大一数学论文
- 格式:doc
- 大小:492.50 KB
- 文档页数:16
合肥学院课程论文专业酒店管理班级一班学生姓名张超学号**********论文题目微积分在生活中的应用教师王后春微积分在生活中的应用摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。
主要集中几何,经济以及我们在生活中的应用关键词:微积分,几何,经济学,物理学,极限,求导绪论作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。
我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。
希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。
一、微积分在几何中的应用微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。
很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。
大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。
首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。
这些是数学竞赛得以顺当开展的基础。
第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。
最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。
这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。
基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。
2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。
不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。
主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。
限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。
还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。
还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。
基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。
大一高等数学论文2200字_大一高等数学毕业论文范文模板大一高等数学论文2200字(一):浅析大一新生心理特点及其在高等数学教学中的运用论文【摘要】在当今经济以及科技不断发展的过程中,大学的教学模式也实现了不断的改革。
因此,大一新生的心理特点在高等数学的教学过程中也受到了进一步的注重。
【关键词】大一新生;心理特点;高等数学;教学;运用大一对于学生而言是一个十分关键的时期,大一的高等数学教育也至关重要。
本文就是对大一新生的心理特点及其在高等数学教学过程中的运用进行分析。
一、大一新生的心理特点1.有着较强的自豪感以及优越感高校的大一新生在刚刚走进校园的时候都有着较强的自豪感以及优越感,因为他们在高中的学习之中受到老师的关注,并且在高考中也取得了较为满意的成绩。
所以,这份优越感以及自豪感使得他们觉得自己即使是在大学之中也应该是佼佼者。
2.对大学生活的幻想由于高校的大一新生刚刚经历了一段漫长的学习历程,经历了紧张的高考,因此进入大学之后,会有一种梦想已经实现了的幻想。
同时,在他们进入大学之前,就听很多人说大学就是天堂,不需要紧张地学习,有很多社团活动,考试也不需要太紧张等。
这就使得很多大一新生对自己的大学生活产生了不切合实际的幻想,进而对自己的行为过于放纵,导致其在大学学习的过程中很难取得满意的成绩。
3.有着较强的自尊心和较差的心理承受能力因为目前的高校大学生大多都是家里的独生子女,因为家长的娇惯,导致其有着唯我独尊的心理。
同时,高校的学生在中学时期也是学习成绩优越的学生,在中学时期受到老师以及同学的关注,让他们觉得自己只可以比别人更强。
因此这样的学生也就有着强烈的自尊心,在大学学习的过程中,为了使自己不丢面子,就可能会使用一些不光彩的手段,同时,这样的学生在受到打击的情况下会产生自卑的心理,甚至会有一些极端的行为出现。
4.学习的态度不稳定很多大一新生在刚走进大学校园时,都会有着很大的雄心,对自己的未来更是进行着近乎完美的规划。
大一数学论文大学生范文精选大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。
下面是店铺为大家整理的大一数学论文,供大家参考。
大一数学论文范文篇一:《数学学科德育教育渗透思考》摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。
关键词:数学学科;渗透;德育教育我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。
上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。
现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。
因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主渠道作用。
数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。
第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。
第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的方法和能力。
这些数学能力包括:空间想象能力、逻辑思维能力、基础运算能力和数学建模能力等。
第三,数学课作为职业学校文化基础课之一,所用资源少,易开展教学活动。
结合数学学科的特点,笔者认为可以从以下几点进行德育教育。
1根据中职学校数学学科的特点和数学课的现状,教师的人格品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。
大学数学论文5篇论文题目:大学代数知识在互联网络中的应用关键词:代数;对称;自同构一、引言与基本概念《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。
前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一、这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。
甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。
即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。
众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。
当然,做课后习题和考试是检验是否学会的一个重要手段。
然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。
这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。
笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
