弹性力学应力分析部分
- 格式:ppt
- 大小:886.50 KB
- 文档页数:34
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性⼒学_第⼆章__应⼒状态分析第⼆章应⼒状态分析⼀、内容介绍弹性⼒学的研究对象为三维弹性体,因此分析从微分单元体⼊⼿,本章的任务就是从静⼒学观点出发,讨论⼀点的应⼒状态,建⽴平衡微分⽅程和⾯⼒边界条件。
应⼒状态是本章讨论的⾸要问题。
由于应⼒⽮量与内⼒和作⽤截⾯⽅位均有关。
因此,⼀点各个截⾯的应⼒是不同的。
确定⼀点不同截⾯的应⼒变化规律称为应⼒状态分析。
⾸先是确定应⼒状态的描述⽅法,这包括应⼒⽮量定义,及其分解为主应⼒、切应⼒和应⼒分量;其次是任意截⾯的应⼒分量的确定—转轴公式;最后是⼀点的特殊应⼒确定,主应⼒和主平⾯、最⼤切应⼒和应⼒圆等。
应⼒状态分析表明应⼒分量为⼆阶对称张量。
本课程分析中使⽤张量符号描述物理量和基本⽅程,如果你没有学习过张量概念,请进⼊附录⼀,或者查阅参考资料。
本章的另⼀个任务是讨论弹性体内⼀点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分⽅程和切应⼒互等定理;边界单元体的平衡条件为⾯⼒边界条件。
⼆、重点1、应⼒状态的定义:应⼒⽮量;正应⼒与切应⼒;应⼒分量;2、平衡微分⽅程与切应⼒互等定理;3、⾯⼒边界条件;4、应⼒分量的转轴公式;5、应⼒状态特征⽅程和应⼒不变量;知识点:体⼒;⾯⼒;应⼒⽮量;正应⼒与切应⼒;应⼒分量;应⼒⽮量与应⼒分量;平衡微分⽅程;⾯⼒边界条件;主平⾯与主应⼒;主应⼒性质;截⾯正应⼒与切应⼒;三向应⼒圆;⼋⾯体单元;偏应⼒张量不变量;切应⼒互等定理;应⼒分量转轴公式;平⾯问题的转轴公式;应⼒状态特征⽅程;应⼒不变量;最⼤切应⼒;球应⼒张量和偏应⼒张量§2.1 体⼒和⾯⼒学习思路:本节介绍弹性⼒学的基本概念——体⼒和⾯⼒,体⼒F b和⾯⼒F s的概念均不难理解。
应该注意的问题是,在弹性⼒学中,虽然体⼒和⾯⼒都是⽮量,但是它们均为作⽤于⼀点的⼒,⽽且体⼒是指单位体积的⼒;⾯⼒为单位⾯积的作⽤⼒。
体⼒⽮量⽤F b表⽰,其沿三个坐标轴的分量⽤F b i(i=1,2,3)或者F b x、F b y和F b z表⽰,称为体⼒分量。
弹性力学的应力分析与优化弹性力学是一门研究物体在受力作用下的变形和恢复性质的学科。
在工程领域中,弹性力学的应用十分广泛,特别是在结构设计和材料优化方面。
本文将探讨弹性力学中的应力分析与优化方法。
一、应力分析弹性力学的应力分析研究了物体在受力作用下的应力分布情况。
应力是物体内部分子间相互作用的结果,是描述物体抵抗外力的能力的物理量。
应力在弹性力学中分为三种类型:拉应力、剪应力和压应力。
拉应力(tensile stress)是指物体在受拉力作用下产生的应力,通常用符号σ表示。
拉应力的计算公式为:σ = F / A其中,F为物体上的拉力,A为物体上受力截面的面积。
拉应力越大,物体的变形程度越大。
剪应力(shear stress)是指物体在受剪力作用下产生的应力,通常用符号τ表示。
剪应力的计算公式为:τ = F / A其中,F为物体上的剪切力,A为物体上受力截面的面积。
剪应力越大,物体的变形程度越大。
压应力(compressive stress)是指物体在受压力作用下产生的应力,通常也用符号σ表示。
压应力的计算公式与拉应力相同,即:σ = F / A不同的是,压应力与拉应力的方向相反。
压应力越大,物体的变形程度越大。
在应力分析过程中,我们可以通过解析法或数值模拟法来求解物体内部的应力分布情况。
解析法主要适用于简单几何形状的物体,例如直杆或简支梁。
数值模拟法则可以用来求解复杂几何形状的物体,例如复杂结构的建筑或机械零件。
二、优化设计在弹性力学的应用中,我们常常需要通过优化设计来提高物体的性能或减少材料的使用量。
优化设计旨在寻找最优的结构形式或材料参数,使得物体在给定的约束条件下达到最佳的性能指标。
优化设计可以分为两种类型:形状优化和拓朴优化。
形状优化主要是通过改变物体的几何形状来优化结构。
例如,在某一受力部位增加材料的厚度或减小切削孔的直径,以提高物体的刚度或承载能力。
形状优化的方法有很多,包括拟合法、参数法和拓扑有机化等。
弹性力学中的形变与应力分析弹性力学是力学的一个分支,关注物体在受到外力作用下的形变与应力分析。
在弹性力学中,形变是指物体由于外力作用而产生的形状的改变,而应力则是指物体内部的力。
形变和应力是密切相关的,它们之间的关系可以通过弹性模量来描述。
弹性模量是一个物质特性参数,它反映了物质在受力作用下形变和应力之间的关系。
在弹性力学中,常用的弹性模量有杨氏模量、剪切模量和泊松比。
