概率统计习题及答案(2)
- 格式:doc
- 大小:913.00 KB
- 文档页数:10
【概率论与数理统计经典计算题题2】期末复习题含答案work Information Technology Company.2020YEAR概率论与数理统计计算题(含答案)计算题1.一个盒子中装有6只晶体管,其中2只是不合格品。
现作不放回抽样,接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,1只是不合格品;(3)至少有1只是合格品。
1-2,9-2.设甲,乙,丙三个工厂生产同一种产品,三个厂的产量分别占总产量的20%,30%,50%,而每个工厂的成品中的次品率分别为5%,4%,2%,如果从全部成品中抽取一件,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是甲,乙,丙工厂生产的概率。
3.设随机变量X 的分布函数为1(1), 0() 0, 0x x e x F x x -⎧-+>=⎨≤⎩,试求:(1)密度函数()f x ;(2)(1)P X ≥,(2)P X < 。
4.二维随机变量(,)X Y 只能取下列数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且取这些组值的概率分别为1115,,,312612。
求这二维随机变量分布律,并写出关于X和关于Y 的边缘分布律。
5. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,试求下列事件的概率:(1)其中恰好有一位精通英语;(2)其中恰好有两位精通英语;(3)其中有人精通英语。
6.某大型体育运动会有1000名运动员参加,其中有100人服用了违禁药品。
在使用者中,假定有90人的药检呈阳性,而在未使用者中也有5人检查为阳性。
如果一个运动员的药检是阳性,则这名运动员确实使用违禁药品的概率是多少?7.设随机变量X 的密度函数为||(),x f x Ae x R -=∈,试求:(1)常数A ;(2)(01)P X << 。
8. 设二维随机变量(X ,Y)的分布律为求:(1)(X ,Y)关于X 的边缘分布律;(2)X+Y 的分布律.9. 已知A B ⊂,()0.36P A =,()0.79P B =,求()P A ,()P A B -,()P B A -。
第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计习题二参考答案1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。
解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=×===P X P36261616161)"1,2""2,1(")3(1=×+×=∪==P X P 363616161616161)"1,3""2,2""3,1(")4(1=×+×+×=∪∪==P X P …… 所以X 1的分布律为X 1 2 3 4 5 6 7 8 9 10 11 12 P k 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 X 2可取的数有1、2、3、4、5、6P (X 2=1)=P ()="1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"∪∪∪∪∪∪∪∪∪∪3611所以X 2的分布律为 X 2 1 2 3 4 5 6 P k 11/36 9/36 7/36 5/36 3/36 1/36 2、10只产品中有2只是次品,从中随机地抽取3只,以X 表示取出次品的只数,求X 的分布律。
解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P3、进行重复独立试验。
