t=0时,3cos 21222πωA m E P =J J 6222221071.73cos )1000.5()2(1000.121---⨯=⨯⨯⨯⨯⨯=ππ 8-15 解:(1)由初始条件:⎩⎨⎧<⨯=-0102.1010υm x 可知,3πϕ=且 22ππω==v则振动表达式为:m t x )32cos(24.0ππ+=当t=0.5s 时,m m x 21000.6)3212cos(24.0-⨯-=+⨯=ππ(2) t=0.5s 时,小球所受力:(N)1048.1)(32-⨯=-==x m ma f ω因t=0.5s 时,小球的位置在m x 21000.6-⨯-=处,即小球在x 轴负方向,而f 的方向是沿x 轴正方向,总是指向平衡位置.(3) 从初始位置m x 10102.1-⨯=到m x 1102.1-⨯-=所需最短时间设为t ,由旋转矢量法知,πϕπϕ32,3,0±=±=处处x x )s (3223=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧==t t πωπω 习题8-15图(4) 因为 )32sin(24.02)sin(πππϕωωυ+⨯-=+-=t t A )32cos(24.04)cos(22πππϕωω+⨯-=+-=t t A a 在s t m x 32102.11=⨯-=-处 )32cos(24.04)3322cos(24.04/1026.3/)3322sin(24.022212ππππππαπππυ+⨯-=+⨯⨯-=⨯-=+⨯⨯-=-t s m s m(5) t=4s 时, 22)]32sin([2121ππωυ+-==t A m m E k (J)1033.5J)342(sin 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯=πππ)32(cos 21212222ππω+==t A m kx E P (J)1077.1J)342(cos 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯⨯=πππ(J)107.10J 101.77J 1033.5-4-44⨯=⨯+⨯=+=-P k E E E 总 8-16 解:设两质点的振动表达式分别为:)cos()cos(2211ϕωϕω+=+=t A x t A x由图题可知,一质点在21Ax =处时对应的相位为: 32/arccos 1πϕω==+A A t同理:另一质点在相遇处时,对应的相位为:352/arccos2πϕω==+A A t 故相位差)()(12ϕωϕωϕ∆+-+=t t习题8-16图πππϕϕ3433512=-=-= 若21υυ与的方向与上述情况相反,故用同样的方法,可得:πππϕϕϕ∆32)3(312=--=-= 8-17 解:由图题8-17(图在课本上P 200)所示曲线可以看出,两个简谐振动的振幅相同,即m 05.021==A A ,周期均匀s 1.0=T ,因而圆频率为:ππω202==T由x -t 曲线可知,简谐振动1在t=0时,,010=x 且010>υ,故可求得振动1的初位相πϕ2310=.同样,简谐振动2在t=0时,πϕυ==-=202020,0,05.0可知m x 故简谐振动1、2的振动表达式分别为:mt x t x )20cos(05.0)2320cos(05.021ππππ+=+=因此,合振动的振幅和初相位分别为: m A A A A A 210202122211025)cos(2-⨯=-++=ϕϕ2021012021010cos cos sin sin arctanϕϕϕϕϕA A A A ++=ππ4541arctan 或== 但由x-t 曲线知,t=0时,πϕ45,05.021应取因此-=+=x x x . 故合振动的振动表达式:m t x )4520cos(10252ππ+⨯=- 8-18 解:(1)它们的合振动幅度初相位分别为:)cos(212212221ϕϕ-++=A A A A Am )535cos(06.005.0206.005.022ππ-⨯⨯⨯++=m 0892.0=22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=316819.15.2arctan 5cos06.053cos 05.05sin06.053sin 05.0'︒===++=rad ππππ。
