第1章启发式搜索1
- 格式:ppt
- 大小:331.00 KB
- 文档页数:34
人工智能导论知到章节测试答案智慧树2023年最新东北石油大学第一章测试1.人工智能的目的是让机器能够,以实现某些人类脑力劳动的机械化( )。
参考答案:模拟、延伸和扩展人的智能2.盲人看不到一切物体,他们可以通过辨别人的声音识别人,这是智能的()方面。
参考答案:感知能力3.人工智能是一门综合性的交叉学科,涉及哪些学科( )。
参考答案:神经心理学;计算机科学;控制论;脑科学4.人工智能的主流学派包括( )。
参考答案:行为主义;符号主义;连接主义5.图灵测试是判断机器是否具有人工智能的方法,是人工智能最标准的定义。
( )参考答案:错第二章测试1.“王宏是一名学生”可以用谓词表示为STUDENT(Wang Hong),其中,Wang Hong是()。
参考答案:个体词2.产生式系统的核心是()。
参考答案:推理机3.知识的不确定性来源于()。
参考答案:不完全性引起的不确定性;模糊性引起的不确定性;随机性引起的不确定性;经验引起的不确定性4.产生式表示法可以表示不确定性知识。
()对5.框架表示法不便于表示过程性知识。
()参考答案:对第三章测试1.从初始证据出发,按某种策略不断运用知识库中的已知知识,逐步推出结论的过程称为推理。
()参考答案:对2.任何文字的析取式称为子句。
()参考答案:对3.谓词公式不可满足的充要条件是其子句集不可满足。
()参考答案:对4.对于一阶谓词逻辑,若子句集是不可满足的,则必存在一个从该子句集到空子句的归结演绎。
()对5.对于一阶谓词逻辑,如果没有归结出空子句,则说明原谓词公式是不可满足的。
()参考答案:错第四章测试1.如果问题存在最优解,则下面几种搜索算法中,()必然可以得到该最优解。
参考答案:启发式搜索2.如果问题存在最优解,则下面几种搜索算法中,()可以认为是“智能程度相对比较高”的算法。
参考答案:启发式搜索3.在启发式图搜索策略中,下面描述正确的是()。
参考答案:closed表用于存放已扩展过的节点。
人工智能概论_北京联合大学中国大学mooc课后章节答案期末考试题库2023年1.李明的父亲是教师,用谓词逻辑可以表示为Teacher(father(Liming))这里father(Liming)是()。
答案:函数2.在语音识别中,按照从微观到宏观的顺序排列正确的是()。
答案:帧-状态-音素-单词3.有研究统计,可用于AI技术处理的医疗数据中,有超过80%的数据来自于()。
答案:医学影像4.从人工智能研究流派来看,西蒙和纽厄尔提出的“逻辑理论家”(LT)方法,应当属于()。
答案:符号主义5.假设我们需要训练一个卷积神经网络,来完成0~9和英文字母(不区分大小写)的图像分类。
该卷积神经网络最后一层是分类层,则最后一层输出向量的维数大小可能是()。
答案:366.A* 算法是一种有信息搜索算法,在罗马尼亚度假问题中引入的辅助信息是()。
答案:任意一个城市到目标城市之间的直线距离7.DBpedia、Yago 等系统从()上获取大规模数据并自动构建知识图谱。
答案:Wikipedia8.知识图谱的初衷是为了提高()。
答案:搜索引擎的性能9.以下描述的是专家系统的是()。
答案:一般由事实库、规则库、推理机构成10.专家系统中知识库知识获取的来源是()。
答案:专家11.()是知识图谱中最基本的元素。
答案:实体12.2012 年的 ILSVRC 竞赛,获得冠军的队伍是由()领导的团队。
答案:Geoffrey Hinton13.机器学习系统中通常将数据集划分为训练集和测试集,其中被用来学习得到模型中参数值的是()。
答案:训练集14.使用 ID3 算法构建决策树时,选择属性的度量依据是()。