1. 试分别给出随机变量的可能取值为可列、有限的实例.解 用X 表示一个电话交换台每小时收到呼唤的次数,X 的全部可能取值为可列的 0,1,2,3,…,;用Y 表示某人掷一枚骰子出现的点数,Y 的全部可能取值为有限个 1,2,3,4,5,6 ;2. 试给出随机变量的可能取值至少充满一个实数区间的实例.解 用X 表示某灯泡厂生产的灯泡寿命(以小时记),X 的全部可能取值为区间 (0,+∞)3. 设随机变量X 的分布函数()F x 为()F x = 2 1, >20, 2A x xx ⎧-⎪⎨⎪≤⎩ 确定常数A 的值,计算(04)P X ≤≤.解 由(20)(2),F F +=可得10, =44AA -= (04)(04)(4)(0)0.75P X P X F F ≤≤=<≤=-=.4.试讨论:A 、B 取何值时函数()arctan3xF x A B =+ 是分布函数. 解 由分布函数的性质,有()()0,1F F -∞=+∞=,可得0,211,,21,2A B A B A B πππ⎧⎛⎫+-= ⎪⎪⎪⎝⎭⇒==⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩于是()11arctan ,.23xF x x π=+-∞<<+∞1.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的概率分布.解 由题意知,X 的取值可以是0,1,2,3.而X 取各个值的概率为{}{}70,103771,10930P X P X ====⨯= {}{}32772,1098120321713.10987120P X P X ==⨯⨯===⨯⨯⨯= 因此X 的概率分布为012 377711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦2.从分别标有号码1 ,2 ,… ,7的七张卡片中任意取两张, 求余下的卡片中最大号码的概率分布.解 设X 为余下的卡片的最大号码 ,则X 的可能取值为5、6、7,且1{5}21P X ==5{6}21P X ==15{7}21P X ==即所求分布为567 1515212121X ⎡⎤⎢⎥⎢⎥⎣⎦ 3.某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数的概率分布.解 设此人将门打开所需的试开次数为X ,则X 的取值为1,2,3,...,k n =,事件{}{}1X k k k ==-前次未打开,第次才打开,且{}11P X n ==, {}11121n P X n n n-==⋅=-,… …,{}()121112111,2,....,n n n k P X k n n n k n k k n n ---+==⋅⋅⋅⋅--+-+== 故所需试开次数的分布为12~111X n nn ⎡⎤⎢⎥⎢⎥⎣⎦ ... n .... 4.随机变量X 只取1 、2 、3共三个值,并且取各个值的概率不相等且组成等差数列,求X 的概率分布.解 设{}{}{}1,2,3P X a P X b P X c ======,则由题意有1a b c c b b a ++=⎧⎨-=-⎩解之得2313a c b ⎧+=⎪⎪⎨⎪=⎪⎩设三个概率的公差为d ,则11,33a d c d =-=+,即X 的概率分布为 12 3111333X d d⎡⎤⎢⎥⎢⎥-+⎢⎥⎣⎦,103d << 5.设随机变量X 的全部可能取值为1 ,2 ,… ,n ,且()P X k = 与k 成正比,求X 的概率分布.解 由题意,得{}() 1,2,,k P X k p ck k n ====其中c 是大于0的待定系数.由11nkk p==∑,有12....1nk k cp c c n c ==+++=∑ 即()112n n c +=,解之得 ()21c n n =+.把()21c n n =+代入k p ,可得到X 的概率分布为{}()2,1,2,...,.1kP X k k n n n ===+6.一汽车沿街道行驶时须通过三个均设有红绿灯的路口.设各信号灯相互独立且红绿两种信号显示的时间相同,求汽车未遇红灯通过的路口数的概率分布.解 设汽车未遇红灯通过的路口数为X ,则X 的可能值为0,1,2,3.以()1,2,3i A i =表示事件“汽车在第i 个路口首次遇到红灯”,则123,,A A A 相互独立,且()()1,1,2,32i i P A P A i ===.对0,1,2,3k =,有{}()1102P X P A ==={}()()()1212211142P X P A A P A P A ===== {}()123311282P X P A A A ==== {}()123311382P X P A A A ==== 所以汽车未遇红灯通过的路口数的概率分布为012 311112488X ⎡⎤⎢⎥⎢⎥⎣⎦7.将一颗骰子连掷若干次,直至掷出的点数之和超过3为止.求掷骰子次数的概率分布.