集成运算放大器的运用————运算器
- 格式:docx
- 大小:15.39 MB
- 文档页数:6
集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。
本文将介绍一些集成运算放大器的应用。
一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。
在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。
二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。
集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。
例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。
三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。
集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。
例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。
四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。
集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。
例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。
五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。
集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。
第7章 集成运算放大器教学提示:本章首先介绍基本运算放大电路的构成、特点及分析方法;然后重点讨论了集成运算放大电路在基本运算、信号测量、信号处理和波形产生方面的应用;最后介绍了有关集成运放在使用时需注意的问题。
教学要求:通过本章学习,应能掌握集成运算放大电路的主要特点及基本分析和计算方法,并对集成运算放大电路在使用时需注意的问题有一定的了解。
7.1 集成运放简介运算放大器(简称运放)是具有高开环放大倍数并带有深度负反馈的多级直接耦合放大电路。
早期的运放是由分立器件(晶体管和电阻等)构成的,其价格昂贵,体积也很大。
在20世纪60年代中期,第一块集成运算放大器问世,其是将相当多的晶体管和电阻集中在一块硅片上而成的。
它的出现标志着电子电路设计进入了一个新时代。
由于集成运算放大器具有十分理想的特性,它不但可以作为基本运算单元完成加减、乘除、微分、积分等数学运算。
还在信号处理及产生等方面都有广泛的应用。
电子工程师们在电子电路设计时需要应用大量的集成运算放大器,这使得各种高性能、低价格的运放应运而生。
7.1.1 运算放大器的端子从处理信号的观点出发,运算放大器有三个端子,即反相输入端(用符号“-”表示)、同相输入端(用符号“+”表示)和输出端,如图7.1所示。
考虑到放大器要有直流电源才能工作,大多数集成运放需要两个直流电源供电,如图7.2所示。
图7.2中7,4两个端子由运放内部引出,分别连接到正电源+CC U 和负电源-EE U 。
运放的参考地点就是两个电源公共端——地。
图7.1 理想运算放大器 图7.2 理想运放的供电方式第7章 集成运算放大器 ·145··145·除了三个信号端和两个电源供给端以外,运算放大器还可能有几个供专门用途的其他端子,如频率补偿端和调零端等,这些端子的功能请读者自行分析。
7.1.2 理想运算放大器为了建立运算放大器的基本概念,下面先来介绍理想运算放大器。
模电设计性实验报告——集成运算放大器的运用之模拟运算电路重庆科技学院设计性实验报告学院:_电气与信息工程学院_ 专业班级: 自动化1102学生姓名: 罗讯学号: 2011441657实验名称: 集成运算放大器的基本应用——模拟运算电路完成日期:2013年 6月 20 日重庆科技学院学生实验报告集成运算放大器的基本应用——课程名称模拟电子技术实验项目名称模拟运算电路开课学院及实验室实验日期学生姓名罗讯学号 2011441657 专业班级自动化1102 指导教师实验成绩实验六集成运算放大器的基本应用——模拟运算电路一、实验目的1、研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、了解运算放大器在实际应用时应考虑的有些问题二、实验仪器1、双踪示波器;2、数字万用表;3、信号发生器三、实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
RF 100k1 5 4 R1 10k2 Ui 6 Uo3 U1 R2 9.1k 7图6-1 反相比例运算电路2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////RF 100kR1 10k Ui1 4 1 5 R2 20k 2 Ui2 6 Uo 3 U1 R3 6.2k 7图6-2 反相加法运算电路3) 同相比例运算电路图6-3(a)是同相比例运算电路。
RF 100k1 5 4 R1 10k 26 Uo 3R2 9.1k U1 7RF10k4 1 526 R2 Uo 3 Ui 10k U1 7(a)同乡比例运算 (b)电压跟随器图6-3 同相比例运算电路它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10KΩ,太小起不到保护作用,太大则影响跟随性。
