铁道供变电系统
- 格式:doc
- 大小:111.50 KB
- 文档页数:7
铁道牵引供电系统问题及应对措施铁道牵引供电系统问题及应对措施引言:铁道牵引供电系统是现代铁路运输中不可或缺的关键设施,它为列车提供动力,确保铁路运输的安全和高效。
然而,由于各种原因,这一系统可能面临一些问题。
本文将深入探讨铁道牵引供电系统的问题,并提出相应的应对措施。
一、供电系统能力不足在铁路运输的高峰期,供电系统可能无法满足列车的能量需求。
这可能导致列车的速度下降,运力受限或者甚至停驶。
为了解决这一问题,可以采取以下措施:1.1 增加供电设备:增加供电站数量和分布,增加变电所容量,以提高供电系统的能力。
1.2 引入新技术:如采用高效能量转换设备,利用节能降耗的电力传输技术,以提高供电系统的能量转换效率。
1.3 增加能源来源:引入可再生能源,如太阳能、风能等,以增加供电系统的能源供给。
二、设备老化和故障铁道牵引供电系统中的设备使用寿命有限,容易受到外界因素的影响,如气候变化和环境污染等,从而导致设备的老化和故障。
为了解决这一问题,可以采取以下措施:2.1 定期检修维护:加强对供电设备的定期检修维护,及时发现并处理设备的老化和故障问题。
2.2 引入智能监测技术:利用物联网和大数据技术,对供电设备进行实时监测,提前预警并处理问题。
2.3 更新设备:定期更新供电设备,采用更加先进和可靠的设备,以提高供电系统的可靠性和稳定性。
三、线路电阻增加由于线路老化、腐蚀和损坏等因素,铁道牵引供电系统中的线路电阻可能会增加,进而降低供电系统的效率。
为了解决这一问题,可以采取以下措施:3.1 换线增容:对老化和损坏的线路进行更换和增容,以降低线路电阻。
3.2 引入新材料:采用高导电性的新材料,如铜铝合金线材,以降低线路电阻。
3.3 定期清洁和维护:定期对线路进行清洁和维护,消除因腐蚀等原因导致的线路电阻增加。
四、安全隐患铁道牵引供电系统存在一些安全隐患,如电弧、线路短路和过载等问题。
为了解决这一问题,可以采取以下措施:4.1 引入安全保护设备:安装电弧探测器、断路器和过载保护装置等设备,及时发现并切断故障电路,保护供电系统的安全。
铁道供电研究报告1. 概述铁道供电是铁路系统中至关重要的一环,它提供了列车运行所需的电力。
铁路供电系统的稳定性和可靠性对于保障铁路运输的安全和顺畅至关重要。
本报告将对铁道供电系统的工作原理、技术要求以及未来发展方向进行研究和分析。
2. 铁道供电系统的工作原理铁道供电系统采用直流方式为列车提供电力。
其基本工作原理如下:•发电站:铁道供电系统的起始点是发电站,发电站利用煤炭、水力、核能等资源产生电能。
•变电所:发电站产生的电能经过输电线路输送到变电所,变电所将高压电能转换为铁路线路所需的直流电能。
•出入站所:变电所输出的直流电能经过出入站所,将电能供给给铁路线路。
•线路网:铁路线路由钢轨和接触网组成,接触网上方悬挂着供电线。
•集电装置:列车通过集电装置与接触网的供电线接触,将电能传输给列车。
•车载设备:列车接收到的电能经过车载设备转化为机械能,驱动列车运行。
3. 铁道供电系统的技术要求为确保铁道供电系统的可靠性和稳定性,以下是供电系统需要遵守的一些建设和运营要求:•电能质量:供电系统需要提供稳定的电压和频率,以保证列车正常运行和乘客舒适。
•安全性:供电系统需要采取相应的安全措施,防止发生触电、火灾等意外事故。
•兼容性:供电系统需要满足不同铁路设备和设施的电能需求,确保各设备可以正常运行。
•维护和检修:供电系统需要定期进行维护和检修,保持设备的良好状态和正常工作。