解 设掷骰子次数为X ,则X 可能取值为1,2,3,4,且31{1}62P X === 141515{2}6666612P X ==⨯+⨯+=;115111117{3}6666666216P X ==⨯⨯+⨯+⨯=; 1111{4}666216P X ==⨯⨯=所以掷骰子次数X 的概率分布为123 415171212216216X ⎡⎤⎢⎥⎢⎥⎣⎦ 8.设X 的概率分布为试求(1)X 的分布函数并作出其图形;(2) 计算{11}P X -≤≤ ,{0 1.5}P X ≤≤ ,{2}P X ≤ . 解(1)由公式 (){}()k kx xF X P X x p x ≤=≤=-∞<<+∞∑,得()0,00.2,010.5,120.6,231,3x x F X x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2) {}11(1)(10)0.500.5P X F F -≤≤=---=-= {}0 1.5(1.5)(00)0.500.5P X F F ≤≤=--=-={}2(2)0.6P X F ≤==9.设随机变量X 的分布函数为010.210()0.70212x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩,,,,试求(1) 求X 的概率分布;(2) 计算1322P X ⎧⎫-<≤⎨⎬⎩⎭,{1}P X ≤- ,{03}P X ≤< ,{1|0}P X X ≤≥解 (1)对于离散型随机变量,有{}()()0P X k F k F k ==--,因此,随机变量X 的概率分布为10 2 0.20.50.3X -⎡⎤⎢⎥⎣⎦ (2) 由分布函数计算概率,得13310.52222P X F F ⎧⎫⎛⎫⎛⎫-<≤=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭;{}()110.2P X F ≤-=-=;{}()0330(00)10.20.8P X F F ≤<=---=-=; {}{}{}{}{}1,0100010.50.625.00.8P X X P X X P X P X P X ≤≥≤≥=≥≤≤===≥10.已知随机变量X 服从0—1分布,并且{0}P X ≤=0.2,求X 的概率分布 . 解 X 只取0与1两个值,{0}P X =={0}P X ≤-{0}P X <=0.2,{1}1{0}0.8P X P X ==-==11.已知{}P X n == nP ,n =1,2,3,⋯,求P 的值 .解 因为1{}1,n P X n ∞===∑ 有 11=,1n n pp p∞==-∑解此方程,得0.5p =. 12.商店里有5名售货员独立地售货.已知每名售货员每小时中累计有15分钟要用台秤.(1) 求在同一时刻需用台秤的人数的概率分布;(2) 若商店里只有两台台秤,求因台秤太少而令顾客等候的概率.解 (1) 由题意知,每名售货员在某一时刻使用台秤的概率为150.2560p ==, 设在同一时刻需用台秤的人数为X , 则()~5,0.25X B , 所以{}550.250.75(0,1,2,3,4,5)kk k P X k C k -===(2) 因台秤太少而令顾客等候的概率为{}{}55553320.250.75k k k k k P X P X k C -==>===∑∑332445550.250.750.250.750.250.1035C C =++≈13.保险行业在全国举行羽毛球对抗赛,该行业形成一个羽毛球总队,该队是由各地区的部分队员形成.根据以往的比赛知,总队羽毛球队实力较甲地区羽毛球队强,但同一队中队员之间实力相同,当一个总队运功员与一个甲地区运动员比赛时,总队运动员获胜的概率为0.6,现在总队、甲队双方商量对抗赛的方式,提出三种方案:(1)双方各出3人; (2)双方各出5人; (3)双方各出7人.3种方案中得胜人数多的一方为胜利.问:对甲队来说,哪种方案有利?解 设以上三种方案中第i 种方案甲队得胜人数为(1,2,3),i X i =则上述3种方案中,甲队胜利的概率为(1){}331322(0.4)(0.6)0.352k k k k P X C -=≥=≈∑(2){}552533(0.4)(0.6)0.317k k k k P X C -=≥=≈∑(3){}773744(0.4)(0.6)0.290kk k k P X C -=≥=≈∑因此第一种方案对甲队最为有利.这和我们的直觉是一致的。
第二章习题与答案同学们根据自己作答的实际情况,并结合总正误率和单个题目正误统计以及答案解析来总结和分析习题!!!标红表示正确答案标蓝表示解析1、为掌握商品销售情况,对占该地区商品销售额60%的10家大型商场进行调查,这种调查方式属于( )。