答案:信息增益15.在机器学习中,如果数据较少,同时采用的模型较复杂,得到的模型在给定的训练集上误差非常小,接近于0,但是在训练集之外的数据上预测效果很差,这种现象称为()。
答案:过拟合16.一般来说,在机器学习中,用计算机处理一幅彩色的图像,维度是()。
2020知到(智慧树)《人工智能基础导学》章节单元测试答案绪论单元测试•第1部分•总题数: 101.【单选题】 (10分)1956年达特茅斯会议上,学者们首次提出“artificial intelligence(人工智能)”这个概念时,所确定的人工智能研究方向不包括:A.研究如何用计算机来模拟人类智能B.研究智能学习的机制C.研究人类大脑结构和智能起源D.研究如何用计算机表示人类知识2.【单选题】 (10分)在现阶段,下列哪项尚未成为人工智能研究的主要方向和目标:A.研究如何用计算机模拟人类智能的若干功能,如会听、会看、会说B.研究如何用计算机延伸和扩展人类智能C.研究机器智能与人类智能的本质差别D.研究如何用计算机模拟人类大脑的网络结构和部分功能3.【单选题】 (10分)下面哪个不是人工智能的主要研究流派?A.模拟主义B.经验主义C.连接主义D.符号主义4.【单选题】 (10分)从人工智能研究流派来看,西蒙和纽厄尔提出的“逻辑理论家”方法用,应当属于:A.连接主义,经验主义B.经验主义,行为主义C.符号主义,连接主义D.理性主义,符号主义5.【单选题】 (10分)从人工智能研究流派来看,明斯基等人所推荐的“人工神经网络”方法用计算机模拟神经元及其连接,实现自主识别、判断,应当属于:A.符号主义,连接主义B.连接主义,经验主义C.理性主义,符号主义D.经验主义,行为主义6【判断题】 (10分)“鸟飞派”指的是人类研究人工智能必须要完全符合智能现象的本质A.错B.对7【判断题】 (10分)人工智能受到越来越多的关注,许多国家出台了支持人工智能发展的战略计划A.错B.对8【判断题】 (10分)人工智能将脱离人类控制,并最终毁灭人类A.错B.对9【判断题】 (10分)人工智能目前仅适用于特定的、专用的问题A.错B.对10【判断题】 (10分)通用人工智能的发展正处于起步阶段A.错B.对第一章单元测试•第1部分•总题数: 101.【单选题】 (10分)以下组合最能全面包括所有知识表示形式的是A.符号主义、经验主义、连接主义B.符号主义、特征表示、语义向量C.产生式系统、特征表示、连接主义D.谓词逻辑、经验主义、网络权重2.【单选题】 (10分)以下用谓词表示的命题错误的是A.大亮的老师擅长打羽毛球和网球:good_at(teacher(大亮),羽毛球)⋀ good_at(teacher(大亮),网球)B.我爸爸喜欢吃鸡蛋并且我妈妈喜欢吃西红柿:like_eat(father(我),鸡蛋) ∨like_eat(moth er(我),西红柿)C.小博不在实验室:¬in(小博,实验室)D.老王的生日在4月:birthday(老王,4月)3.【单选题】 (10分)哪种知识表示的样本数据的特征表示,就对应了某种知识。
人工智能基础(8017)考试大纲一、课程性质与设置目的(一)课程性质和特点“人工智能”是21世纪计算机科学发展的主流,为了培养国家建设跨世纪的有用人才,在计算机专业本科开设《人工智能基础》课程是十分必要的。
《人工智能基础》是计算机专业本科的一门必修课程,本课程中涉及的理论、原理、方法和技术有助于学生进一步学习其他专业课程。
开设本课程的目的是培养学生软件开发的“智能”观念;掌握人工智能的基本理论、基本方法和基本技术;提高解决“智能”问题的能力,为今后的继续深造和智能系统研制,以及进行相关的工作打下人工智能方面的基础。
(二)本课程的基本要求(课程总目标)《人工智能基础》是理论性较强,涉及知识面较广,方法和技术较复杂的一门学科。