集成运算放⼤器的应⽤实验报告集成运算放⼤器实验报告集成运算放⼤器是⼀种⾼性能多级直接耦合具有两个输⼊端、⼀个输出端的电压放⼤电路。
具有⾼增益、⾼输⼊阻抗低输出阻抗的特点。
通常,线性应⽤电路需要引⼊负反馈⽹络,构成各种不同功能的实际应⽤电路。
(a)µA741⾼增益运算放⼤器(b)LM324四运算放⼤器图2.4.2 典型的集成运放外引脚排列1. ⽐例、加减、微分、积分运算电路设计与实验1.1原理图(a) 反相⽐例运算电路 (b) 同相⽐例运算电路图1.1 典型的⽐例运算电路(a) 反相求和运算电路 (b) 同相求和运算电路图1.2 典型的求和运算电路(a) 单运放减法运算电路 (b) 双运放减法运算电路图1.3 典型的减法运算电路图1.4 积分电路图1.5 微分电路图 1.6 实际微分电路(PID)2.⽅波、三⾓波发⽣器2.1原理图图2.1 ⽅波、三⾓波发⽣器2.2理论分析(参照实验教材分析⼯作原理和周期、频率、幅度近似计算出以上结果) 2.2.1频率分析2.2.2幅度分析2.2.3幅度调整图2.2 ⽅波幅度通过R4、R5⽐例调整2.2.4减法器图2.3 减法器(交流正弦信号来⾃⽰波器)图2.4 积分器(⽅波信号可以来⾃⽰波器)图2.5 微分器(⽅波信号可以来⾃⽰波器)2.4.1 ⽐例、加减运算电路设计与实验由运放构成的⽐例、求和电路,实际是利⽤运放在线性应⽤时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。
⼀、实验⽬的1.掌握常⽤集成运放组成的⽐例放⼤电路的基本设计⽅法; 2.掌握各种求和电路的设计⽅法;3.熟悉⽐例放⼤电路、求和电路的调试及测量⽅法。
⼆、实验仪器及备⽤元器件(1)实验仪器(2)实验备⽤器件三、电路原理集成运算放⼤器,配备很⼩的⼏个外接电阻,可以构成各种⽐例运算电路和求和电路。
图2.4.3(a )⽰出了典型的反相⽐例运算电路。
依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输⼊电压之间的关系为 1f o i i R A R υυυυ==-2.4.1式中的“-”号说明电路具有倒相的功能,即输出输⼊的相位相反。
集成运算放大器的基本应用
集成运算放大器(Operational Amplifier,简称Op Amp)是一
种高增益、直流耦合的放大电路。
它广泛应用于电子电路中,具有非常重要的作用。
常见的集成运算放大器IC芯片有
LM741、LM358、LM324等。
以下是集成运算放大器的基本应用:
1. 比较器:将两个电压进行比较,输出高电平或低电平。
比较器具有电压转换和开关控制的功能,常用于电压检测、信号选择和自动控制等方面。
2. 增益放大器:将输入信号进行放大,输出信号比输入信号大。
这种电路可以放大微小信号,如传感器输出、电源噪声等。
3. 运算放大器:进行数学运算,如加减乘除、积分、微分和求反向比等。
这种电路通常用于信号处理、滤波、振荡和控制等方面。
4. 反馈电路:利用Op Amp的高增益和稳定性,通过反馈电路实现精确控制。
反馈电路包括正反馈和负反馈两种,应用广泛,如DC稳压电源、振荡器、电压跟随器和信号隔离器等。
5. 信号滤波:利用Op Amp的高增益和频率特性,设计高性能的RC滤波器和二阶滤波器。
这种电路可以提取出特定频率的
信号,去除噪声和干扰,应用于音频、通信和仪器等方面。
总之,集成运算放大器广泛应用于各种电子电路中,可以实现信号放大、滤波、比较和控制等多种功能,是电子工程师必不可少的工具。
实验报告实验名称:实验八集成运算放大器的运用——运算器系别:班号:实验组别:实验者姓名:学号:实验日期:实验报告完成日期:指导教师意见:目录二、实验原理 (3)三、实验仪器 (6)四、实验内容及数据 (6)1. 反相放大器 (6)2. 同相放大器 (8)3. 加法器 (10)4. 减法器 (12)5. 积分器 (13)五、实验总结 (14)一、实验目的1. 熟悉集成运算放大器的性能和使用方法2. 掌握集成运放构成基本的模拟信号运算电路二、实验原理集成运算放大器是一种高增益、高输入阻抗、低输出阻抗的直流放大器。
若外加反馈网络,便可实现各种不同的电路功能。
例如,施加线性负反馈网络,可以实现放大功能,以及加、减、微分、积分等模拟运算功能;施加非线性负反馈网络,可以实现乘、除、对数等模拟运算功能以及其他非线性变换功能。
本实验采用TL082型集成运算放大器,其管脚如图1所示。
注意:在使用过程中,正、负电源不能接反,输出端不能碰电源,接错将会烧坏集成运算放大器。
1、反相放大器:在理想的条件下,反相放大器的闭环电压增益为:1R RV V A F i O VF -==由上式可知:闭环电压增益的大小完全取决于电阻的比值R F /R 1。
电阻值的误差,将是测量误差的主要来源。
当取R F = R 1,则放大器的输出电压等于输入电压的负值,即:i i FO V V R R V -=-=1。
此时反相放大器起反向跟随器的作用。
2、同相放大器:在理想条件下,铜线放大器的闭环电压增益为:11R R V V A F i O VF +==3、电压跟随器:电路如图4所示,它是在同相放大器的基础上,当R1→∞时,Avf →1,同相放大器就转变为电压跟随器。
它是百分之百电压串联负反馈电路,具有输入阻抗高、输入阻抗低、电压增益接近1的特点。
图4中,由于反相端与输出端直接相连,当输入电压超过共模输入电压允许值时,则会发生严重的堵塞现象,为了避免发生这种现象,通常采用图5所示的电压跟随器改进电路。