A普查B抽样调查【解析:抽取一部分单位进行调查;习惯上将概率抽样(根据随机原则来抽取样本)称为抽样调查】C重点调查【解析:在调查对象中选择一部分重点单位进行调查的一种非全面调查】D统计报表2、人口普查规定标准时间是为了()。
A确定调查对象和调查单位B避免资料的重复和遗漏。
C使不同时间的资料具有可比性D便于登记资料【解析:规定时间只是为了统计该时间段内的人口数据,没有不同时间数据对比的需要】3、对一批灯泡的使用寿命进行调查,应该采用( )。
A普查 B重点调查 C典型调查D抽样调查4、分布数列反映( )。
A总体单位标志值在各组的分布状况B总体单位在各组的分布状况【解析:课本30页1.分布数列的概念一段最后一句】C总体单位标志值的差异情况D总体单位的差异情况5、与直方图比较,茎叶图( )。
A没有保留原始数据的信息B保留了原始数据的信息【解析:直方图展示了总体数据的主要分布特征,但它掩盖了各组内数据的具体差异。
为了弥补这一局限,对于未分组的原始数据则可以用茎叶图来观察其分布。
课本P38】C更适合描述分类数据D不能很好反映数据的分布特征6、在累计次数分布中,某组的向上累计次数表明( )。
A大于该组上限的次数是多少B大于该组下限的次数是多少C小于该组上限的次数是多少【解析:向上累计是由变量值小的组向变量值大的组累计各组的次数或频率,各组的累计次数表明小于该组上限的次数或百分数共有多少。
课本P33】D小于该组下限的次数是多少7、对某连续变量编制组距数列,第一组上限为500,第二组组中值是750,则第一组组中值为 ( )。
A. 200B. 250C. 500D. 300【解析:组中值=下限+组距/2=上限+组距/2】8、下列图形中最适合描述一组定量数据分布的是( )。
作业2(修改2008-10)4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面都出现为止所需投掷的次数,求X 的概率分布.解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L .5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布.第1个能正确回答的概率是5/8,第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=.设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是,问一天中他至少收到4位朋友的电子邮件的概率是多少试用二项分布公式和泊松近似律分别计算.解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算31001000(4)1(4)10.04(10.04)0.5705kk k k P X P X C -=≥=-<=--=∑.2) 用泊松近似律计算 331004100004(4)1(4)10.04(10.04)10.5665!k k k k k k P X P X C e k --==≥=-<=--≈-=∑∑.8. 设X 服从泊松分布,分布律为(),0,1,2,!kP X k e k k λλ-===L .问当k 取何值时{}P X k =最大解 设()/(1)k a P X k P X k ===-,1,2,k =L ,则1/!/(1)!k k k e k a ke k λλλλλ+--==-,数列{}k a 是一个递减的数列. 若11a <,则(0)P X =最大.若11a ≥,则当1k a ≥且11k a +≤时,{}P X k =最大. 由此得1) 若1λ<,则(0)P X =最大.2) 若1λ≥,则{}/1/(1)11P X k k k k λλλλ=⇔≥+≤⇔-≤≤最大且. 由上面的1)和2)知,无论1λ<或1λ≥,都有[]{}1P X k k λλλλλ⎧=⇔=⎨-⎩不是整数最大或是整数.12. 设随机变量X 的概率密度为[0,1)[1,2]()()(2)()p x xI x x I x =+-.求X 的分布函数()F x ,并作出()p x 与()F x 的图形. 解 ()(,0)[0,1)0()()()0()0x xxF x p v dv I x dv I x dv vdv -∞-∞-∞-∞==⋅+⋅+⎰⎰⎰⎰()01[1,2)1()0(2)x I x dv vdv x dv -∞-∞+⋅++-⎰⎰⎰()12[2,)12()0(2)0I x dv vdv v dv dv +∞+∞-∞+⋅++-+⋅⎰⎰⎰⎰()()112[0,1)[1,2)[2,)011()()(2)()(2)x xI x vdv I x vdv v dv I x vdv v dv +∞=++-++-⎰⎰⎰⎰⎰22[0,1)[1,2)[2,)(/2)()(2/21)()()x I x x x I x I x +∞=+--+.11. 