•故障监测和排除:供电系统需要具备故障监测和排除的能力,及时发现和解决供电故障。
•环境友好:供电系统需要尽量减少对环境的影响,采用清洁能源和低污染的设备。
4. 铁道供电系统的未来发展方向随着科技的不断进步和铁路运输的不断发展,铁道供电系统也需要不断改进和升级。
以下是铁道供电系统的未来发展方向:•新能源供电:未来的铁道供电系统将采用更多的新能源,如太阳能、风能、地热能等,以实现可持续发展。
•智能化管理:未来的铁道供电系统将借助人工智能、大数据等技术进行智能化管理,提高供电系统的运行效率和可靠性。
探究电气化铁道供电系统新技术的发展研究发布时间:2022-09-26T05:18:28.434Z 来源:《工程管理前沿》2022年5月10期作者:郭晓青吕治鹏[导读] 随着中国经济的快速增长和科技的日益提升,中国电气化铁道供电系统也实现新突破。
同时,科学技术的迅速发展也为人类生活提供了巨大的方便,同时也为中国交通运输产业发展提供了更多的机会和巨大的挑战。
郭晓青吕治鹏洛阳市轨道交通集团有限责任公司471000摘要:随着中国经济的快速增长和科技的日益提升,中国电气化铁道供电系统也实现新突破。
同时,科学技术的迅速发展也为人类生活提供了巨大的方便,同时也为中国交通运输产业发展提供了更多的机会和巨大的挑战。
人类在旅途中,对运输工具的选择也是多种多样的,他们都十分重视运输工具的安全与舒适。
一般来说,首选铁道交通系统是运输系统中十分关键的交通运输方式。
供电在铁道交通系统中起着十分关键的角色。
本文主要简要阐述电气化铁道供电系统最新技术的发展研究,期望可以给相关工作者一点启示。
关键词:电气化;铁道;新技术引言:近年来,随着社会经济水平迅速发展,中国人民的出行品质也得到了改善,而出行方式的多元化更带动了中国高质量公共交通的蓬勃发展。
铁路是人类在交通运输中选择较多的旅行方法之一,能够确保游客在乘坐时更加安全愉快。
而铁道供电系统不但可以确保铁路行驶的平稳,同时对于电气化铁道的提速具有十分关键的影响。
一、电气化铁道供电系统新技术1.1 BIM技术在接触网施工中的应用1.1.1协助隧道内电缆设施的铺设在铁道内,所有接触网供电线路将使用高压电缆。
一旦线路流入对应的隧洞,就必须通过线路爬架确保稳定在隧洞壁上,进行高压线路铺设,并在上线点上线。
高压线路铺设面临若干困难,比如供电线路和下锚补偿系统间的影响,尤其是铁道的供电线路和下锚补偿系统中间的情况在下锚和开挖断面时显得非常复杂。
BIM设计的应用有助于克服这种交叉影响现象。
另外,由于BIM技术的应用能够实现线缆的及时排布,从而提高美观度。
电气化铁道主要供电方式
电气化铁道的主要供电方式通常有以下几种:
1.架空线供电(Overhead Line Electrification):这是最常见的
供电方式,也称为接触网供电。
在架空线供电系统中,铁道上方架设一条称为接触网的电线,电动列车通过集电装置与接触网接触,从而获取所需的电能。
接触网将高压直流(DC)或交流(AC)电源通过变电站供应到铁道上,以满足列车运行的电力需求。
2.第三轨供电(Third Rail Electrification):在第三轨供电系统
中,铁道旁边或中间安装一条额外的供电轨道,称为第三轨。
电动列车通过集电装置与第三轨接触,从而获得所需的电能。
第三轨通常使用直流供电,但也有一些使用交流供电的系统。
3.混合供电方式:某些铁路系统采用混合供电方式,同时使
用架空线和第三轨供电。
这种方式通常用于铁路线路的不同区段或分支线路,以适应不同的运行要求和设备技术。
