《信号与系统》第七章 北京理工大学
- 格式:ppt
- 大小:3.62 MB
- 文档页数:52
本科实验报告实验名称:信号与系统实验实验一信号的时域描述与运算一、实验目的①掌握信号的MATLAB表示及其可视化方法。
②掌握信号基本时域运算的MATLAB实现方法。
③利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形常用的信号产生函数2.连续时间信号的时域运算-1-0.8-0.6-0.4-0.200.20.40.60.81Time(seconds)图1 利用向量表示连续时间信号-1-0.50.51t图 2 利用符号对象表示连续时间信号sin(t)对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
1)相加和相乘信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。
实验7 连续时间系统的建模与仿真(设计型实验)一、实验目的1) 掌握利用系统方框图模拟实际系统的分析方法2) 学习和掌握利用Simulink 仿真工具对连续时间系统的建模与仿真。
二、实验原理与方法连续时间系统的模型除了利用微分方程来描述之外,也可以借助方框图来模拟,模拟连续时间系统的基本单元有加法器、积分器和倍乘器,下图列出了连续时间系统的基本方框图单元,利用这些基本方框图单元即可组成一个完整系统。
加法器: 积分器:倍乘器Simulink 的Commonly Used Blocks 模块库中提供了上述三种基本运算单元的模块,sum 模块表示加法器,Integrator 模块表示积分器,Gain 模块表示倍乘器,此外Math Operations 模块库中的Add 模块也可用于实现信号的加减运算。
因此,根据系统的方框图可以方便地由Simulink 对连续时间信号进行建模,并利用Simulink 的强大功能进行一系列仿真。
除了运用基本运算单元构成连续时间系统,Simulink 还提供了其他的模型描述方法,例如根据连续时间系统的系统函数、零极点分布和状态方程,分别采用Simulink 的Continuous 模块库中的Transfer Fcn 模块、Zero-Pole 模块和State-Space 模块来描述系统。
三、实验内容(1) 已知由微分方程1)2(t)2)根据上述3种系统框图,分别采用Simulink的基本运算单元的模块创建系统的模型,并仿真实现系统的单位阶跃响应。
直接型级联型并联型(2) 已知一个三阶连续时间因果系统的系统函数为3257(s)554s H s s s +=+++,根据系统函数,采用simulink 创建系统模型,并仿真实现对输入(t)u(t 3)u(t)x =--的响应。
四、实验心得通过本次实验掌握了利用Simulink 仿真工具对连续时间系统进行建模、仿真的基本方法。
北理工信号课程设计一、课程目标知识目标:1. 理解并掌握信号与系统的基本概念,包括信号分类、基本信号及其性质;2. 学会使用数学工具描述和分析信号与系统的特性,如傅里叶变换、拉普拉斯变换等;3. 掌握线性时不变系统的特性,理解卷积积分及其在信号处理中的应用。
技能目标:1. 能够运用所学知识对实际信号进行处理和分析,如滤波、调制等;2. 能够设计简单的信号处理算法,并使用计算机仿真实现;3. 培养良好的实际操作能力,包括使用信号发生器、示波器等实验设备。
情感态度价值观目标:1. 培养学生对信号与系统学科的兴趣,激发学生探索未知、解决问题的热情;2. 培养学生的团队合作精神,提高沟通与协作能力;3. 增强学生的国防意识,使其认识到信号与系统在国防科技领域的重要应用。
本课程针对北理工高年级本科生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
在教学过程中,注重理论与实践相结合,以培养学生实际操作能力和创新精神为核心。
通过本课程的学习,使学生能够熟练运用所学知识解决实际问题,为后续相关课程和未来从事相关工作奠定坚实基础。
二、教学内容1. 信号与系统基本概念:信号分类、基本信号及其性质、信号的运算与变换;教材章节:第一章 信号与系统概述2. 数学工具描述与分析:傅里叶级数、傅里叶变换、拉普拉斯变换、Z变换;教材章节:第二章 傅里叶级数与变换,第三章 拉普拉斯变换与Z变换3. 线性时不变系统:系统的性质、卷积积分、差分方程;教材章节:第四章 线性时不变系统4. 信号处理与分析:滤波器设计、调制与解调、采样与重建;教材章节:第五章 信号处理技术,第六章 采样与重建5. 实践环节:使用信号发生器、示波器等设备进行信号处理实验;教材章节:第七章 信号与系统实验教学内容安排与进度:第一周:信号与系统基本概念第二周:傅里叶级数与傅里叶变换第三周:拉普拉斯变换与Z变换第四周:线性时不变系统第五周:滤波器设计与调制解调第六周:采样与重建第七周:实践环节第八周:复习与考核本教学内容根据课程目标,结合教材内容,科学系统地组织与安排。