设随机变量X 的概率密度为[0,10]()()p x cxI x =.求常数c 和X 的分布函数,并求概率(16/10)P X X +≤.解 1021001()502cx p x dx cxdx c +∞-∞====⎰⎰, 1/50c =.2[0,10)[10,)[0,10)[10,)0()()()()()()50100xxv x F x p v dv I x dv I x I x I x +∞+∞-∞==+=+⎰⎰. 2(16/10)(10160)(28)P X X P X X P X +≤=-+≤=≤≤8288222()3/550100x x p x dx dx ====⎰⎰.15. 设随机变量X 的密度为2x xce -+.求常数c .解 2221/2(1/2)1/41/41/1x t xxx t ce dx c e dx ce e dt ce π=++∞+∞+∞-+--+--∞-∞-∞====⎰⎰⎰.由上式得1/41/2c e π--=.15. 离散型随机向量(,)X Y 有如下的概率分布:Y X 0 1 2 3 01 0 2求边缘分布.解 X 有分布k x0 1 2 ()k P X x =Y 有分布k y0 1 2 3 ()k P Y y =因为0(2,0)(2)(0)0.30.1P X Y P X P Y ===≠===⨯,所以X ,Y 不独立.18.设随机向量(,)X Y 服从矩形{(,):12,02}D x y x y =-≤≤≤≤上的均匀分布,求条件概率(1|)P X X Y ≥≤.解 1()(622)/62/32P X Y ≤=-⨯⨯=,1(,1)(11)/61/122P X Y X ≤≥=⨯⨯=,(,1)1/12(1|)1/8()2/3P X Y X P X X Y P X Y ≤≥≥≤===≤.22. 随机向量(,)X Y 有联合密度(,)(,)E p x y x y =,其中222{(,):0}E x y x y R =<+≤.求系数c 和(,)X Y 落在圆222{(,):}D x y x y r =+≤内的概率. 解()222cos sin 20001(,)2x r y r Rx y Rp x y dxdy d cdr cR θθπθπ==+∞+∞-∞-∞<+≤====⎰⎰⎰⎰⎰⎰因而12c Rπ=.而222{(,)}(,)Dx y r P X Y D p x y dxdy +≤∈==⎰⎰⎰⎰()cos sin 201/2x r y r rd dr r R R θθπθπ====⎰⎰.27. 设2~(,)X N μσ,分别找出i k ,使得()i i i P k X k μσμσα-<<+=.其中1,2,3i =,10.9α=,20.95α=,30.99α=.解122()/(2)()i i k x i i i k P k X k dx μσμσμσαμσμσ+---=-<<+=⎰2/2()()2()1iix t k t i i i kdt k k k σμ=+--==Φ-Φ-=Φ-⎰. ()(1)/2i i k αΦ=+.代入i α的值查得1 1.64α=,2 1.96α=,3 2.58α=.解2 设1~(0,1)2X Z N -=,则~(0,1)Z N . ()i i i i i k k X P k X k P μσμμσμμαμσμσσσσ--+--⎛⎫=-<<+==<<⎪⎝⎭()()()2()1i i i i i P k Z k k k k =-<<=Φ-Φ-=Φ-. ()(1)/2i i k αΦ=+.代入i α的值查得1 1.64α=,2 1.96α=,3 2.58α=.28. 某商品的每包重量2~(200,)X N σ.若要求{195205}0.98P X <<≥,则需要把σ控制在什么范围内. 解 设200~(0,1)X Z N σ-=,则~(0,1)Z N .195200205200{195205}(5/)(5/)2(5/)1P X P Z σσσσσ--⎛⎫<<=≤≤=Φ-Φ-=Φ- ⎪⎝⎭.{195205}0.982(5/)10.98P X σ<<≥⇔Φ-≥15/(0.99) 2.335/2.33 2.15σσ-⇔≥Φ=⇔≤=.28. 