不同地区和铁路系统可能采用不同的主要供电方式,其中选用的供电方式取决于多个因素,包括成本、技术要求、环境影响以及安全性等考虑。
另外,电气化铁道的供电方式也在不断发展和创新,例如可再生能源和蓄电池技术的引入,以提高能源效率和减少环境影响。
铁道供电原理
铁道供电是指为铁路交通提供电力的一种方式。
铁道供电原理主要有以下几个方面:
1. 直流供电:铁路供电系统通常采用直流供电的方式,直流供电可以减少电能损耗和电力线路的电压降低。
直流供电系统通常包括电源变电所、接触网、牵引变电所、牵引系统和辅助设备等。
2. 电源变电所:电源变电所是铁路供电系统的起始点,它将交流电转换为直流电,并通过接触网供给给牵引变电所。
3. 接触网:接触网是铁路供电系统的重要组成部分,它由一系列的接触线组成,一端连接到电源变电所,另一端固定在架空的铁道架子上。
列车通过接触线与接触网之间的接触滑行,从而获取所需的电能。
4. 牵引变电所:牵引变电所是供应列车牵引系统所需电能的设施,它将接触网提供的电能通过牵引变压器转换为适合列车牵引设备的电压和电流。
5. 牵引系统:牵引系统由列车上的电力设备和电机组成,它将接触线提供的电能转换为机械能,驱动列车运行。
6. 辅助设备:铁路供电系统还包括为列车和车站提供电力的辅助设备,例如车站照明、信号系统等。
这些设备通常由牵引变电所直接供电。
目录第一章概论 (3)§1-1 电气化铁路的发展概况 (3)§1-2电力牵引供电系统设计的一般知识 (4)第二章牵引供电一次系统 (6)§2-1 电气化铁路的组成 (6)§2-2 供电方式 (8)§2-3 牵引变电所 (14)第三章牵引网 (26)§3-1 接触网的组成 (26)§3-2 接触悬挂的类型 (27)§3-3 接触网设备与结构 (31)第四章牵引网阻抗计算 (40)§4-1 牵引网导线参数 (40)§4-2 牵引网的等效电路及其阻抗 (42)§4-3 单线牵引网阻抗 (43)§4-4 单线牵引网阻抗计算............................................................................................... 错误!未定义书签。
§4-5复线牵引网阻抗 . (49)第五章牵引变电所容量计算和选择 (53)§5-1 馈线电流的计算 (53)§5-2 牵引变压器容量计算 (62)第六章短路电流及其计算 (67)第七章铁道供变电的高压设备及选择 (67)第八章铁道供变电的二次系统 (67)第九章防雷与接地 (67)第十章牵引供电系统的电能质量问题 (67)§10-1 牵引供电系统的电压损失 (67)§10-2 牵引供电系统的电能损失 (67)§10-3 牵引负荷对电力系统的影响及改善措施 (67)§10-4 牵引网对通信线路的影响 (67)参考文献 (68)第一章概论§1-1 电气化铁路的发展概况一、电气化铁路发展历程采用电力机车为主要牵引动力的铁路成为电气化铁路。
1897年5月31日在德国柏林的世界贸易博览会上,由西门子公司和哈克斯公司展出了世界上第一条电气化铁路,迄今已有近130年的历史。
绪论
第一章供变电系统概述
学习目标:了解电力系统的概念;电力牵引供电系统的概述。
重点:电力牵引供电系统的组成;
难点:供变电系统相关的主要设备及功能。
教学内容:
电力牵引是一种新型的运输牵引动力。
我国铁路运输的牵引动力,目前主要有内燃牵引和电力牵引两种形式。
以电力牵引为主要牵引方式的干线称为电气化铁路。
第一条电气化铁道1961年8月15日宝鸡-凤州91km建成通车。
