胶体的稳定性和聚沉作用
- 格式:doc
- 大小:49.46 KB
- 文档页数:6
8.4 胶体的稳定性和聚沉作用8.4.1 溶胶的稳定根据胶体的各种性质。
溶胶稳定的原因可归纳为:(1) 溶胶的动力稳定性胶粒因颗粒很小,布朗运动较强,能克服重力影响不下沉而保持均匀分散。
这种性质称为溶胶的动力稳定性。
影响溶胶动力稳定性的主要因素是分散度。
分散度越大,颗粒越小,布朗运动越剧烈,扩散能力越强,动力稳定性就越大,胶粒越不溶易下沉。
此外分散介质的粘度越大,胶粒与分散介质的密度差越小,溶胶的动力稳定性也越大,胶粒也越不溶易下沉。
(2) 胶粒带电的稳定作用下图表示的是一个个胶团。
蓝色虚线圆是扩散层的边界,虚线圆以外没有净电荷,呈电中性。
因此,当两个胶团不重迭时,如左图,它们之间没有静电作用力,只有胶粒间的引力,这种引力与它们之间距离的三次方成反比,这和分子之间的作用力(分子之间的作用力与分子之间距离的六次方成反比)相比,是一种远程力,这种远程力驱使胶团互相靠近。
当两个胶团重迭时,如右图,它们之间就产生静电排斥力。
重叠越多,静电排斥力越大。
如果静电排斥力大于胶粒之间的吸引力,两胶粒相撞后又分开,保持了溶胶的稳定。
胶粒必须带有一定的电荷才具有足够的静电排斥力,而胶粒的带电量与ζ电势的绝对值成正比。
因此,胶粒具有一定的ζ电势是胶粒稳定的主要原因。
(3) 溶剂化的稳定作用物质和溶剂之间所起的化合作用称为溶剂化,溶剂若为水,则称水化。
憎液溶胶的胶核是憎水的,但它吸附的离子都是水化的,因此增加了胶粒的稳定性。
由于紧密层和分散层中的离子都是水化的,这样在胶粒周围形成了水化层。
实验证明,水化层具有定向排列+ + ++ ++ + + - - -- - -- - 胶核 + + + + + + + + - - - - - - - - 胶核结构,当胶粒接近时,水化层被挤压变形,它有力图恢复定向排列结构的能力,使水化层具有弹性,这成了胶粒接近时的机械阻力,防止了溶胶的聚沉。
以上影响溶胶稳定的三种因素中,尤以带电因素最重要。
胶体稳定的主要原因
胶体之所以具有较大的稳定性,最主要的原因就是胶粒带有电荷,一般同种胶粒带同号的电荷,因而互相排斥,阻止了它们的互相接近,使胶粒很难聚集成较大的粒子而沉降。
此外,吸附层中的电位离子和反离子都能水化,从而在胶粒周围形成一个水化层,阻止了胶粒之间的聚集,阻止胶粒和带相反电荷离子相结合,因而胶体溶液具有动力稳定性。
使胶体聚沉的方法很多,主要有:(1)加入少量电解质,增加胶体溶液中离子的总浓度,使带电荷的胶粒容易吸引带相反电荷的离子,从而消除带同性电荷的胶粒相斥作用,胶粒可以互相碰撞,有利聚沉。
例如,Fe(OH)3胶核表面吸附了FeO+离子,扩散双电层中的反离子主要是Cl-,当加入Na2SO4时,SO42-也能进入吸附层,减少了胶粒所带电荷,使之容易聚沉。
(2)两种带相反电荷的胶体溶液,以适当的比例混合,可以互相电性中和,发生聚沉。
例如明矾净水,Al(OH)3溶胶和天然水中带有负电的胶态杂质中和,相互沉淀。
(3)加热可促使胶体沉降。
由于加热能增加胶粒的运动速度,因而增加胶粒的互相碰撞机会,同时也降低胶核对离子的吸附作用,使胶粒在碰撞时可聚集沉降。
例如Fe(OH)3胶体,加热即可发生Fe(OH)3沉淀。
胶体聚沉的三个条件胶体聚沉是指在胶体溶液中,胶体粒子之间发生相互作用,导致粒子聚集并沉降的过程。
胶体聚沉的三个条件包括:稳定性降低、相互作用增强和聚集速率加快。
1. 稳定性降低稳定性是指胶体溶液中胶体粒子保持分散状态的能力。
当稳定性降低时,胶体粒子之间的排斥力减弱,使得粒子更容易发生聚集和沉降。
1.1 pH值变化溶液中的酸碱度可以影响胶体颗粒表面电荷的变化,进而影响颗粒之间的静电排斥力。
当pH值发生改变时,会导致电荷中和或重组,使得静电排斥力减小或消失。
这样一来,颗粒之间就会更容易发生吸引力,并开始聚集。
1.2 温度变化温度对于溶液中颗粒之间相互作用的强度有很大影响。
随着温度升高,溶液中的颗粒热运动加剧,使得胶体粒子之间的吸引力增强。
这种增强的吸引力会导致胶体粒子更容易聚集并沉降。
1.3 盐浓度变化溶液中的盐浓度可以改变溶液中离子的浓度,从而影响胶体粒子表面电荷的分布。