设X 服从自由度为k 的2χ分布,即X 有密度/21/2(0,)/21()()2(/2)k x X k p x x e I x k --+∞=Γ.求Y . 解1当0y <时,()())0Y F y P Y y P y =≤==,()()0Y Y p y F y '==.当0y >时,22()())()()Y X F y P Y y P y P X ky F ky =≤=≤=≤=, 222/21/22(0,)/21()()2()2()()2(/2)k ky Y Y X k p y F y kyp ky ky ky e I ky k --+∞'===⋅Γ ()()2/21/22/2/2k k ky k y e k --=Γ. 因而()()2/21/2(0,)2/2()()/2k k kyY k p y y e I y k --+∞=Γ.解2 设(0,)V =+∞,则()1P X V ∈=.设()y f x ==x V ∈,则f 有反函数12()f y ky ϕ-==, y G ∈,其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度 ()|()|(()()Y X G p y y p y I y ϕϕ'=22/21/22(0,)/212()()2(/2)k ky k ky ky e I ky k --+∞=⋅Γ()()2/21/22/2/2k k ky k y e k --=Γ.29. 由统计物理学知道分子运动的速率遵从麦克斯威尔(Maxwell)分布,即密度为222/(0,)()()xX p x I x α-+∞.其中参数0α>.求分子的动能2/2Y mX =的密度. 解1当0y <时,2()()(/2)0Y F y P Y y P mX y =≤=≤=,()()0Y Y p y F y '==.当0y >时,2()()(/2)(Y X F y P Y y P mX y P X F =≤=≤=≤=,22/()(0,)()()y m Y Y X p y F y p I α-+∞'=222/()2/()y m y m αα--==. 因而22/()(0,)()()y m Y p y I y α-+∞=.解2 设(0,)V =+∞,则()1P X V ∈=.设2()/2y f x mx ==, x V ∈,则f 有反函数1()f y ϕ-==y G ∈,其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度 ()|()|(()()Y X G p y y p y I y ϕϕ'=22/()(0,)y m X p I α-+∞22/()(0,)()y m I y α-+∞=.30. 设X 服从[1,2]-上的均匀分布,2Y X =.求Y 的分布.解 X 有密度[1,2}1()()3X P x I x -=.Y 有分布函数()()Y F y P Y y =≤ 2()P X y =≤[0,)()(I y P X +∞=[0,)()()XI y x dx +∞=[0,)[1,2]()()I y x dx +∞-=[0,1)[1,4)[4,)1()()()3I y I y I y dy +∞-=++[0,1)[1,4)[4,)()()()y y I y +∞+.31. 质点随机地落在中心在原点,半径为R 的圆周上,并且对弧长是均匀地分布的.求落点的横坐标的概率密度.解 设落点极坐标是(,)R Θ,则Θ服从[0,2]π上的均匀分布,有密度[0,2]1()()2p I πθθπΘ=. 设落点横坐标是X ,则cos X R =Θ,X 的分布函数为()()(cos )X F x P X x P R x =≤=Θ≤.当1x <-时,()0X F x =.当1x >时,()1X F x =.当11x -≤≤时1()(cos )arccos 2arccos arccos X x x x F x P R x P R R R πππ⎛⎫⎛⎫=Θ≤=≤Θ≤-=- ⎪ ⎪⎝⎭⎝⎭.因而落点的横坐标X 有概率密度(1,1)()()()X Xp x F x x -'==..34. 设随机变量X 服从在[0,1]上的均匀分布,求ln Y X =-的分布. 解 设(0,1)V =,则()1P X V ∈=.设()ln y f x x ==-, x V ∈,则f 有反函数1()y f y e ϕ--==, y G ∈,其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度[0,1](0,)(0,)()|()|(())()()()()y y y Y X G p y y p y I y e I e I y e I y ϕϕ---+∞+∞'===.36. 