电力牵引特点:
1、能多拉快跑,提高运输能力。
2、能综合利用能源,减低燃料消耗。
3、能减低运输成本,提高劳动生产率。
4、能改善劳动条件,不污染环境。
5、能采用综合自动化技术,安全性高。
一、电力系统概述
由、、、和用电等环节组成的电能生产与消费系统。
它的功能是将自然界的通过转化成电能,再经输电、变电和配电将电能供应到各用户。
为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、经济、优质的电能(图1)。
一、电力系统中性点运行方式
电力系统中性点的运行方式共三种:中性点不接地运行方式、中性点经消弧线圈接地运行方式、中性点直接接地运行方式和中性点经电抗器接地的三相系统。
前两种接地系统统称为小接地电流系统,后两种接地系统又称为大接地电流系统。
其中采用最广泛的是中性点不接地、中性点经过消弧线圈接地和中性点直接接地等三种方式。
研究分析中性点运行方式的目的一是分析影响系统可靠运行的因素,二是合理设置设备的绝缘,三是研究如何避免对通信的干扰,四是选择继电保护等。
电力线路存在分散电容,各相对地之间是空气层,空气是绝缘介质,组成分散电容C。
分散电容有相对地电容和相间电容。
通常不予考虑相间电容。
1、中性点不接地的三相电力系统
输电线路的绝缘水平按线电压设计,当发生单相接地故障时,三相系统仍然对称,接在相间电压上的用电器的供电并未遭到破坏,可以继续运行。
但是这种电网长期在单相接地的状态下运行,也是不能允许的,因为这时非故障相电压升高,绝缘薄弱点很可能被击穿,而引起两相接地短路,将严重地损坏电气设备。
另一方面由于存在接地容性电流,当接地的电容电流较大时,在接地处引起的电弧就很难自行熄灭。
在接地处还可能出现所谓间隙电弧,即周期地熄灭与重燃的电弧。
由于电网是一个具有电感和电容的振荡回路,间歇电弧将引起相对地的过电压,这种过电压会传输到与接地点有直接电连接的整个电网上,更容易引起另一相对地击穿,而形成两相接地短路,危机系统安全。
故限制电弧措施,是电力系统中性点不接地运行方式研究的课题之一。
因此在中性点不接地电网中,必须设专门的监察装置,以便使运行人员及时地发现一相接地故障,从而切除电网中的故障部分。
2、中性点经消弧线圈接地的三相系统
中性点不接地电力网发生故障时,仍可继续运行2h,但若接地电流值过大,会产生持续性电弧,危胁设备,甚至产生三相或二相短路。
当一相接地电容电流超过允许值时,可以用中性点经消弧线圈接地的方法来解决,该系统即称为中性点经消弧线圈接地系统。
常见限制接地电流的措施是中性点经消弧线圈接地。
当W相发生单相接地故障时,中性点电位N上升为相电压
∵消弧线圈为可调电感线圈
∴电感电流流过接地点,
∵电流方向相反
∴起到相互抵消的作用。
补偿方式有三种:全补偿、欠补偿和过补偿。
全补偿由XL=Xc,网络容易因不对称形成串联谐振过电压,故不采用;欠补偿为容性电流,容易发展成为全补偿方式,所以很少采用;系统通常采用过补偿,使接地为感性电流,但应注意电感电流数值不能过大。
消弧线圈主要有带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。
绕组的电阻很小,电抗很大。
消弧线圈的电感,可用改变接入绕组的匝数加以调节。
显然,在正常的运行状态下,由于系统中性点的电压三相不对称电压,数值很小,所以通过消弧线圈的电流也很小。
采用过补偿方式,即使系统的电容电流突然的减少(如某回线路切除)也不会引起谐振,而是离谐振点更远。
3、中性点直接接地的三相系统
