半导体载流子浓度
- 格式:ppt
- 大小:3.00 MB
- 文档页数:18
四、杂质半导体的载流子浓度1、半导体的分类 以材料分 以能带结构分 以纯度分 以杂质浓度分 元素半导体 化合物半导体(III-V, II-VI, 多元) 直接带隙半导体 间接带隙半导体 本征半导体 杂质半导体impurity atoms, Boltzemann Statistics) 重掺杂半导体(impurity band, Fermi Statistics) (单)晶态半导体轻掺杂半导体(no interaction between以晶体结构分 多晶半导体 非晶半导体2、杂质能级被电子(或空穴)占据的几率 • 单电离杂质 • 浅能级杂质III、V族 • 轻掺杂ND: 施主杂质浓度 --- 已电离nD+; 未电离nD; nD+ + nD = ND NA: 受主杂质浓度 --- 已电离pA-; 未电离pA; p A - + pA = N A 能带中的一个能级:可以容纳自旋相反的两个电子; 杂质能级:只能容纳一个电子,自旋任意; 离化施主能级只能接受一个电子因此:电子占据施主能级的几率: 空穴占据受主能级的几率: 当: ED-EF>>koT, fD(E) ~ 0, nD ~0, nD+ ~NDgD =2, gA = 4当: ED-EF =0, fD(E) = 2/3, nD =2ND/3, nD+ ~ND/3 当: EF-ED >> koT, fD(E) ~ 1, nD ~ ND, nD+ ~0 1、施主能级上的电子浓度: 2、受主能级上的空穴浓度: 3、电离施主浓度: 4、电离受主浓度:3、电中性条件 半导体中 正电荷数 = 负电荷数本征半导体: p = n 杂质半导体: p+nD+ = n+pA离化的施主、受主是固定的,不参与导电 电子、空穴分别位于导带、价带,参与导电 p + ND –nD = n + NA - pA 本征 n type p type p=n n = p + N D – nD p = n + NA -pA4、n型半导体的载流子浓度(只含一种施主杂质)掺杂有施主杂质的硅样品中,电子浓度n随温度的变化低温杂质电离区:低温弱电离 --- 中间 电离区; 杂质饱和电离区:强电离 --- 过渡区; 高温本征激发区:高温本征激发; 0K n=0 p=0 无本征激发 无杂质电离 300K 600Kn = ND n = p = ni p = ni2/ND 本征激发 杂质全部电离由于杂质的电离能比半导体的禁带宽度小很多,杂质电 离和本征激发发生在不同的温度范围,从而载流子在不同 温度的来源不同。
半导体载流子浓度计算公式(二)半导体载流子浓度计算公式前言半导体载流子浓度是指在半导体材料中的电子(n型半导体)或空穴(p型半导体)的浓度。
准确计算半导体载流子浓度对于电子学领域的研究和应用至关重要。
本文将介绍几个常用的半导体载流子浓度计算公式,并给出相关的例子说明。
1. 等效载流子浓度(Intrinsic Carrier Concentration)等效载流子浓度是指在杂质和外加电场都不影响半导体材料时的载流子浓度。
根据经验公式,等效载流子浓度的计算公式如下:[](其中,[](例子:假设某半导体材料的禁带宽度为,在室温下(300K),计算等效载流子浓度。
根据上述公式,代入相应的数值计算可得: []( 2. n型半导体载流子浓度(Electron Concentration in n-type Semiconductor)n型半导体载流子浓度是指在n型半导体中电子的浓度。
根据斯文特方程,n型半导体载流子浓度的计算公式如下:[](其中,[](例子:假设某n型半导体的等效载流子浓度为1e10/cm^3,在室温下(300K),费米能级与内禀能级的差为,计算n型半导体载流子浓度。
根据上述公式,代入相应的数值计算可得: [](3. p型半导体载流子浓度(Hole Concentration in p-type Semiconductor)p型半导体载流子浓度是指在p型半导体中空穴的浓度。
根据斯文特方程,p型半导体载流子浓度的计算公式如下:[](其中,[](例子:假设某p型半导体的等效载流子浓度为5e12/cm^3,在室温下(300K),费米能级与内禀能级的差为,计算p型半导体载流子浓度。
根据上述公式,代入相应的数值计算可得: [](总结本文介绍了常用的半导体载流子浓度计算公式,并通过例子进行了解释说明。
这些公式在半导体材料的研究和应用中具有重要的意义,帮助我们准确计算半导体中电子和空穴的浓度,为电子学领域的发展做出贡献。
半导体材料在电子学和光学器件领域中具有非常重要的地位,而半导体载流子浓度与电导率之间的关系是决定半导体材料性能的重要因素之一。
在本文中,我们将从半导体材料的基本特性和电导率的定义出发,深入探讨半导体载流子浓度与电导率的关系,帮助读者更全面地理解这一重要的物理概念。
一、半导体材料的基本特性半导体是介于导体和绝缘体之间的材料,其电导率介于导体和绝缘体的电导率之间。
半导体材料的电导率受到两种载流子的影响,即自由电子和空穴。
在纯净的半导体晶体中,自由电子和空穴的浓度几乎相等,因此其电导率较低。
然而,通过掺杂或施加外加电压,可以改变半导体材料中的载流子浓度,从而改变其电导率。
二、载流子浓度与电导率的关系1. 载流子浓度对电导率的影响载流子浓度是半导体材料中自由电子和空穴的数量,它直接影响着半导体材料的电导率。
当半导体材料中的载流子浓度较低时,由于自由电子和空穴的数量有限,它们在外加电场的作用下移动的速度较慢,因此半导体材料的电导率较低。
当半导体材料中的载流子浓度较高时,自由电子和空穴的数量增多,它们在外加电场的作用下移动的速度加快,因此半导体材料的电导率也随之增大。
2. 掺杂对载流子浓度的影响通过向半导体材料中引入掺杂物,可以有效地改变半导体材料中的载流子浓度。
N型半导体是指在半导体晶体中掺杂了大量的施主杂质,使得半导体材料中的自由电子浓度远远大于空穴浓度。
相反,P型半导体是指在半导体晶体中掺杂了大量的受主杂质,使得半导体材料中的空穴浓度远远大于自由电子浓度。
三、个人观点和理解从上述分析可以看出,半导体载流子浓度与电导率之间存在着密切的关系。
在实际的半导体器件中,通过精确控制半导体材料中的载流子浓度,可以实现对器件电性能的精确调控,从而满足不同应用场景的需求。
深入理解半导体载流子浓度与电导率的关系对于半导体器件的设计和制造具有重要的意义。
四、总结与回顾在本文中,我们从半导体材料的基本特性出发,探讨了半导体载流子浓度与电导率的关系。