设X 和Y 独立,密度分别为[0,1]()()X p x I x =和(0,)()()y Y p y e I y -+∞=,求Z X Y =+的密度.解 ()()()Z X Y p z p x p z x dx +∞-∞=-⎰()[0,1](0,)()()z x I x e I z x dx +∞--+∞-∞=-⎰ ()[0,1](,)()()z x z I x e I x dx +∞---∞-∞=⎰1()()[0,1)[1,)0()()zz x z x I z e dx I z e dx ----+∞=+⎰⎰ [0,1)[1,)()(1)(1)()z z I z e e e I z --+∞=-+-.37. 设系统L 由两个相互独立的子系统12,L L 联接而成,联接的方式分别为串联,并联和备用(当系统1L 损坏时,系统2L 开始工作),如图所示.1L 和2L 的寿命为X 和Y ,分别有密度(0,)()()x X p x e I x αα-+∞=和(0,)()()y Y p y e I y ββ-+∞=,其中0,0αβ>>且αβ≠.请就这三种联接方式分别写出系统L 的寿命Z 的密度.解 X ,Y 独立,分别服从参数为α和β的指数分布,因此分别有分布函数(0,)()(1)()x X F x e I x α-+∞=-和(0,)()(1)()y Y F y e I y β-+∞=-.1) 联接的方式为串联时,min{.}Z X Y =, (){min(,)}1{min(,)}S F z P X Y z P X Y z =≤=->()(0,)1()()1[1()][1()](1)()z X Y P X z P Y z F z F z e I z αβ-++∞=->>=---=-,()(0,)()()()()zs Z Zp z F z e I z αβαβ-++∞'==+. 2) 联接的方式为并联时,max{.}Z X Y =,(){max(,)}()()()()Z X Y F z P X Y z P X z P Y z F z F z =≤=≤≤= (0,)(1)(1)()r b r e e I z αβ--+∞=--,()(0,)()()(())()z z z Z Zp z F z e e e I z αβαβαβαβ---++∞'==+-+. 3) 联接的方式为备用时,Z X Y =+, ()(0,)(0,)()()()()()x z x Z X Y p z p x p z x dx e I x e I z x dx αβαβ+∞+∞---+∞+∞-∞-∞=-=⋅-⎰⎰()()(0,)(0,)0()()zz x z x z x I z e e dx e I z e dx αββαβαβαβ------+∞+∞==⎰⎰.因此,当αβ≠时, (0,)()()()z z Z p z e e I z αβαββα--+∞=--, 当αβ=时, 2(0,)()()z Z p z ze I z αα-+∞=.38. ,X Y 相互独立,1~(,)X αβΓ,2~(,)Y αβΓ.证明12~(,)Z X Y a αβ=+Γ+.(提示:称1110(,)(1)s t B s t u u dx --=-⎰为β函数,由微积分的知识知(,)()()/()B s t s t s t =ΓΓΓ+)解 (见命题A.2.1)43. 设12,,,n X X X L 独立,都服从参数为,m η的威布尔分布,即都有密度()/1(0,)()()mx m mmp x xeI x ηη--+∞=.证明12min(,,,)n X X X L 仍服从威布尔分布. 证 i X 1,i n =L 有分布函数 ()/1(0,)0()()mx v m mmF x I x v e dv ηη--+∞=⎰, ()()()///(0,)(0,)0()(1)()m mmv tx x t I x e dt e I x ηηη=--+∞+∞==-⎰.设12min(,,,)n Z X X X =L ,则Z 有分布函数11()()(min(,,))1(min(,,))Z n n F z P Z z P X X z P X X z =≤=≤=-≤L L 11()()1[1()]n n P X z P X z F x =->>=--L .()()//(,0](0,)(0,)1()()1()m mnnx x I x e I x e I x ηη---∞+∞+∞⎛⎫=-+=- ⎪⎝⎭,接下来的证明过程可以有两种。