下面介绍一些相关的概念。
一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。
称V为G的顶点集合,E为G的边集合。
E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。
图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。
图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。
图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。
图G称为是边对称的,如对于G的任意两条边{u,v}和{某,y},存在G的自同构f使得{uf,vf}={某,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。
由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。
大一数学论文范文2000字(49篇)我国的中学数学新课程已进入全面实施阶段。
新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。
数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕一些数学问题自主探究、学习的过程。
新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。
五、数学建模教学与素质教育数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的'体验。
由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力_曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。
”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。
学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
2.注重直觉思维,培养学生的想象能力3.灌输“构造”思想,培养学生的创新能力“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。
大一上高数论文高数是大一上学期的一门重要课程,它是数学的基础和核心内容之一。
通过研究高数,我们可以掌握数学分析和推理的基本原理,培养逻辑思维和解决问题的能力。
因此,深入研究高数的理论与应用是非常有意义的。
本论文的目的是介绍高数的重要性和研究目标。
在引言部分,我将概述将要讨论的主题和论文的结构。
我将首先阐述高数在现实生活中的应用和意义,以及它在其他学科中的作用。
接着,我将介绍论文的主题,包括高数的基本概念和方法。
最后,我将简要介绍论文的章节安排和内容大纲。
通过本论文的研究,我们可以更好地理解高数的重要性和应用场景,提高研究兴趣和学业成绩。
同时,这也为进一步深入研究高等数学奠定了基础,为未来学术研究和职业发展打下坚实的数学基础。
本篇论文旨在解释高数的基本概念和术语,介绍基本的数学符号和公式,并讨论高数的重要性和应用领域。
高数的基本概念和术语高数,即高等数学,是研究计量、计算、结构和变化的一门数学学科。
它关注数、数量、结构和空间等概念的定量描述和分析。
在高数中,有一些基本的概念和术语需要理解和掌握:数:高数研究的基本对象,可以是实数、复数、向量等。
数量:数的具体表达和度量。
结构:指数间的关系和组织方式,如数的运算规则和性质。
空间:高数中研究的对象所存在的背景和场所。
基本的数学符号和公式在高数中,使用一些符号和公式来表达和计算数学问题。
下面是一些常见的符号和公式:π:表示圆周率,约等于3..表示求和符号,用于将一系列数相加。
表示括号,用于改变运算次序。
x,y,z:表示未知数或变量。
高数中还有许多复杂的数学符号和公式,它们用于描述和计算更复杂的数学问题。
掌握这些符号和公式可以帮助我们更深入地理解和解决数学难题。
高数的重要性和应用领域高数作为一门基础学科,具有广泛的应用领域。
它的重要性体现在以下几个方面:科学研究:高数为各个科学领域提供了必要的数学工具和方法,如物理学、化学、生物学等。
工程技术:高数在工程设计、计算机科学、电子技术等领域的应用非常广泛,为实际问题的分析和解决提供了数学支持。
数学毕业论文(精选3篇)数学是所有理工科学科的基础,大学生中数学专业的人也很多,读书是学习,摘抄是整理,写作是创造,这里是小编给家人们分享的数学毕业论文【精选3篇】,仅供借鉴。
大学数学研究论文篇一【摘要】本研究以高职院校单招班级为调查对象,通过问卷调查法研究高职单招学生对高等数学课程分层教学的看法,采用有效的分层次教学形式,培养学生的学习能力、激发学生学习的内动力,进而为分层教学的具体实施提供参考。
【关键词】高等数学;分层次教学;教学改革高职单招的生源较为复杂,其中一类对象是中职生,其特点是在进入高等职业教育前具有相应专业课的理论知识,并具备一定的职业技能素养,但在公共文化课程方面与统招生相比,存在一定的差距。
目前来看,部分高职院校将高考统招生源和单招生源放在同一个班级上课,造成学生接收程度不一、教学效果不佳等问题。
本文将根据高职部分单招生源在高中时期数学基础薄弱的事实,对其教学方法及课程设置进行合理的分层教学探索[1]。
1分层教学改革的原因高职生源与本科生源在高等数学课程教学上的区别高等数学课程具有较强的工具性和实用性,是学生提高自身能力和素质的载体。
从教学内容来看,高职版虽然基本上是本科版的压缩,但是高职高等数学的教材和课堂结构、教学模式和教学方法应与本科高校不同,须改变传统的以教师讲授为主的满堂灌,改变课堂教学模式的单一性,寻找优质的适合高职生源的课程资源、教材及教学方法以满足学生的学习需求及毕业后的岗位需求。
用教学改革的办法推进高职单招班高等数学分层教学的课堂教学结构战略性调整,增强应对不同生源学生需求的适应性和灵活性,提高课堂教学的效率,改变满堂灌的课堂教学模式。
高职不同生源学生在学习高等数学时的基础差异高职院校主要招生形式是高考统招和对口单招。
生源结构的复杂性和生源素质的差异性对高职院校的教育教学工作带来了极大的考验和挑战。
不同生源的同层教学会让高职单招生源中原本基础不好的学生跟不上进度,进而造成部分学生缺乏独立学习能力和探索精神。
大一高等数学论文第一篇:大一高等数学论文高等数学论文高等数学作为一门基础课程,他在各个领域的重要性就不言而喻了,但现如今在大学普遍的教学方式:“定义→性质→例题”。
这种模式显然不够,并且在大学一个课堂的内容很多,各种各样新的概念更是层出不穷,让学生应接不暇,而我们学习大多是在课后自己去学的,这样就会产生一种自我满足心理,对于学过的内容去看资料做习题时就会认为自己会做了差不多能懂了,便认为自己学会了;还有就是对如何学、学到什么程度,在别的课程影响下,学习高等数学的深度也是不同的,学习太深会感到越难,从而影响到学习兴趣,这样的人大有人在。
但在现今学习的潮流下,我们总不能说不学了,学习还是要学的,关键就在于怎么学、如何去学。
你想要老师改变教学方式是不可能的,因为老师不是为你一个人而讲的,要考虑到大多数同学,在几十人甚至一百多人的课堂上,固定的教学模式也成了普遍的事,我们可以做的就是跟老师交流,建议老师做出细微的调整,那么我们学习便主要靠自己了,改变自己才是最好的方法,虽说每个人都知道学习的方式很多,但大都会感到力不从心,无从下手。
我在这就谈谈我自己的看法吧。
如今进入大学,首先第一点需要做的就是改变自己的思想观念。
记得刚来时,学习高等数学还像以前那样总是等着老师,很少预习,老师讲到哪,书就看到。
结果才几堂课就发现自己跟不上了。