通过对本课程的学习,学生应掌握人工智能的一个问题和三大技术,即通用问题求解和知识表示技术、搜索技术、推理技术。
具体要求是:学生在较坚实打好的人工智能数学基础(数理逻辑、概率论、模糊理论、数值分析)上,能够利用这些数学手段对确定性和不确定性的知识完成推理;在理解Herbrand域概念和Hom 子句的基础上,应用Robinson 归结原理进行定理证明;应掌握问题求解 (GPS) 的状态空间法,能应用几种主要的盲目搜索和启发式搜索算法(宽度优先、深度优先、有代价的搜索、 A 算法、 A* 算法、博弈数的极大一极小法、α—β剪枝技术)完成问题求解;并能熟悉几种重要的不确定推理方法,如确定因子法、主观Bayes 方法、D—S 证据理论等,利用数值分析中常用方法进行正确计算。
另外,学生还应该了解专家系统的基本概念、研究历史、系统结构、系统评价和领域应用。
学生还应认识机器学习对于智能软件研制的重要性,掌握机器学习的相关概念,机器学习的方法及其相应的学习机制,几个典型的机器学习系统的学习方法、功能和领域应用。
(三)本课程与相关课程的联系、分工或区别—1—与本课程相关的课程有:离散数学、算法设计、数值分析、程序设计语言等。
《人工智能》课程习题与部分解答第1章 绪论什么是人工智能 它的研究目标是什么什么是图灵测试简述图灵测试的基本过程及其重要特征. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用 在人工智能的发展过程中,有哪些思想和思潮起了重要作用人工智能的主要研究和应用领域是什么其中,哪些是新的研究热点第2章 知识表示方法什么是知识分类情况如何什么是知识表示不同的知识表示方法各有什么优缺点 人工智能对知识表示有什么要求 用谓词公式表示下列规则性知识:自然数都是大于零的整数。
任何人都会死的。
[解] 定义谓词如下:N(x): “x 是自然数”, I(x): “x 是整数”, L(x): “x 大于0”, D(x): “x 会死的”, M(x): “x 是人”,则上述知识可用谓词分别表示为: )]()()()[(x I x L x N x ∨→∀ )]()()[(x D x M x →∀用谓词公式表示下列事实性知识:小明是计算机系的学生,但他不喜欢编程。
李晓新比他父亲长得高。
产生式系统由哪几个部分组成 它们各自的作用是什么可以从哪些角度对产生式系统进行分类 阐述各类产生式系统的特点。
简述产生式系统的优缺点。
简述框架表示的基本构成,并给出框架的一般结构 框架表示法有什么特点试构造一个描述你的卧室的框架系统。
试描述一个具体的大学教师的框架系统。
[解] 一个具体大学教师的框架系统为: 框架名:<教师-1> 类属:<大学教师>姓名:张宇 性别:男年龄:32职业:<教师>职称:副教授部门:计算机系研究方向:计算机软件与理论工作:参加时间:2000年7月工龄:当前年份-2000工资:<工资单>把下列命题用一个语义网络表示出来(1)树和草都是植物;(2)树和草都是有根有叶的;(3)水草是草,且生长在水中;(4)果树是树,且会结果;(5)苹果树是果树的一种,它结苹果。
[解]在基于语义网络的推理系统中,一般有几种推理方法,简述它们的推理过程。
《人工智能》课程习题与部分解答第1章 绪论什么是人工智能? 它的研究目标是什么?什么是图灵测试?简述图灵测试的基本过程及其重要特征. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用? 在人工智能的发展过程中,有哪些思想和思潮起了重要作用? 人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?第2章 知识表示方法什么是知识?分类情况如何?什么是知识表示?不同的知识表示方法各有什么优缺点? 人工智能对知识表示有什么要求? 用谓词公式表示下列规则性知识:自然数都是大于零的整数。