当盐浓度升高时,离子会与胶体粒子表面上的电荷相互作用,减弱电荷效应。
这样一来,颗粒之间的静电排斥力减小,使得聚集和沉降更容易发生。
2. 相互作用增强相互作用是指胶体溶液中颗粒之间发生的各种力量和作用方式。
当相互作用增强时,胶体粒子之间的吸引力或排斥力增大,导致更多颗粒聚集并沉降。
2.1 范德华力范德华力是指非极性分子或原子之间由于电荷不均匀而产生的吸引力。
在胶体溶液中,范德华力可以使非极性胶体粒子之间发生吸引作用,促进聚集和沉降。
2.2 双层电荷作用双层电荷是指胶体粒子表面上的电荷分布情况。
当胶体溶液中的离子浓度或pH值发生变化时,会导致双层电荷的分布发生改变。
这种改变可以增强或减弱胶体粒子之间的静电相互作用,从而影响聚集和沉降的程度。
2.3 氢键和离子键氢键和离子键是一种较强的化学键,能够在胶体溶液中产生较强的吸引力。
当溶液中存在适当的氢键供体和受体或离子配对时,这些键能够促进胶体颗粒之间的相互作用并导致聚集沉降。
3. 聚集速率加快聚集速率是指胶体粒子聚集并沉降的速度。
加入电解质使胶体聚沉的原因电解质是指在溶液中能够电离成离子的物质。
胶体是一种介于溶液和悬浮液之间的混合物,由微细颗粒和分散介质组成。
当电解质加入到胶体溶液中时,会发生一系列的反应和相互作用,导致胶体聚集和沉淀。
下面将详细介绍加入电解质使胶体聚沉的原因。
1.破坏胶体的稳定性:胶体稳定性是指胶体溶液中微粒分散状态的能力。
胶体粒子通过表面电荷的存在而呈现出相互间斥的效果,防止了粒子之间的聚集和沉降。
当电解质加入到胶体溶液中时,会与胶体粒子上的电荷发生反应,中和其表面电荷。
这使得胶体微粒失去相互排斥的作用,从而导致聚集和沉淀。
2.提供吸引力:当电解质加入胶体溶液中时,其中的离子会与溶液中的极性分子发生吸引作用。
这种吸引力有助于胶体颗粒之间的聚集和沉降。
电解质的加入可以增加溶液中的离子浓度,从而增加离子间的相互作用力。
这些吸引力会克服胶体粒子间的斥力,使其聚集并沉淀下来。
3.形成电双层:胶体颗粒在溶液中会带有表面电荷,形成电双层。
电解质加入后,其中的离子会与胶体颗粒上的电荷相互作用,进一步增加双层的厚度。
这种厚度的增加会导致胶体颗粒之间的相互排斥力降低,从而促进其聚集和沉淀。
4.中和胶体微粒本身的电荷:胶体颗粒在溶液中带有电荷,这些电荷对粒子的相互作用和分散状态起着重要的稳定性作用。
当电解质加入胶体溶液中时,其中的离子会与胶体颗粒上的电荷相互作用,导致胶体粒子表面电荷的中和或屏蔽。
中和或屏蔽后,胶体粒子之间的排斥力减弱,使其更容易聚集和沉淀。
总之,加入电解质会破坏胶体稳定性,提供吸引力,形成电双层,中和胶体微粒的电荷,从而导致胶体聚集和沉淀。
这些过程是通过改变胶体颗粒表面电荷、增加离子浓度和改变粒子间相互作用来实现的。
加入电解质使胶体聚沉的原因是多方面的,其具体结果及过程取决于胶体粒子的性质、电解质的种类和浓度、溶液条件等因素。
胶体粒子的结构与胶体的聚沉一,胶体的结构以AgI胶体为例说明胶体的形成及结构:1.胶核及吸附①胶核的形成若将稀溶液与KI稀溶液混合后,将发生如下的化学反应:生成m个AgI分子聚集成直径为1nm~100nm范围内的微晶粒子是分散质的核心,称之为胶核.②胶核的选择性吸附体系中有多种离子,如等,胶核吸附何者实验表明胶核选择性吸附与其组成有关,浓度较大的离子,例如制备AgI时,如果KI过量,胶核就优先吸附了n个而带负电荷,反之,若过量,则吸附了n个而带正电荷.③反离子的分布与体系中的胶核所带电荷电性相反的离子称为反离子,如KI过量时的或过量时的就是反离子,体系中的反离子受到两种相反的作用力.静电作用力:由于反离子带有与胶核表面电荷电性相反的电荷,所以反离子与胶核间将产生静电作用,使反离子尽量靠近胶核分布.分子热运动:反离子在不停地运动之中,这种运动驱使反离子趋向均匀分布.静电作用和分子热运动共同作用的结果,使体系反离子按一定的梯度分布,即自胶核表面向外,单位体积的反离子数目越来越少.2.胶粒与胶团靠近胶粒表面的n-x个反离子,由于受到较强的静电作用,因而较紧密地束缚在胶核周围,与胶核表面吸附的离子共同组成吸附层,吸附层与胶核构成胶粒.胶粒与扩散层包括在一起称为胶团.