例如对于学习函数的极限用“ξ~δ”语言表示时,老师讲的很快,感觉定义一下子就弹出来了,感到有点突兀,接下来讲的例题就有点跟不上了,学习也有了影响。
后来作了深刻的思考,明白大学跟高中是完全不同的,高中老师是带着你督促你学,而大学老师是引导你学,给你一个方向,剩下的路要你自己一步步去寻找,同时老师也在课堂上多次强调这种观念,让我们先从思想上作出调整。
还记得后来花了很长时间才弄清弄熟,这就要我们预习了,提前作了解、思考,也能更深入了解定义了,走在老师的前面是有必要的。
虽说明白了这反面,但实际上做起来就不是那么快改过来的,这需要一个调整期的,不要心急,想学习好就得坚持。
大一数学论文大学生范文精选随着高等教育的普及和数学科学的重要性逐渐凸显,大一数学课程成为了大学生学习的重要组成部分。
在大一数学学习的过程中,学生们需要通过论文的形式来表达自己对数学问题的理解和应用能力。
本文将选取几篇优秀的大一数学论文范文,为大学生们提供参考。
第一篇:函数的图像与性质函数是数学中最基础的概念之一,它在实际生活中有着广泛的应用。
在这篇论文中,作者以 y = x^2 + 2x + 1 为例,通过求解顶点、判别式、导数等方法,详细分析了该函数的图像和性质。
通过对函数图像的观察,作者发现了与二次函数相关的重要特点:顶点坐标、开口方向、零点等,并对这些性质进行了解释和应用。
作者通过清晰的图表和简洁明了的语言,全面展示了对函数图像与性质的深入理解。
第二篇:线性方程组的解法比较线性方程组是数学中的一类重要问题,它在各个领域具有广泛的应用。
本篇论文选取了两种解线性方程组的方法:高斯消元法和矩阵法。
论文以具体的例子引入问题,详细介绍了两种方法的步骤和原理,并通过对比不同方法的优缺点,提出了在不同情况下选择合适解法的建议。
作者通过清晰的逻辑框架和恰当的例子,使读者能够深入理解和掌握线性方程组的解法。
第三篇:微分的应用微分作为数学的重要概念之一,具有广泛的应用价值。
本篇论文选取了一个典型的应用案例,即求解函数的极值问题。
作者通过对函数取极值的条件和求解方法的介绍,结合实际例子,详细解释了如何通过微分的方法求解函数的极值问题。
论文通过对问题的分析和解决过程的详细论述,使读者能够全面理解微分在实际问题中的应用。
第四篇:概率与统计概率与统计是数学中的重要分支,它在各个领域都有重要的应用。
本篇论文选取了一个与现实生活紧密相关的问题,即某次学生考试成绩的概率分布。
通过对成绩的数据进行统计和分析,作者详细介绍了概率密度函数、期望值、方差等基本概念,并通过图表和计算展示了这些概念的实际应用。
论文通过生动的例子和清晰的逻辑,使读者对概率与统计有了更深入的了解。
大一下高数论文大一下高数论文大一下学期,我们主要学了微分方程,我们主要学了微分方程,微分方程是数学的重要分支微分方程是数学的重要分支微分方程是数学的重要分支..在这里我重点介绍了几个利用微分方程常来解决的问题的例子题的例子,,从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤. . 应用微分方程解决具体问题的主要步骤应用微分方程解决具体问题的主要步骤应用微分方程解决具体问题的主要步骤: :(1)(1)分析问题分析问题分析问题,,将实际问题抽象将实际问题抽象,,设出未知函数,建立微分方程设出未知函数,建立微分方程,,并给出合理的解并给出合理的解; ; (2)(2)求解微分方程的通解及满足定解条件的特解求解微分方程的通解及满足定解条件的特解求解微分方程的通解及满足定解条件的特解,,或由方程讨论解的性质或由方程讨论解的性质; ; (3)(3)由所求得的解或解的性质由所求得的解或解的性质由所求得的解或解的性质,,回到实际问题回到实际问题,,解释该实际问题解释该实际问题,,得出客观规律得出客观规律. . 微分方程的应用举例微分方程的应用举例 几何问题几何问题 1.1.等角轨线等角轨线等角轨线我们来求这样的曲线或曲线族我们来求这样的曲线或曲线族,,使得它与某已知曲线族的每一条曲线相交成给定的角度使得它与某已知曲线族的每一条曲线相交成给定的角度..这样的曲线轨线已知曲线的等角轨线.当所给定的角为直角时当所给定的角为直角时,,等角轨线就轨线正交轨线等角轨线就轨线正交轨线..等角轨线在很多学科(如天文等角轨线在很多学科(如天文,,气象等)中都有应用气象等)中都有应用..下面就来介绍等角轨线的方法线的方法. .首先把问题进一步提明确一些首先把问题进一步提明确一些. .设在(设在(x,y x,y x,y)平面上)平面上)平面上,,给定一个单参数曲线族(给定一个单参数曲线族(C C ):()0,,=c y x j 求这样的曲线l ,使得l 与(C)(C)中每一条曲线的交角都中每一条曲线的交角都是定角a .设l 的方程为1y=)(1x y .为了求)(1x y ,我们先来求出)(1x y 所对应满足的微分方程所对应满足的微分方程,,也就是要求先求得x , 1y ,'1y 的关系式的关系式..条件告诉我们l 与(与(C C )的曲线相交成定角a,于是于是,,可以想象可以想象,,1y 和'1y 必然应当与(必然应当与(CC )中的曲线y =)(x y 及其切线的斜率'y 有一个关系有一个关系..事实上事实上,,当a ≠2p 时,有k y y y y ==+-a tan 1'1'''1 或1'1'1'+-=ky ky y 当a =2p时,有 '1'1y y -=又因为在交点处又因为在交点处,,)(x y =)(1x y ,于是于是,,如果我们能求得x , 1y ,'1y 的关系的关系()0,,'=y y x F采用分析法采用分析法. .设y =)(x y 为(为(C C )中任一条曲线)中任一条曲线,,于是存在相应的C,C,使得使得使得()()0,,ºc x y x j因为要求x ,y, '1y 的关系的关系,,将上式对x 求导求导,,得()()()()()0,,,,'''º+x y c x y x c x y x y x j j这样这样,,将上两式联立将上两式联立,,即由即由()()()îíì=+=0,,,,0,,'''y c y x cy x c y x y x j j j消去C,C,就得到就得到()()x y x y x ',,所应当满足的关系所应当满足的关系()0,,'=y y x F这个关系称为曲线族(这个关系称为曲线族(C C )的微分方程)的微分方程. . 于是于是,,等角轨线(a ≠2p)的微分方程就是)的微分方程就是01,,'1'11=úûùêëé+-ky ky y x F而正交轨线的微分方程为而正交轨线的微分方程为01,,'11=úûùêëé-y yx F 为了避免符号的繁琐为了避免符号的繁琐为了避免符号的繁琐,,以上两个方程可以不用1y ,而仍用y,y,只要我们明确它是所求的等角轨线的方程就行了只要我们明确它是所求的等角轨线的方程就行了只要我们明确它是所求的等角轨线的方程就行了. .为了求得等角轨线或正交轨线为了求得等角轨线或正交轨线,,我们只需求上述两个方程即可我们只需求上述两个方程即可. . 例1 1 求直线束求直线束cx y =的等角轨线和正交轨线的等角轨线和正交轨线. .解 首先求直线束cx y =的微分方程的微分方程. .将cx y =对x 求导求导,,得'y=C,=C,由由îíì==cy cx y '消去C,C,就得到就得到cx y =的微分方程的微分方程xy dx dy =当a ≠2p时,由(由(2.162.162.16)知道)知道)知道,,等角轨线的微分方程为等角轨线的微分方程为 x y dxdy kkdx dy =+-1 或kydxxdyydy xdx -=+÷øöèx y x y k 11cey x arctan22+pdy oyxATMR N tan tan∠∠OMN='1'1xy yx yy ---, tan , tan∠∠NMR='1y从而从而'1y =-yxy yy x -+''即得到微分方程即得到微分方程2'yy +2x 'y -y=0由这方程中解出'y ,得到齐次方程得到齐次方程'y =-1)(2+±yx yx令xy =u,=u,即即y=xu,y=xu,有有dxdy =u+dx dux代入上式得到代入上式得到dxdu x=uu u 221)1(+±+-分离变量后得分离变量后得=+±+221)1(uu uduxdx- 令1+22tu=上式变为xdxt dt-=±1.