任何人都会死的。
[解] 定义谓词如下:N(x): “x 是自然数”, I(x): “x 是整数”, L(x): “x 大于0”, D(x): “x 会死的”, M(x): “x 是人”,则上述知识可用谓词分别表示为: )]()()()[(x I x L x N x ∨→∀ )]()()[(x D x M x →∀用谓词公式表示下列事实性知识:小明是计算机系的学生,但他不喜欢编程。
李晓新比他父亲长得高。
产生式系统由哪几个部分组成? 它们各自的作用是什么?可以从哪些角度对产生式系统进行分类? 阐述各类产生式系统的特点。
简述产生式系统的优缺点。
简述框架表示的基本构成,并给出框架的一般结构框架表示法有什么特点?试构造一个描述你的卧室的框架系统。
试描述一个具体的大学教师的框架系统。
[解] 一个具体大学教师的框架系统为:框架名:<教师-1>类属:<大学教师>姓名:张宇性别:男年龄:32职业:<教师>职称:副教授部门:计算机系研究方向:计算机软件与理论工作:参加时间:2000年7月工龄:当前年份-2000工资:<工资单>把下列命题用一个语义网络表示出来(1)树和草都是植物;(2)树和草都是有根有叶的;(3)水草是草,且生长在水中;(4)果树是树,且会结果;(5)苹果树是果树的一种,它结苹果。
启发式搜索"启发"( heuristic)是关于发现和发明规则及方法的研究。
在状态空间搜索中, 启发式被定义成一系列规则, 它从状态空间中选择最有希望到达问题解的路径。
人工智能问题求解者在两种基本情况下运用启发式策略:1.一个问题由于在问题陈述和数据获取方面固有的模糊性可能使它没有一个确定的解。
医疗诊断即是一例。
所给出的一系列症状可能有多个原因; 医生运用启发搜索来选择最有可能的论断并依此产生治疗的计划。
视觉问题又是一例。
看到的景物经常是模糊的, 各个物体在其连接、范围和方向上可以有多个解释。
光所造成的幻觉加大了这些模糊性, 视觉系统可运用启发式策略选择一给定景象的最有可能解释。
2.一个问题可能有确定解, 但是求解过程中的计算机代价令人难以接受。
在很多问题(如国际象棋)中, 状态空间的增长特别快, 可能的状态数随着搜索的深度呈指数级增长、分解。
在这种情况下, 穷尽式搜索策略, 诸如深度优先或广度优先搜索,在一个给定的较实际的时空内很可能得不到最终的解。
启发式策略通过指导搜索向最有希望的方向前进降低了复杂性。
通过仔细考虑, 删除某些状态及其延伸, 启发式算法可以消除组合爆炸, 并得到令人能接受的解。
然而, 和发明创造的所有规则一样, 启发式策略也是极易出错的。
在解决问题过程中启发仅仅是下一步将要采取措施的一个猜想。
它常常根据经验和直觉来判断。
由于启发式搜索只有有限的信息,诸如当前Open表中状态的描述,要想预测进一步搜索过程中状态空间的具体的行为很难办到。
一个启发式搜索可能得到一个次最佳解, 也可能一无所获。
这是启发式搜索固有的局限性。
这种局限性不可能由所谓更好的启发式策略或更有效的搜索算法来消除。
启发式策略及算法设计一直是人工智能的核心问题。
博奕和定理证明是两个最古老的应用: 二者都需要启发式知识来剪枝以减少状态空间。
显然, 检查数学领域中每一步推理或棋盘上每一步可能的移动是不可行的。
1.什么是智能?智能有什么特征?答:智能可以理解为知识与智力的总和。
其中,知识是一切智能行为的基础,而智力是获取知识并运用知识求解问题的能力,即在任意给定的环境和目标的条件下,正确制订决策和实现目标的能力,它来自于人脑的思维活动。
智能具有下述特征:(1)具有感知能力(系统输入)。
(2)具有记忆与思维的能力。
(3)具有学习及自适应能力。
(4)具有行为能力(系统输出)。