大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。
11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。
第七章 电磁感应本章提要1. 法拉第电磁感应定律· 当穿过闭合导体回路所包围面积的磁通量发生变化时,导体回路中就将产生电流,这种现象称为电磁感应现象,此时产生的电流称为感应电流。
· 法拉第电磁感应定律表述为:通过导体回路所包围面积的磁通量发生变化石,回路中产生地感应电动势i e 与磁通量m Φ变化率的关系为其中Φ为磁链,负号表示感应电动势的方向。
对螺线管有N 匝线圈,可以有m N Φ=Φ。
2. 楞次定律· 楞次定律可直接判断感应电流方向,其表述为:闭合回路中感应电流的方向总是要用自己激发的磁场来阻碍引起感应电流的磁通量的变化。
3. 动生电动势· 磁感应强度不变,回路或回路的一部分相对于磁场运动,这样产生的电动势称为动生电动势。
动生电动势可以看成是洛仑兹力引起的。
· 由动生电动势的定义可得:· 洛伦兹力不做功,但起能量转换的作用。
4. 感生电动势·当导体回路静止,而通过导体回路磁通量的变化仅由磁场的变化引起时,导体中产生的电动势称为感生电动势。
其中E i 为感生电场强度。
5. 自感· 当回路中的电流发生变化,它所激发的磁场产生的通过自身回路的磁通量也会发生变化,此变化将在自身回路中产生感应电动势,这种现象称为自感现象,产生的电动势为自感电动势,其表达式为:d d L i L te =-(L 一定时) 负号表明自感电动势阻碍回路中电流的变化,比例系数L 称为电感或自感系数。
· 自感系数表达式为:· 自感磁能6. 互感· 对于两个临近的载流回路,当其中一回路中的电流变化时,电流所激发的变化磁场在另一回路中产生感应电动势。
这种现象称为互感现象,对应产生的电动势称为互感电动势,其表达式为:121d d i M te =-(M 一定时) 其中M 为互感系数。
7. 麦克斯韦方程组回顾有关描述静电场和稳恒磁场的基本性质的4个方程:● 静电场高斯定理● 稳恒磁场的高斯定理● 静电场的环路定理● 稳恒磁场的安培环路定理根据上述4个方程,考虑电场或磁场的变化,麦克斯韦对上述方程进行修改,得到如下一组描述任何电场和磁场的方程组。
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。
· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,ω 为角频率,(ωt+ϕ)称为谐振动的相位,t =0时的相位ϕ 称为初相位。
· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。
2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。
· 阻尼振动的动力学方程为222d d 20d d x xx t tβω++= 其中,γ是阻尼系数,2mγβ=。
(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。
(2) 当22ωβ=时,不再出现振荡,称临界阻尼。
(3) 当22ωβ<时,不出现振荡,称过阻尼。
4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。