积分后得积分后得ln xC tln1=+或112±=+xc u .两端平方得两端平方得2211÷øöçèæ+=+x cu化简后得化简后得x c x c u 2222+=以222ccx y x y u +==代入,得这是一族以原点为焦点的抛物线这是一族以原点为焦点的抛物线. .2.动力学问题.动力学问题动力学是微分方程最早期的源泉之一动力学是微分方程最早期的源泉之一..我们都知道动力学的基本定律是牛顿第二定律我们都知道动力学的基本定律是牛顿第二定律m a f =这也是用微分方程来解决动力学的基本关系式这也是用微分方程来解决动力学的基本关系式..它的右端明显地含有加速度a,a 是位移对时间的二阶导数是位移对时间的二阶导数..列出微分方程的关键就在于找到外力f 和位移对时间的导数-速度的关系和位移对时间的导数-速度的关系..只要找到这个关系只要找到这个关系,,就可以由m a f =列出微分方程了列出微分方程了. .在求解动力学问题时在求解动力学问题时,,要特别注意力学问题中的定解条件要特别注意力学问题中的定解条件,,如初值条件等如初值条件等. .例:物体由高空下落例:物体由高空下落,,除受重力作用外除受重力作用外,,还受到空气阻力的作用还受到空气阻力的作用,,在速度不太大的情况下在速度不太大的情况下,,空气阻力可看做与速度的平方成正比试证明在这种情况下证明在这种情况下,,落体存在极限速度1v .解 设物体质量为m,m,空气阻力系数为空气阻力系数为k,k,又设在时刻又设在时刻t 物体下落的速度为v,v,于是在时刻于是在时刻t 物体所受的合外力为物体所受的合外力为2kvmg f -=(重力(重力--空气阻力)空气阻力)从而从而,,根据牛顿第二定律可得出微分方程根据牛顿第二定律可得出微分方程2kv mg dtdv m -=因为是自由落体因为是自由落体,,所以有所以有()00=vòò=-t vdt kv m g mdv 002积分得积分得tkvm g kv m g m g m =-+ln 21或m kgt kvm g kvm g2ln=-+解出v,v,得得÷÷øöççèæ+÷÷øöççèæ-=1122mkg t mkg te k e m g v当¥®t 时,有1lim v km g v t ==+¥®据测定据测定,,s kar =,其中±为与物体形状有关的常数为与物体形状有关的常数,,为介质密度为介质密度,s ,s 为物体在地面上的投影面积为物体在地面上的投影面积. . 人们正是根据公式1limv k m g v t ==+¥® , ,来为跳伞者设计保证安全的降落伞的直径大小的来为跳伞者设计保证安全的降落伞的直径大小的在落地速度1v ,m,a ,与一定时一定时,,可定出s 来.例: : 某厂房容积为某厂房容积为45m 45m××15m 15m××6m,6m,经测定经测定经测定,,空气中含有0.20.2﹪的﹪的2CO .开通通风设备开通通风设备,,以360s m 3的速度输入含有0.050.05﹪的﹪的2CO 的新鲜空气的新鲜空气,,同时又排出同等数量的室内空气同时又排出同等数量的室内空气..问30min 后室内所含2CO 的百分比的百分比. .解 设在时刻设在时刻t,t,车间内车间内2CO 的百分比为x(t) x(t) ﹪﹪,当时间经过dt 后,室内2CO 的该变量为的该变量为 4545××1515××6×dx dx﹪﹪=360=360××0.050.05﹪×﹪×﹪×dt-360dt-360dt-360××x ﹪×﹪×dt dt于是有关系式于是有关系式4050dx=360(0.05-x)dt或dt t dtdx=按分离变量法解之,,()x N x =-x N x ÷øöçèæ-+11kNtce +=1 kNt ex x N e Nx 0+-=。
大一高等数学期末论文范文通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。
首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。
一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。
所以希望大家无论如何,一定要把高数考好。
记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。
说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦注意!!!。
可能之前会听到家长或者老师会说,到了大学就可以好好玩了。
不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。
而且,大学其实并不比高中轻松这句话大家一定注意。
下面我来介绍一下,大学高数的一些学习方法:第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。
因为,大学课程的进程可不是一般的快。
希望大家能保持课时比老师快两节,练习比老师快一节。
最低限度,是不能落下其实,这个要求也不低,但希望大家一定不能落下。
第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。
有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师建议是老师,但前提是你对这道题目要有一定的思考,经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。
第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。
关于数学的论文(11篇)数学的论文篇1一、引导同学学会识图,让同学感受数学的“形之美”在教学有关“圆”的学问时,老师可以举例,把“圆”比作太阳、苹果等有形的东西,加深同学对“圆”的熟悉。
老师还可以利用多媒体来展现和我们的日常生活有紧密联系的有关“圆”的东西,如水面上激起的涟漪,既有静感又有动感,使同学如身临其境,有所感受,比老师单纯在课堂上用圆规画圆要形象得多、生动得多、鲜亮得多。
这样的课堂教学自然能激发同学的学习爱好,使同学深刻感受到数学的美。
二、让同学学会鉴赏,在鉴赏中感受数学的“和谐美”美是人们所憧憬和追求的,美感不但表达在艺术领域,在数学教学中也有肯定的美。
所以,老师要教给同学如何发觉和鉴赏数学之美,要让同学学会用审美的视角来观看数学,深化挖掘数学的结果美、过程美。
首先,老师要引导同学树立在数学中发觉和鉴赏数学美的观念,调动同学的主动性。
例如,在讲解“黄金分割”时,同学一开头会很生疏,不知道什么是黄金分割,这时,老师可以让同学测量一下自己身体的黄金分割点,并讲解有关黄金分割点的意义,让同学在实际生活中去找黄金分割点。
这样,同学自然会发觉其中存在的美感,从而产生深厚的学习爱好,由被动学习变为主动主动学习。
再如,老师在讲授数学应用题时,可以借助线段图形让同学理解题意。
同学在线段的引导下既能理解应用题的题意,又能感受到数学学问的系统性和关联性,感受到数学深层次的体系美。
总之,数学的美表达在方方面面,只要老师擅长引导,使同学树立发觉美的观念,就肯定能使同学感受到数学的美。
三、让同学在嬉戏中体验数学的“趣味美”传统的数学教学过分重视学问,缺乏对同学力量的培育,主要以老师为中心,同学只是被动地接受学问,严峻抑制了同学独特的进展。
新课程改革对数学教学提出了更高的要求,对教学方式进行了大胆的改革和创新,更加注意同学的参加性和主动性。
所以,数学老师应转变教学观念,尽量让同学主动参加到数学教学中。
其中,一种重要的参加方式就是让同学在数学课堂上参加嬉戏,在嬉戏中感受数学的趣味美。
大一高等数学论文大学数学论文高等数学在大一的学习中占据着重要的地位,它是一门基础性的数学课程,对于培养学生的数学思维和解决问题的能力有着重要的作用。