北京理工大学信号与系统实验实验报告信号与系统实验报告姓名:肖枫学号:1120111431班号:05611102专业:信息对抗技术学院:信息与电子学院12实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB表示及其可视化方法。
2. 掌握信号基本时域运算的MATLAB实现方法。
3. 利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MATLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形10.80.60.40.2-0.2-0.4-0.6-0.8-1012345678910Time(seconds)图1 利用向量表示连续时间信号3sin(t)10.5-0.5-1-6-4-20246t图 2 利用符号对象表示连续时间信号常用的信号产生函数函数名功能函数名功能 heaviside 单位阶跃函数 rectpuls 门函数 sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波 sinc sinc函数 sawtooth 周期锯齿波或三角波 exp 指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MATLAB 表示及其可视化方法。
2. 掌握信号基本时域运算的MATLAB 实现方法。
3. 利用MATLAB 分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MATLAB 表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB 中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MATLAB 并不能处理连续时间信号,在MATLAB 中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10; >> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t); >> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形012345678910-1-0.8-0.6-0.4-0.200.20.40.60.81Time(seconds)图1 利用向量表示连续时间信号-6-4-20246-1-0.50.51t图 2 利用符号对象表示连续时间信号sin(t)常用的信号产生函数 函数名 功能 函数名 功能 heaviside 单位阶跃函数 rectpuls 门函数 sin 正弦函数 tripuls 三角脉冲函数 cos 余弦函数 square 周期方波sinc sinc 函数 sawtooth 周期锯齿波或三角波 exp指数函数2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
目录目录 (1)复习题一 (2)答案 (4)复习题二 (8)答案 (13)复习题三 (25)答案 (40)复习题四 (71)答案 (72)复习题五 (74)答案 (81)复习题六 (96)答案 (97)复习题七 (99)复习题八 (108)复习题一1.1 选择题(每小题可能有一个或几个正确答案,将正确的题号填入[ ]内) 1.f (5-2t )是如下运算的结果————————( ) (1)f (-2t )右移5 (2)f (-2t )左移5 (3)f (-2t )右移25 (4)f (-2t )左移251.2 是非题(下述结论若正确,则在括号内填入√,若错误则填入×) 1.偶函数加上直流后仍为偶函数。
( )2. 不同的系统具有不同的数学模型。
( )3. 任何信号都可以分解为偶分量与奇分量之和。
( ) 4.奇谐函数一定是奇函数。
( ) 5.线性系统一定满足微分特性 ( )1.3 填空题1.=⋅t t cos )(δ=+t t 0cos )1(ωδ=-⋅)(cos )(0τωδt t=--)2()cos 1(πδt t=--⎰∞∞-dt t t )2()cos 1(πδ ⎰+∞∞-=⋅tdt t cos )(δ⎰+∞∞-=tdt t 0cos )(ωδ ⎰∞-=td ττωτδ0cos )(⎰+∞∞-=+tdt t 0cos )1(ωδ⎰∞-=+td ττωτδ0cos )1(2.=⋅-at e t )(δ=⋅-t e t )(δ⎰∞--=td e ττδτ)(⎰∞∞--=--dt t e t t )1(][22δ⎰∞∞--=dt e t at )(δ1.4 简答题1.画出题图一所示信号f (t )的偶分量f e (t )与奇分量f o (t )。
图一2.)(t f 如图二所示,试画出)(t f 的偶分量)(t f e 和奇分量()o f t 的波形。
t图二3.某线性时不变系统在零状态条件下的输入e (t )与输出r (t )的波形如题图三所示,当输入波形为x (t )时,试画出输出波形y (t )。