5. 简谐振动的合成与分解(1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为111()cos x A t ωϕ=+ 222()cos x A t ωϕ=+合振动方程可表示为()cos x A t ωϕ=+其中,A 和ϕ 分别为合振动的振幅与初相位A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+(2) 二维同频率的简谐振动的合成若一个质点同时参与两个同频率的简谐振动,且此两个简谐振动分别在x 轴和y 轴上进行,运动方程分别为11()cos x A t ωϕ=+22()cos y A t ωϕ=+其合振动方程为22221212212122()()cos sin x y xy A A A A ϕϕϕϕ+--=- 该为一个椭圆方程,椭圆形状由振幅A 1、A 2及相位差21()ϕϕ-决定。
(3) 二维不同频率的简谐振动的合成如果两个相互垂直的简谐振动的周期成简单的整数比,合运动的轨迹也是稳定的闭合曲线,这样合成振动的轨迹图形称为李萨如图形。
6. 简谐波· 若波源作简谐振动,那么当这种振动在介质中传播时,介质中的各点也作与此频率相同的简谐振动,这样形成的波动称为简谐波。
· 简谐波的波动方程()cos xy A t uω=-或2()cos t x y A T πλ=- 或2()cos xy A t πνλ=-7. 简谐波的能量密度· 单位体积的介质中波的能量称能量密度,用w 表示,其描述了介质中各处能量的分布情况222sin E x w A t V u ρω∆∆⎛⎫==- ⎪⎝⎭· 平均能量密度表示一个周期内能量密度的平均值02220221d 1d 12sin TT w w tT x A t t T u A ρωρω=⎛⎫=- ⎪⎝⎭=⎰⎰ · 波动的能流密度2212I w u u A ρω=⋅=8. 多普勒效应· 当观察者或波源相对于传播的介质运动时,观察者接受到的波的频率与波源的频率不同,这种现象称为多普勒效应。
(1) 波源静止,观察者相对于介质运动 观察者接收到的频率为0011v u v u u vT v ννλ++⎛⎫===+ ⎪⎝⎭ (2) 观察者静止,波源相对于介质运动观察者接收到的频率为11s s svv v vu T vT u T v u ννλλ====---(3) 波源和观察者同时相对于介质运动 观察者接收到的频率为001s sv u v u u T v u ννλ++==--思考题8-1 什么是简谐振动?下列运动哪个是简谐振动?(1)拍皮球时球的运动;(2)人的脉搏运动;(3)一个小球在球形碗底部的微小摆动。
答:简谐振动是物体在回复力(弹性力或准弹性力)作用下的运动。
在运动过程中,平衡位置两侧的回复力方向不同;运动轨迹是正弦曲线 (1) 该现象好象是往复运动,实际上由于在运动过程中重力的方向始终不变,因而不是简谐振动(2) 运动轨迹不是正弦曲线,不是简谐振动。
(3) 一个小球在球形碗底部的微小摆动时,重力的切向分力起着回复力的作用是简谐振动。
8-2 一个弹簧振子振动的振幅增大到两倍时,振动的周期、频率、最大速度、最大加速度和振动能量都将如何变化?答:若弹簧振子振动的振幅增大到原来的两倍时,振动的周期和频率不变,最大速度和最大加速度增加二倍,振动能量增加四倍。
8-3 如果不忽略弹簧的质量,一个弹簧振子的振动周期比忽略弹簧的质量时的振动周期是变大还是变小?答:若不忽略弹簧的质量,弹簧振子的振动周期相对于忽略质量时的周期较大。
8-4 设向右的方向为正方向,试指出在怎样的位置时简谐振动的质点 (1)位移为零;(2)位移最大;(3)速度为零;(4)速度为负最大值;(5)加速度为零;(6)加速度为正最大。
答:(1)考虑简谐振动质点位移表达式()cos x A t ωϕ=+可得2t πωϕ+=时,位移为零。
这时质点在平衡位置。
(2) 同理,当0t ωϕ+=时,位移最大。
这时质点在两侧的端点。
(3) 考虑简谐振动质点速度表达式()sin v A t ωωϕ=-+可得0t ωϕ+=时,速度为零。
这时质点在两侧的端点。
(4) 同理,当2t πωϕ+=时,速度为负最大值。
这时质点从右侧经平衡位置向左运动。
(5) 考虑简谐振动质点加速度表达式2()cos a A t ωωϕ=-+当2t πωϕ+=时,加速度为零。
这时质点在平衡位置。