本论文旨在探讨大一高等数学的学习方法和效果,并对如何进行大学数学的进一步学习提出一些建议。
一、大一高等数学的学习方法在大一学习高等数学时,我们应该注重以下几个学习方法:1.理解概念:高等数学是一个基础性的数学课程,其中涉及到了许多重要的数学概念。
我们应该通过认真阅读教材,理解每个概念的含义和特点,建立起数学思维的框架。
2.掌握基本技巧:在学习高等数学时,我们需要掌握一些基本的数学技巧,如函数的求导、极限的计算等。
这些技巧是解决数学问题的基础,我们可以通过多做练习题来熟练掌握。
3.注重实际应用:高等数学的内容不仅仅停留在理论层面,它还有很多实际的应用。
我们应该注重将数学知识与实际问题相结合,提高解决实际问题的能力。
4.参加讨论和学习小组:在学习高等数学时,我们可以参加一些讨论和学习小组,与同学们一起交流和讨论数学问题。
这样可以增加学习的乐趣,也能够从他人的观点和方法中获得启发。
二、大一高等数学学习效果的评价评价大一高等数学的学习效果主要包括两个方面,即知识的掌握和解决问题的能力。
1.知识的掌握:大一高等数学是一门较为复杂的数学课程,对于学生来说有一定的难度。
通过学习和练习,我们应该能够熟练掌握基本的数学知识,并能够运用到实际问题中。
2.解决问题的能力:大一高等数学的学习目标不仅仅是为了掌握一些数学知识,更重要的是培养学生的问题解决能力。
通过学习高等数学,我们应该能够分析和解决各种复杂的数学问题。
三、关于大学数学的进一步学习建议在大一学习高等数学之后,我们可以在大学数学的学习中继续提高自己的数学水平。
以下是一些建议:1.拓展数学领域:大学数学不仅仅包括高等数学,还包括线性代数、概率统计等内容。
我们可以选择一些数学选修课程,进一步拓宽自己的数学知识领域。
2.培养数学建模能力:在大学数学学习中,我们可以参加一些数学建模的竞赛和研究项目,培养自己的数学建模能力。
大一高等数学期末论文范文第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。
希望大家认真对待,不要气馁,不懂就问。
这里的最低限度就是课本例题、练习册,一定不能再少了。
想拿高分的同学,一定要多做题(范围也就是课本和老师讲的题),特别是向拿奖学金的同学。
好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。
在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。
至于您的方法我觉得还不错,容易的快速过,困难的花点时间耐心讲解。
只是我们每学期都要放弃后边的一部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。
高等数学课程是高等理工科院校普遍开设的一门基础课程,是众多专业的学生进一步学习基础课程和专业课程的基础。
但由于高等数学本身具有高度的抽象性和深奥性使教师在授课时出现了诸多不尽人意之处。
如何活跃课堂气氛,提高教学质量是高校教育者们值得深思的问题。
一、高等数学教学的现状1、高等数学课时缩减当前我国高等教育正逐步正由精英教育逐渐转为大众化教育,为了加强实践教学,高等数学[1]的教学内容有所变动,授课学时在1996年前是220学时左右缩减到现在的160学时左右。
虽然减少了应用方面的内容,但每章节数学知识点的体系保持不变。
在缩减课时的情况下,教师上课往往出现“向前赶”的现象,使得课堂讲解不够细致,学生学起来囫囵吞枣,不求甚解。
2、学生数学基础功参差不齐,增加了教学难度现今高校录取新生的政策,对大多数专业来说基本是看高考全科的总分数,没有顾及数学成绩对学习后续专业课程的影响,因此往往出现同一专业的学生数学成绩功悬殊较大。
针对学生数学基础功参差不齐的情况,如何因人施教,是高校教学工作者值得深思的问题。
兴趣是最好的老师,激发学生学习高等数学的兴趣无疑会对教学产生良好的效果。
大学数学方面论文范文随着科学技术特别是信息技术的高速发展,数学的应用价值越来越得到众人的重视。
下文是店铺为大家整理的关于大学数学方面论文范文的内容,欢迎大家阅读参考!大学数学方面论文范文篇1赵爽的数学哲学思想与应用价值摘要:赵爽是东汉末年至三国时期的着名数学家,他在《周髀算经》的注文中提出许多新的数学见解。
同时,他的数学思想及方法对中国整个数学体系的形成及发展都有着重要的作用。
关键词:唐代丝绸之路极盛而衰历史演变。
赵爽是东汉末年至三国时期的着名数学家,同时也是中国历史上着名的天文学家,他大约生活在3 世纪,生卒不详。
他在数学上的成就主要表现为对勾股定理简洁的证明,重差术的理论,一元二次方程的求解及根与系数的关系四个方面的贡献。
2 世纪,赵爽开始深入研究《周髀算经》,该书是中国历史上最古老的天文学着作,其中就有对“勾股圆方图”的注释,总结出中国古代的勾股定理,这是对中国数学史的巨大贡献。
另外,赵爽还在此基础上进行了创新,提出了新的证明公式。
赵爽在数学方面的成就主要体现其所撰写的《勾股圆方图》,是中国历史上第一次明确给出勾股定理明确证明的着作,而且这种证明简单实用,至今仍在沿用。
赵爽还创造出世界上最早的求根公式,并对《九章算术》中的分数计算方法上升到理论高度,创立了“齐同术”,足见称其为数学宗师是非常恰当的。
一、赵爽数学思想产生的社会背景。
1.来源于人类实践活动的数学思想。
赵爽在《周髀算经》的注文中提到“:大禹治水,望山川之形,定高下之势,除滔天之灾,勾股之所由生也。
”这就说明,大禹治水时期便采用了疏通河流的办法使大水流往大海,而无“浸溺逆”,这也是勾股定理产生的重要原因。
赵爽的这一思想与古希腊数学家欧弟姆斯对几何学的产生的思路不谋而合,欧弟姆斯曾说“:几何学是埃及人发现的,是在测量土地的过程中产生的,因为那时候的尼罗河泛滥成灾,经常冲毁良田,这种几何学的测量技术是必要的。
”[1]17所以,几何学起源于土地测量,一般从事农业生产的民族都有着丰富的几何学知识。
大学数学教学论文范文精选 10篇1. 数学教学中的启发式教学法本篇论文探讨了数学教学中的启发式教学法对学生研究成绩和兴趣的影响。
通过实施启发式教学法,学生在解决数学问题时能够更深入地理解数学概念,提高解题能力和创新思维。
2. 利用实际案例的数学教学方法本文介绍了一种利用实际案例的数学教学方法,通过将数学应用于真实生活中的问题,增加学生对数学的兴趣和理解。
此方法还可以培养学生的问题解决能力和逻辑思维。
3. 数学课堂中的互动研究策略本篇论文探讨了数学课堂中的互动研究策略对学生研究效果的影响。
通过鼓励学生参与讨论和合作解决问题,教师可以激发学生的研究兴趣和提高研究成绩。
4. 创新技术在数学教学中的应用本文介绍了一些创新技术在数学教学中的应用,包括使用电子白板、数学软件和在线资源。
这些技术能够增加学生对数学的互动性和参与度,并提供更多个性化研究的机会。
5. 探索问题解决方法的数学教学模式本篇论文介绍了一种探索问题解决方法的数学教学模式,通过引导学生思考和独立解决问题,提高他们的解决问题的能力和数学思维能力。
6. 基于社会情境的数学教学理念本文研究了一种基于社会情境的数学教学理念,通过将数学与社会生活结合,增加学生对数学实际应用的认识和兴趣。
7. 数学游戏在教学中的应用本篇论文介绍了数学游戏在教学中的应用,通过游戏的形式培养学生对数学的兴趣和动手能力,提高学生的研究效果。
8. 数学评估方法的研究与应用本文研究了一种数学评估方法,通过不同类型的评估工具和策略,准确评估学生的数学能力和理解程度,为教师提供有效的教学反馈。
9. 数学思维培养的实践研究本篇论文介绍了一种数学思维培养的实践研究,通过在数学教学中注重培养学生的逻辑思维、创新思维和问题解决能力,提高学生的数学素养和综合能力。
10. 多媒体资源在数学教学中的应用本文探讨了多媒体资源在数学教学中的应用,通过使用图像、音频和视频等多媒体形式,增加学生对数学概念的理解和记忆,提高研究效果和教学效果。