杨氏模量是描述物体沿一个方向受拉或受压时形变与应力之间关系的参数。
它可以用来衡量物体的刚性程度,即物体在受力作用下的变形程度。
剪切模量是描述物体在受到剪切力作用时形变与应力之间的关系的参数。
泊松比则是描述物体在受到拉力作用时,在垂直方向上的横向收缩程度与拉伸程度之间的比值。
弹性力学通过研究物体在外力作用下的形变和应力,可以预测和解释物体的力学行为。
例如,当一个弹性体受到拉力作用时,由于杨氏模量的存在,它会发生形变,但形变后能够恢复到原始形状。
这是因为杨氏模量描述了物体形变与应力之间的线性关系,即形变与应力成正比。
当拉力消失时,物体会恢复到原始形状,这就是弹性力学的基本原理之一。
在弹性力学中,还有一些常用的形变和应力分析方法。
例如,拉伸实验是常用的实验方法之一,它可以通过将材料置于拉伸装置中,施加拉力并测量形变和应力来研究物体的力学性质。
另一个常用的方法是剪切实验,它用于研究材料在受到剪切力作用时的形变和应力。
这些实验方法可以帮助工程师和科学家更好地了解材料的性质,并为工程和设计提供依据。
弹性力学的应用十分广泛。
它在工程领域中被广泛应用于材料的选用和设计。
例如,在建筑工程中,工程师需要了解材料在受到外力后的变形情况,以确保建筑物的结构安全可靠。
在航空航天工程中,弹性力学被用于研究飞机和宇航器的结构,并优化设计,以提高飞行性能和安全性。
此外,弹性力学还在其他领域如汽车制造、电子设备以及医学器械等方面有着广泛的应用。
总结起来,弹性力学中的形变与应力分析是研究物体在受到外力作用下的变形和力学行为的重要内容。
应力分析原理
应力分析原理是一种用于研究物体受力情况的方法。
应力是物体内部受到的力的分布情况,通常以单位面积上的力来描述。
应力分析原理主要包括以下几个方面。
首先,应力分析原理基于弹性力学理论。
弹性力学是研究物体在受到外力作用后,形状和尺寸发生变化的性质和规律。
它假设物体在受力后会恢复到原来的形状和尺寸,同时也假设物体的变形与受力有一定的数学关系。
其次,应力分析原理基于克希荷夫定律。
克希荷夫定律是弹性力学的基本定律之一,它描述了物体内部各点的应力与应变之间的关系。
根据克希荷夫定律,应力与应变成正比例,比例系数为物体的弹性模量。
再次,应力分析原理基于受力平衡条件。
根据受力平衡的原理,物体各点受到的合力和合力矩为零。
通过分析物体的受力平衡条件,可以得到物体内部各点的应力分布情况。
最后,应力分析原理还基于材料的力学性质。
不同的材料具有不同的力学性质,例如刚度、强度、韧性等。
根据材料的力学性质,可以预测物体在受力后的变形情况,并进一步分析应力的分布。
综上所述,应力分析原理是基于弹性力学、克希荷夫定律、受力平衡条件和材料的力学性质等基本原理,通过对物体受力情况进行分析,揭示物体内部应力的分布情况。
弹性力学的应力松弛与损伤分析弹性力学是研究物体在受力后的形变与应力关系的学科,应力松弛与损伤分析是弹性力学的一个重要分支。
应力松弛指的是物体在受到外力作用后逐渐减弱的应力现象,而损伤分析则研究物体在应力松弛过程中可能出现的破裂、断裂等损伤情况。
应力松弛是弹性材料在长时间受到恒定外力作用后产生的一种现象。
材料在外力作用下会发生形变,但是当外力移除后,材料会逐渐恢复到初始状态。
然而,如果外力一直施加在材料上,由于内部分子的重新排列与运动,应力会逐渐减弱。
这种现象被称为应力松弛。
应力松弛的机制与材料的结构以及外力作用方式密切相关。
多晶金属材料晶粒之间的位错滑移、扩散等过程是应力松弛的重要机制。
此外,纤维增强复合材料中的纤维与基体之间的应力传递也会导致应力松弛现象。
应力松弛的时间常常与材料的温度、应力水平、外力作用时间等因素有关。
损伤分析是研究材料在应力松弛过程中可能出现的损伤现象及其机制。
当材料受到过大的外力作用时,其内部可能发生破裂、断裂、脆化等现象,造成材料的损伤。
损伤分析旨在预测材料损伤的发生与发展,并提供相应的修复措施。
损伤分析主要涉及断裂力学、疲劳寿命分析、材料裂纹扩展等相关理论和方法。
断裂力学是研究材料在外力作用下破裂的力学行为,包括线弹性断裂力学、弹塑性断裂力学等。
疲劳寿命分析是预测材料在交变应力作用下发生疲劳破坏的寿命,该分析方法常用于工程结构的疲劳寿命评估与设计。
材料裂纹扩展研究材料中裂纹因外力作用下的扩展行为,对于评估材料的损伤程度和寿命具有重要意义。
应力松弛与损伤分析在许多工程领域中具有广泛的应用。
例如,在航空航天领域,对于航空发动机涡轮叶片的设计与检修需要考虑到应力松弛与损伤分析结果,以确保叶片的可靠性与安全性。
在建筑结构领域,研究材料的应力松弛与损伤特性可以帮助工程师进行结构的合理设计与维护。
综上所述,弹性力学的应力松弛与损伤分析是研究物体在受力后的形变与应力关系的重要分支。