中性点的电位在电网的任何工作状态下均保持为零。
在这种系统中,当发生单相接地时,这一相直接经过接地点和接地的中性点短路,单相接地短路电流的数值最大,因而应立即使继电保护动作,将故障部分切除。
运行经验表明,大多数的单相接地故障,都具有瞬时的性质,在故障部分切除以后,接地处的绝缘可能迅速恢复,而送电线可以立即恢复工作。
目前在中性点直接接地的电网内,为了提高供电可靠性,均装设自动重合闸装置,在系统单相接地线路切除后,立即自动重合,再试送一次,如为瞬时故障,送电即可恢复。
中性点直接接地的主要优点是它在发生单相接地故障时,非故障相地对电压不会增高。
结论:在中性点经消弧线圈接地的系统中,单相接地和中性点不接地系统一样,故障相对地电压为零,非故障相对地电压升高,三相线电压仍然保持对称和大小不变,所以也允许暂时运行,但不得超过两小时,消弧线圈的作用对瞬时性接地系统故障尤为重要,因为它使接地处的电流大大减小,电弧可能自动熄灭。
接地电流小,还可减轻对附近弱点线路的影响。
二、电力牵引供电系统概述
我国电气化铁路采用工频单相交流制。
向电气化铁路供电的牵引供电系统由分布在铁路沿线的牵引变电所及沿铁路架设的牵引网组成。
为了保证供电的可靠性,由电力系统送到牵引变电所的高压输电线路均为双回路。
各种牵引变电所功能框图
电气化铁道供电系统组成
牵引供电回路的构成是:牵引变电所、馈电线、接触网、电力机车、钢轨与大地、回流线。
在这个闭合回路中,通常将馈电线、接触网、钢轨与大地、回流线统称为牵引网。
重点介绍:
1、牵引变电所
牵引变电所的功能是将三相的110KV高压交流电变换为两个单相27.5KV 的交流电,然后向铁路上、下行两个方向的接触网(额定电压为25KV)供电,牵引变电所每一侧的接触网都称做供电臂。
该两臂的接触网电压相位是不同相的,一般是用耐磨的分相绝缘器。
相邻牵引变电所间的接触网电压一般为同相的,其间除用分相绝缘器隔离外,还设置了分区亭,通过分区亭断路器(或负荷开关)的操作,实行双边(或单边)供电。
牵引供电系统一般由铁路以外的容量较大的电力系统供电。
电力系统有许多种电等级网络和设备,其中110KV及以上电压等级的输电线路,用区域变电所中的变压器联系起来,主要用于输送强大电力,利用它们向电气化铁路的牵引变电所输送电力,供电牵引用力。
为了保证供电的可靠性,由电力系统送到牵引变电所高压输电线路无一例外地为双回线。
两条双回线互为备用,平时均处于带电状态,一旦一条回路发生供电故障,另一条回路自动投入,从而保证不间断供电。
牵引变电所主接线
牵引变电所(包括分区亭、开闭所,AT所等),为了完成接受电能,高压和分配电能的工作,其电气接线可分为两大部分:一次接线(主接线)和二次接线。
2、开闭所
所谓开闭所,是指不进行电压变换而用开关设备实现电路开闭的配电所,一般有两条进线,然后多路馈出向枢纽站场接触网各分段供电。
进线和出线均经过断路器,以实现接触网各分段停、供电灵活运行的目的。
又由于断路器对接触网短路故障进行保护,从而可以缩小事故停电范围。
3、分区亭
分区亭设于两个牵引变电所的中间,可使相邻的接触网供电区段(同一供电臂的上、下行或两相邻变电所的两供电臂)实现并联或单独工作。
如果分区厅两侧的某一区段接触网发生短路故障,可由供电的牵引变电所馈电线断路器及分区亭断路器,在继电保护的作用下自动跳闸,将故障段接触网切除,而非故障段的接触网仍照常工作,从而使事故范围缩小一半。
4、AT所
牵引网采用AT供电方式时,在铁路沿线每隔10km左右设置一台自耦变压器AT,该设置处所称做AT所。
(或者自耦变压器站)。