大学数学论文3000范文(推荐3篇) 3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。
数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。
建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。
结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型实际问题一次函数成本、利润、销售收入等二次函数优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数细胞分裂、生物繁殖等三角函数测量、交流量、力学问题等3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。
有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。
所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。
我国从1992年开始举办大学生数学建模竞赛。
近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。
一、数学建模和大学生数学建模竞赛何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。
事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。
那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。
大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。
高数论文(五篇)第一篇:高数论文高数论文短短一个学期的高数的学习就结束了,感觉过的好快有好慢,总得来说收获还是很大,收获了不仅是知识、还有学习知识的方法、研究问题的方法,还有学习的态度。
相比较上个学期,这个学期高数的学习我个人认为难度加大了不少。
在这个学期我们主要学习的是高等数学下册的知识,这本书的基础就是上学期学习的微积分。
学习了向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分,无穷级数。
在向量代数与空间解析几何这一章,我们学习了向量代数的基本知识,空间曲线,曲面及方程,空间平面与直线等,总得来说这一章需要一定的空间想象能力。
在多元函数微分学这一章,我觉得有些地方掌握的不好,隐函数的求导显得很生疏,对于多元函数的隐函数的求导感觉掌握不是很好。
另外,全微分,多元函数微分学也是这一章的重点。
在重积分这一章,不管是几重积分,这都是建立在一元函数的积分的基础之上的,在这一章,化归的思想体现的很是淋漓尽致,这一思想不仅在数学上体现的很明显,在很多领域都有体现。
在积分这一块都采用分割,近似,求和,取极限四个步骤。
此外三重积分的计算,主要从直角坐标系,柱面坐标系,球面坐标系三种坐标系下计算。
另外重积分也应用于物理方面,如运用重积分求物体的质心,转动惯量及引力。
在曲线积分与曲面积分这一章当中,化归的思想继续在体现。
这一章的逻辑性很强,在这一章我们学习了4种积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲面积分。
学完这一章,加上之前学习的一元函数的积分,二重积分,三重积分,我们就学习了七种积分。
在这一章还有一个重要的结论,那就是在对曲面的积分时,偶倍奇零不再是什么时候都是用了,在这里用偶倍奇零需要认真考虑,因为有时是偶零奇倍。
最后一章的无穷级数,很大程度上和数列有很多类似的地方,而且这一章的定理很多,很多东西容易混淆,很多结论都有自己的前提,这是这一章的重点之处,定理成为这一章很重要的解题根据。
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)引言 (1)1. 实二次型化简方法 (2)1.1配方法 (2)1.2初等变换法(合同变换法) (3)1.3正交变换法(正交线性替换法) (7)2. 二次型化简在二次曲线上的应用 (11)2.1通过合同变换来化简 (11)2.2通过正交变换来化简 (13)参考文献 (15)实二次型化简及其在解析几何中的应用学生姓名:****** 学号:200950***** 数学与信息科学学院 数学与应用数学 指导教师:****** 职称:**摘 要:二次型是高等代数的重要内容之一,本文全面概述了化二次型为标准型的方法及其在有关二次曲线的实际例题中的应用.关键词:二次型;标准型;二次曲线;应用Simplification of Real Quadratic Form and its Applicationin Analytic GeometryAbstract: The second type is an important part of higher algebra, this comprehensive overview of the second type of approach for the standard and the actual curve in the second example of the application.Keywords: quadratic form; standard; quadratic curve; application引言二次型是线性代数中一个很重要的知识点.将实二次型化成标准型既是重点又是难点.我们知道,任何一个实二次型都唯一决定一个实对称矩阵,而实对称矩阵一定可以对角化.因此,每一个实二次型都可以化成标准型.二次型理论源于化二次曲线和二次曲面方程为标准形式的问题,故其理论在解析几何上有重要应用.1.实二次型化简方法在实二次型的化简中,我们常常会用到一些常见的方法,如:配方法,初等变换法正交变换法等.以下详细介绍这些方法. 1.1配方法[1]用配方法化二次型为标准型的关键是消去交叉项,分如下两种情形. 情形1 如果二次型12(,,,)n f x x x 含某变量例如1x 的平方项而其系数110a ,则集中二次型中含1x 的所有交叉项,然后与21x 配方,并作线性变换111112122n n n ny c x c c x y x y x =+++⎧⎪=⎪⎨⎪⎪=⎩ ,1(,1,2,,),j c R j n ∈= 得2112(,,)n f d y g y y =+ ,其中2(,,)n g y y 是2,,n y y 的二次型,对2(,,)n g y y 重复上述方法直到化二次型f 为标准型为止.情形2 如果二次型12(,,)n f x x x 不含平方项,即0(1,2,,)ii a i n == ,但含某 一项0()ij a i j ≠≠,则先做可逆线性变换,(1,2,,;,)i i jj i j k kx y y x y y k n k i j x y =+⎧⎪=-=≠⎨⎪=⎩ , 把f 化为一个含平方项2i y 的二次型,再借用情形1的方法化为标准型.注意 为了写出化二次型为标准形所用的可逆线性变换,对情形1中的线性变换应写出它的逆变换(即用i y 表示出i x ),再将化简过程中每一步的线性变换进行复合,得到总的线性变换.例1 用配方法化下列二次型为标准形,并写出所用的可逆线性变换,2212312121323(,,)3242f x x x x x x x x x x x =++++.解 用配方法有2211232232(2)32f x x x x x x x =++++[]22212313323(2)(2)32x x x x x x x x =++-+++2221232233(2)2x x x x x x x =++--- 令112322332y x x x y x y x=++⎧⎪=⎨⎪=⎩, 即112322332x y y y x y x y=--⎧⎪=⎨⎪=⎩, 得22222122331232()y y y y y y y y ---=-+.