(6) 同理,当t ωϕπ+=时,加速度为正最大。
这时质点左侧端点(位移最大)位置。
8-5 弹簧振子的简谐振动方程为)cos(ϕω+=t A x ,指出振动物体在下列位置时的位移、速度、加速度和所受弹性力的大小和方向:(1)正方向端点;(2)平衡位置且向负方向运动;(3)平衡位置且向正方向运动;(4)负方向端点。
答:(1)振动物体位于正方向端点的状态如下:位移最大,方向指向正方向,速度为零,加速度最大、方向指向负方向,所受弹性力的大小最大、方向指向平衡位置。
(2)振动物体在平衡位置且向负方向运动的状态如下:位移为零,速度最大、方向指向负方向,加速度为零,所受弹性力的大小为零。
(3)振动物体在平衡位置且向正方向运动的状态如下:位移为零,速度最大、方向指向正方向,加速度为零,所受弹性力的大小为零。
(4)振动物体位于负方向端点的运动状态如下:位移最大、方向指向负方向,速度为零,加速度最大、方向指向正方向,所受弹性力的大小最大、方向指向平衡位置。
8-6 要测定一个未知振动的频率,你有何办法?答:利用李萨如图形方法:用一个已知频率的振动与未知频率进行合成,只要合成的结果是一个闭合稳定的图形,便可以测定未知振动的频率。
8-7 在波的表达式中,坐标原点是否一定要设在波源的位置?在简谐振动的表达式中有几个独立变量?简谐波的表达式中有几个独立变量?比较两个表达式的意义。
答:在波的表达式中,坐标原点不一定要设在波源的位置。
在简谐振动的表达式中有两个独立变量:x和t。
简谐波的表达式中有三个独立变量:x、y和t。
简谐振动的表达式是描写某一个固定点的振动规律,简谐波的表达式是描写在波转播的介质空间中任意点的振动规律及这些振动之间的相互联系。
8-8 当频率为ν,波长为λ的一列波由波速为u的介质进入波速为3/u的介质后,波的频率和波长如何变化?答:当频率为ν,波长为λ的一列波由波速为u的介质进入波速为3/u的介质后,波的频率不变,波长为原波长的三分之一。
8-9 弦乐器上的一根弦的音调是靠什么调节的?演奏时一根弦发出不同的音调又是靠什么调节的?答:弦乐器上的一根弦振动时形成驻波,不同长度,驻波频率不一样,因而发出不同音调。
弦乐器上的一根弦的音调是靠弦的长度来调节,演奏时一根弦发出不同的音调又是靠弦的不同长度来调节。
8-10 在声源运动、接收器不动和声源不动、接收器运动两种情况下,如果使运动速度一样,接收器接收到的声波是否相同?答:在声源运动、接收器不动和声源不动、接收器运动两种情况下,如果使运动速度一样,根据多普勒效应公式可知,接收器相当于观察者,所以接受器所接收到的声波的频率是不相同的。
练习题8-1 如图8-1所示,两个完全相同的弹簧振子,如将一个拉长10cm ,另一个压缩5cm ,然后放手,试问两物体在何处相遇。
解:依题意得两弹簧振子的振动方程11()cos x A t ωϕ=+22()cos x A t ωϕ=+当12x x =时,得 ,2,1,0,)21(=+=+k k t πϕω,两物体在平衡位置处相遇。
8-2 经验证明,当车辆沿竖直方向振动时,如果振动的加速度不超过1m/s 2,乘客不会有不舒服的感觉。
若车辆竖直振动频率为每分钟90次,为保证乘客没有不舒服的感觉,车辆允许振动的最大振幅为多少?解:由已知可得9023(rad/s)60πωπ⨯== 当()ϕω+=t A x cos 时,加速度方程为()22d cos d 2xa A t tωωϕ==-+根据题意知,车辆允许振动的最大振幅为A m ,且21m A ω≤ ,则22110011(m)9314m A ω≤==⋅⨯⋅ 取等号时是最大振幅。
8-3 放置在水平桌面上的弹簧振子,其简谐振动的振幅A =m 100.22-⨯,周期T = 0.5s ,求起始状态为下列情况的简谐振动方程: (1) 振动物体在正方向端点 (2) 振动物体在负方向端点(3) 振动物体在平衡位置,向负方向运动 (4) 振动物体在平衡位置,向正方向运动(5) 振动物体在m 100.12-⨯=x 处,向负方向运动 (6) 振动物体在m 100.12-⨯-=x 处,向正方向运动解:由于T = 0.5s ,故ππω4/2==T 。