2.人工智能有哪些学派?他们各自核心的观点有哪些?答:根据研究的理论、方法及侧重点的不同,目前人工智能主要有符号主义、联结主义和行为主义三个学派。
符号主义认为知识可用逻辑符号表达,认知过程是符号运算过程。
人和计算机都是物理符号系统,且可以用计算机的符号来模拟人的认知过程。
他们认为人工智能的核心问题是知识表示和知识推理,都可用符号来实现,所有认知活动都基于一个统一的体系结构。
联结主义原理主要是神经网络及神经网络间的连接机制与学习算法。
他们认为人的思维基元是神经元,而不是符号运算。
认为人脑不同于电脑,不能用符号运算来模拟大脑的工作模式。
行为主义原理为控制论及“感知—动作”型控制系统。
该学派认为智能取决于感知和行动,提出智能行为的“感知—动作”模式,他们认为知识不需要表示,不需要推理。
智能研究采用一种可增长的方式,它依赖于通过感知和行动来与外部世界联系和作用。
3.人工智能研究的近期目标和远期目标是什么?它们之间有什么样的关系?答:人工智能的近期目标是实现机器智能,即主要研究如何使现有的计算机更聪明,使它能够运用知识去处理问题,能够模拟人类的智能行为。
人工智能的远期目标是要制造智能机器。
即揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能。
人工智能的近期目标与远期目标之间并无严格的界限,二者相辅相成。
远期目标为近期目标指明了方向,近期目标则为远期目标奠定了理论和技术基础。
4.人工智能的研究途径有哪些?答:人工智能的研究途径主要有:(1)心理模拟,符号推演;(2)生理模拟,神经计算;(3)行为模拟,控制进化论。
1.什么是搜索?有哪两大类不同地搜索方法?两者地区别是什么?解:像这种根据问题地实际情况,不断寻找可利用知识,从而构造一条最小地推理路线,使问题得以解决地过程称为搜索可根据搜索过程是否使用启发式信息分为盲目搜索与启发式搜索,也可根据问题地表示方式分为状态空间搜索与与/或搜索盲目搜索是按预定地控制策略进行搜索,在搜索过程中获得地中间信息并不改变控制策略启发式搜索是在搜索中加入了与问题有关地启发性信息,用于指导搜索朝着最有希望地方向前进,加速问题地求解过程,并找到最优解。
状态空间搜索是指用状态空间法来表示问题所进行地搜索。
与/或搜索是指用问题归约法来表示问题时所进行地搜索。
2.深度优先搜索与广度优先搜索地区别是什么?解:深度优先搜索与广度优先搜索地区别在于:在对节点n进行扩展时,其后继节点在OPEN表中地存放位置不同。
广度优先搜索是将后继节点放入OPEN表地末端,而深度优先搜索则是将后继节点放入OPEN表地前端。
广度优先搜索是一种完备搜索,即只要问题有解就一定可以求出,而深度优先搜索是不完备搜索。
在不要求求解速度且目标节点地层次较深地情况下,广度优先搜索优于深度优先搜索;在要求求解速度且目标节点地层次较浅地情况下,深度优先搜索优于广度优先搜索。
3.为什么说深度优先搜索与代价树地深度优先搜索可以看成局部择优搜索地两个特例?解:深度优先搜索,代价树地深度优先搜索以与局部优先搜索都是以子节点作为考察范围,但节点选择地标准不同。
如果取估价函数f(n)=g(n),则它将退化为代价树地深度优先搜索。
如果取估价函数f(n)=d(n),则它将退化为深度优先搜索。
因此,深度优先搜索与代价树地深度优先搜索是局部择优搜索地两个特例。
4.局部择优搜索与全局择优搜索地相同之处与区别是什么?解:根据搜索过程中选择扩展节点地范围,启发式搜索算法可分为全局择优搜索算法与局部择优搜索算法。
其中,全局择优搜索算法每当需求扩展节点时,总是从Open表地所有节点中选择一个估价函数值最小地节点进行扩展,局部择优搜索算法每当需求扩展节点时,总是从刚生成地子节点中选择一个估价函数值最小地节点进行扩展。