令1122333z y z y y z y=⎧⎪=+⎨⎪=⎩, 即1122333y z y z z y z=⎧⎪=-⎨⎪=⎩, 得2212f z z =-, 所用的可逆线性变换为112322333x z z z x z z x z=--⎧⎪=-⎨⎪=⎩, 即112233*********x z x z x z --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 这里111011001C --⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 因为10C =≠,故C 可逆. 1.2初等变换法(合同变换法)[ 2 ]用可逆线性变换X CY =化二次型'f X AX =为标准形,相当于对于对称矩阵A找一个可逆矩阵C ,使'C AC D =为对角矩阵,其中D 的形式如下00D λλ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭.由于可逆矩阵C 可以写成若干初等矩阵12,,,S P P P 的乘积,即12S C PP P = ,从而有'''2112S S P P P APP P D = ,12S EPPP C = .根据初等矩阵的有关性质(用初等矩阵对A 左乘或右乘,相当于对该矩阵做初等行变换或初等列变换),由上式可得到用初等变换法化二次型为标准形的步骤.首先,写出二次型f 的矩阵A ,并构造2n n ⨯矩阵A E ⎛⎫⎪⎝⎭.其次,对A 进行同步的初等行变换和初等列变换,把A 化成对角矩阵D ,并对E 施行与A 相同的初等列变换化为矩阵C ,此时'C AC D =.最后,写出可逆变换X CY =,化二次型为标准形'f Y DY =.例2 用初等变换法把下列二次型经过非退化线性变换化成标准形,并写出所作的非退化线性替换[3].123121323(,,)3f x x x x x x x x x =+-.解 123(,,)f x x x 的矩阵是110221302213022A ⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭, 用矩阵做同步的初等行变换和初等列变换,有(1)(2)1111101222213130022221313002222100100010010001001A E +⨯⎛⎫⎛⎫- ⎪⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎪⎪⎪⎛⎫=−−−−→ ⎪ ⎪ ⎪--⎝⎭ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(1)(2)11112130223102100110001+⨯⎛⎫- ⎪ ⎪ ⎪- ⎪⎪−−−−→ ⎪--⎪ ⎪ ⎪ ⎪ ⎪⎝⎭1(2)(1)()2+⨯-−−−−−→(3)(1)11(2)(1)()2110110111211010114401411001131110101022210011101011022001001001+⨯+⨯--⎛⎫⎛⎫⎛⎫- ⎪ ⎪⎪⎪ ⎪⎪---- ⎪⎪ ⎪-- ⎪ ⎪⎪---- ⎪ ⎪⎪−−−−→−−−−→ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3)(1)1+⨯−−−−→(3)(2)(4)(3)(2)(4)100100100111010100444011003003111111113222111111111222001001001+⨯-+⨯-⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪⎪⎪----- ⎪ ⎪ ⎪ ⎪⎪⎪--⎪⎪ ⎪−−−−−→−−−−−→ ⎪ ⎪⎪---⎪ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故1001004003D ⎛⎫⎪ ⎪=-⎪⎪⎝⎭,11321112001C ⎛⎫- ⎪ ⎪ ⎪=- ⎪⎪ ⎪ ⎪⎝⎭. 令X CY =,其中112233,X x Y y x y ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,得2221231231(,,)34f x x x y y y =-+. 所做的非退化线性变换X CY =即为112321233313212x y y y x y y y x y ⎧=-+⎪⎪⎪=+-⎨⎪=⎪⎪⎩. 注 记号写在箭头上方表示进行初等行变换,记号写在箭头下方表示进行列等行变换.如,(1)(2)3+⨯−−−−→表示第二行各元素的3倍加到第一行对应的元素上去,(3)(1)1+⨯−−−−→表示第一列各元素的1倍加到第三列对应的元素上去. 例3 用非退化的线性替换化二次型123121323(,,)4412f x x x x x x x x x =+-为标准 形.(合同变换法)[4]解 写出f 的矩阵A ,再作矩阵(,)A E ,且对其用合同变换和初等变换有022100224110424110(,)206010206010206010260010260001460001A E --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭42411042411011110140016022220441010012311--⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪→---→--- ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭, 取'11011022311P ⎛⎫ ⎪ ⎪=-⎪ ⎪-⎝⎭, 则'0100012P AP ⎪=- ⎪ ⎪⎝⎭,令X PY =,得222123412f y y y =-+. 1.3正交变换法(正交线性替换法)[5]用正交线性变换X CY =化二次型'f X AX =为标准形,相当于对于对称矩阵A 找一个正交矩阵C ,使'C AC D =为对角阵.而这是可以实现的,具体步骤如下 第一步,写出二次型f 的矩阵A ,第二步,求出A 的全部互不相等的特征值12,,,s λλλ ,它们的重数依次是12,,,s k k k 12()s k k k n +++= ,第三步,对每个i k 重特征值i λ,求方程()0i A E X λ-=的基础解系,得i k 个线性无关的特征向量.再把它们正交化、单位化,得i k 个两两正交的单位特征向量.因为12s k k k n +++= ,总共可得n 个两两正交的单位特征向量,第四步,把这n 个两两正交的单位特征向量构成正交矩阵C ,便有'C AC D =.注意 D 表示对角阵,对角线上的元素是A 的特征值,且D 中对角元的排列次序与C 中列向量排列次序相应.例4 求一个正交变换X CY =,把二次型121323222f x x x x x x =-++化为标准形. 解 第一步,二次型的矩阵为011101110A -⎛⎫⎪=- ⎪ ⎪⎝⎭,第二步,A 的特征多项式为1111011111111A E λλλλλλλλ-----=--=---- 2210111(1)(2)(1)(2)12λλλλλλλλ-=---=-+-=--+-. 求得A 的特征值为1232,1λλλ=-==,第三步,对应12λ=-,解方程(2)0A E X +=, 由2111012121011112000A E -⎛⎫⎛⎫ ⎪ ⎪+=-→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,得基础解系为1111ξ-⎛⎫⎪=- ⎪ ⎪⎝⎭,将1ξ单位化,得1111p -⎛⎫⎪=-⎪⎪⎭. 