第一章习题1.函数式x(t)=(1-)[u(t+2)-u(t-2)]cos所表示信号的波形图如图()(A) (B) (C) (D)2 .函数式的值为()( A )0 (B )1 ( C ) 2 (D )3 .已知x(3-2) 的波形如图1 所示,则x (t )的波形应为图()图1 (A)(B)(C)(D)4.已知信号x[n]波形如图2,信号的波形如图()图2 (A)(B)(C) (D)5 .卷积积分等于()(A)(B)-2 (C)(D)-2 (E)-26 .卷积和x[n] u[n-2] 等于()( A )( B )( C )( D )( E )7 .计算卷积的结果为()( A )(B )( C )(D )8 .已知信号x(t) 的波形如图3 所示,则信号的波形如图()图3 (A)(B)(C) (D) 题九图9 .已知信号x (t )如图所示,其表达式为()(A) (B)(C) (D)10 .已知x(t)为原始信号,y(t)为变换后的信号,y(t) 的表达式为()( A )(B )( C )(D )11 .下列函数中()是周期信号( A )(B )( C )( D )( E )12 .函数的基波周期为()。
( A )8 (B )12 (C )16 ( D )2413 .某系统输入—输出关系可表示为,则该系统是()系统。
( A )线性( B )时不变( C )无记忆(D )因果( E )稳定14 .某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆(D )因果( E )稳定15.某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆(D )因果( E )稳定16.某系统输入—输出关系可表示为,则系统为()系统。
( A )线性( B )时不变( C )无记忆(D )因果( E )稳定17 .某系统输入—输出关系可表示为,则系统为()系统( A )线性( B )时不变( C )无记忆(D )因果()稳定18 .下列系统中,()是可逆系统(A)y[n]=nx[n] (B)y[n]=x[n]x[n-1] (C)y(t)=x(t-4) (D)y(t)=cos[x(t)] (E )y[n]=19 .如图系统的冲激响应为()( A )( B )( C )(D )20 .某系统的输入x (t )与输出y (t )之间有如下关系,则该系统为()(A)线性时变系统(B)线性非时变系统(C)非线性时变系统(D)非线性非时变系统21 .一个LTI 系统在零状态条件下激励与响应的波形如图,则对激励的响应的波形()(A) (B) (C) (D)22. 线形非时变系统的自然(固有)响应就是系统的()( A )零输入响应( B )原有的储能作用引起的响应( C )零状态响应(D )完全的响应中去掉受迫(强制)响应分量后剩余各项之和23 .零输入响应是()( A )全部自由响应( B )部分零状态响应( C )部分自由响应( D )全响应与强迫响应之差24 .下列叙述或等式正确的是()(A) (B)(C)若,则(D)x(t) 和h(t) 是奇函数,则是偶函数25.设是一离散信号,,,则下列说法( )是正确的(A) 若是周期的,则也是周期的(B) 若是周期的,则也是周期的(C) 若是周期的,则也是周期的(D) 若是周期的,则也是周期的26 .有限长序列经过一个单位序列响应为的离散系统,则零状态响应为()(A) (B)(C) (D)第二章习题1. 某LTI 连续时间系统具有一定的起始状态,已知激励为x (t )时全响应,t 0 ,起始状态不变,激励为时,全响应y (t )=7e +2e ,t 0 ,则系统的零输入响应为()( A )( B )( C )(D )2 .微分方程的解是连续时间系统的()(A) 零输入响应(B) 零状态响应(C) 自由响应(D) 瞬态响应(E)全响应3 .单位阶跃响应是()(A) 零状态响应(B) 瞬态响应(C) 稳态响应(D) 自由响应(E) 强迫响应4 .已知系统如图所示,其中h (t) 为积分器,为单位延时器,h (t) 为倒相器,则总系统的冲激响应h (t) 为()( A )( B )( C )(D )5 .如图所示电路以为响应,其冲激响应h (t) 为()(A) (B)(C) (D)6. 某LTI 系统如图所示,该系统的微分方程为()(A ) (B)(C) (D)7 .已知系统的微分方程, 则求系统单位冲激响应的边界条件h(0 ) 等于()(A) -1 (B) 0 (C) 2 (D) +18 .已知系统的微分方程则系统的单位冲激响应为()(A) (B) (C) (D)9 .已知描述系统的微分方程和初始状态0 值如下;y (0 ) =2 ,, , ,则初始条件0 值为()(A) (B)(C) (D)10 .已知描述系统的微分方程和初始状态0 值如y(t) +6 y (t) +8 y (t) =x (t) +2x (t) ,y (0 ) =1 ,y (0 ) =2 ,x (t) =(t )则初始条件0 值为()。