对应231λλ==,解方程()0A E X -=, 由111111111000111000A E ---⎛⎫⎛⎫ ⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,得基础解系23111,001ξξ-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,将23,ξξ正交化,取[]2323223322211111,111,0,0112201102ηξξξηξηξηη--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪====-=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 再将23,ηη单位化,得23111,202p p -⎛⎫⎛⎫⎪⎪==⎪⎪⎪⎪⎭⎭. 第四步,将1,23,p p p 构成正交矩阵123()0C p p p ⎛ == ⎝, 于是正交变换为1122330x y x y x y ⎛ ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎝, 且有2221232f y y y =-++. 例5 用正交线性替换化二次型22212,3112132233(,)244585f x x x x x x x x x x x x =+-+-+ 为标准形[6].解 所给二次型的矩阵为222254245A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,则2(10)(1)E A λλλ-=--,A 的特征值为12310,1λλλ===.当110λ=时,相应的其次线性方程组(10)0E A X -=的基础解系为1(1,2,2)η=--;当231λλ==时,相应的其次线性方程组()0E A X -=的基础解系为23(2,1,0),(2,0,1)ηη=-=.这样,123,,ηηη作为3R 的基,易知其格兰姆矩阵为900054045G ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,作矩阵(,)G E ,且进行合同变换,1100003900100(,)054010010000450010010G E ⎛⎫⎪ ⎪⎛⎫⎪ ⎪=-→→ ⎪ ⎪ ⎪ -⎝⎭⎝, 取可逆矩阵'1003000P ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎝, 则1003000P ⎛⎫ ⎪ = ⎪ ⎪ ⎪⎝⎭, 用P 和12,3,ηηη作新基12312,3(,,)(,)P αααηηη=,易知1122(,,)333α=--,2(α=,3α=.由上可知123,,ααα为3R 的标准正交基,则矩阵123(,,)U ααα=为正交矩阵,且具有'1011U AU ⎛⎫⎪= ⎪ ⎪⎝⎭,作正交线性替换X UY =,则得f 的标准形22212310f y y y =++. 2.二次型化简在二次曲线上的应用二次型理论源于化二次曲线和二次曲面方程为标准形的问题,其理论在解析几何上有重要应用.任一个实对称矩阵都可化为对角形,则任一条二次曲线可通过坐标变换化为标准形式.化二次型为标准形可通过合同变换和特征根两种方法,相应的二次曲线就可以通过合同变换和正交变换来化简. 2.1通过合同变换来化简[7]合同变换,几何中也叫仿射变换,实在不注重研究曲线几何性质的情况下用的一种方法,利用仿射变换化二次曲线为标准方程,使得化简、作图以及度量分类简捷地一起完成.例6 化简二次曲线方程22240x xy y x y -++-=. 解 因为2111321014412I -==-=≠-, 故该曲线为中心二次曲线.解方程组121(,)1021(,)202F x y x y F x y x y ⎧=-+=⎪⎪⎨⎪=-+-=⎪⎩, 得中心坐标为0,2x y ==,取(0,2)为新原点,作移轴''10001210011x x y y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则原方程变为22''''''''11121001001(1)010120124020210011120x x y y x x y y ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪--=-+-= ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭, 利用仿射变换的方法消去乘积项''x y ,任取一方向(11),设其共轭方向为(1)k , 则满足1112(11)0112k ⎛⎫- ⎪⎛⎫=⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭, 解得1k =-,作转轴'""'""x x yy kx y⎧=-⎪⎨=-⎪⎩, 方程即为22""""""11021101101(1)110101103402001001104x x y y x y ⎛⎫- ⎪⎛⎫--⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪-----=+-= ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭, 即22""11434x y -+=⨯. 故原二次曲线是一个椭圆. 2.2通过正交变换来化简[8]利用高等代数里所学知识:化一个二次型为标准形通常用特征根法.相应的将一条二次曲线化为标准型可以用正交变换,用它来化出的标准型是唯一的.有利于对其几何性质的研究.例7 化简二次曲线方程22240x xy y x y -++-=. 解 因为2111321014412I -==-=≠-, 故该曲线为中心二次曲线.解121(,)1021(,)202F x y x y F x y x y ⎧=-+=⎪⎪⎨⎪=-+-=⎪⎩, 得中心坐标0,2x y ==,取(0,2)为新原点,作移轴''10001210011x x y y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则原方程变为22''''''''11121001001(1)010120124020210011120x x y y x x y y ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪--=-+-= ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭, 求得矩阵112112B ⎛⎫- ⎪=⎪ ⎪- ⎪⎝⎭的特征值为 1231,22λλ==,对于132λ=,其单位正交的基础解系为-, 对212λ=,其单位正交的基础解系为, 作0001T ⎫⎪⎪⎪=⎪⎪ ⎪ ⎪⎝⎭, 由转轴公式'"'"11x x y T y ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 化为22""11883x y -+=⨯. 结束语经过多方面的查找资料,将关于二次型化简及其在解析几何中应用的内容作了比较系统的总结,并从中学到了很多东西,对二次型的有关内容有了更加深刻的理解.参考文献:[1] 北京大学数学系几何与代数教研室代数小组.高等代数[M ].北京:高等教育出版社,2003. [2] 李五明,张永金,张栋春.实二次型化成标准形的几种方法[J].和田师范专科学校学报:汉文综合版,2007.[3] 徐仲等,高等代数导教导学导考[M].西安:西北工业大学出版社,2004. [4] 潘懋元.新编高等教育学[M].北京:北京师范大学出版社,1996.[5] 同济大学应用数学系.线性代数(四版)[M].北京:高等教育出版社,2003. [6] 张禾瑞,郝鈵编.高等代数[M](第3版).北京:高等教育出版社,1983.[7] 北京大学数学系几何与代数教研室代数小组.高等代数[M ].北京:高等教育出版社,2000. [8] 江苏师范学院数学系《解析几何》编写组.解析几何[M ].北京:高等教育出版社,1998.。