较外层的x个反离子,由于受到静电作用力很弱,很疏松地分布在胶粒的周围,称为扩散层.从胶团的结构可知,由于吸附层内离子或离子数目少于或,因此胶粒是带电的,但整个胶团是电中性的.由于扩散层并不与胶粒一起运动,因此,在外电场作用下,胶粒作为一个整体而向某一电极移动,而扩散层的离子移向另一电极.二,胶体的稳定性与聚沉1.胶体的稳定性从理论上讲,胶体是热力学不稳定体系,胶粒有相互聚集成大颗粒而沉降析出的趋势.然而实际上经过纯化的胶体往往可以保存数日甚至更长时间也不会沉降析出.其原因主要有以下两点:①胶粒的静电作用同一体系胶粒带有同种电荷,相互排斥,阻止了胶粒的靠近,聚集.②水化膜的保护作用胶粒中的吸附离子和反离子都是水化的(即离子外围包裹着水分子),所以胶粒是带水化膜的粒子.水化膜犹如一层弹性隔膜,起到了防止运动中的胶粒在碰撞时相互聚集变大的作用. 2.胶体的聚沉胶体的稳定性是相对的,是有条件的.只要减弱或消除使胶体稳定的因素,就能使胶体胶粒聚集成较大的颗粒而沉降,这种使胶粒聚集成较大颗粒而沉降的现象称为聚沉.(1)电解质对胶体的聚沉作用在胶体体系中,加入少量电解质后,增加了体系中离子的浓度,将有较多的反离子挤入吸附层,从而减少甚至完全中和了胶粒所带的电荷,使胶粒之间的相互斥力减少甚至丧失,导致胶粒聚集合并变大,最终从胶体中聚沉下来.聚沉规律有以下两点:①电解质对胶体的聚沉作用,主要是由与胶粒电性相反的离子引起的,这种离子的价数越高,其聚沉值越大.②同价离子的聚沉能力虽相近,但也略有不同,半径大的离子聚沉能力强.(2)胶体的相互聚沉作用将两种带相反电荷的胶体以适当的比例混合也会发生聚沉.如所带电荷相互抵消,形成较大颗粒,产生聚沉.由蛋白质离心想到的一种或几种物质分散在另一种介质中所形成的体系称为分散系。
胶体稳定性简介胶体稳定性一、胶体的分类所谓胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,其值通常在1nm—100nm之间,这是一种高度分散的多相不均匀体系。
按分散剂的不同可分为气溶胶、固溶胶、液溶胶;按分散质的不同可分为粒子胶体、分子胶体。
二、胶体的稳定及不稳定性胶体因质点很小,强烈的布朗运动使它不致很快沉降,故具有一定的动力学稳定性;另一方面,疏液胶体是高度分散的多相体系,相界面很大,质点之间有强烈的聚结倾向,所以又是热力学不稳定体系。
一旦质点聚结变大,动力学稳定性也随之消失。
因此,胶体的聚集稳定性是胶体稳定与否的关键。
三、双电层与zeta电位由于分散粒子表面带有电荷而吸引周围的反号离子,这些反号离子在两相界面呈扩散状态分布而形成扩散双电层。
根据双电层理论可将双电层分为Stern层和扩散层。
当分散粒子在外电场的作用下,稳定层与扩散层发生相对移动时的滑动面即是剪切面,该处对远离界面的流体中的某点的电位称为Zeta电位。
即Zeta电位是连续相与附着在分散粒子上的流体稳定层之间的电势差。
四、聚集沉降理论影响因素起聚沉作用的主要是电荷与胶体相反的离子(称为反离子)。
反离子的价数越高,则聚沉效率越高,聚沉值越低。
一价反离子的聚沉值约为25~150,二价的为0.5~2,三价的为0.01~0.1。
聚沉值大致与反离子价数的六次方成反比,这称为舒尔茨-哈代规则。
五、胶体稳定性疏液胶体的稳定性理论通称DLVO理论。
此理论的出发点是:胶体质点间因范德瓦耳斯力而相互吸引,质点在相互接近时又因双电层的重叠而产生排斥作用,胶体的稳定程度取决于上述两种作用的相对大小。
DLVO理论计算了各种形状质点之间的范德瓦耳斯吸引能与双电层排斥能随质点间距离的变化。
在质点相互接近的过程中,如果在某一距离上质点间的排斥能大于吸引能,胶体将具有一定的稳定性;若在所有距离上吸引皆大于排斥,则质点间的接近必导致聚结,胶体发生聚沉。
胶体的稳定性名词解释胶体的稳定性胶体是分散系的一类。
它在一定条件下能长期存在而不沉淀、不分层、保持其原有状态,这个性质称为胶体的稳定性。
溶液中胶粒所带电荷与溶液中离子所带电荷相反,整个胶体带同种电荷,因此胶粒本身所带电荷等于整个胶体所带的电荷,整个胶体即为正电荷,如果胶粒带有异种电荷时,胶体就不稳定。
常见的胶体如蛋白质、淀粉、乳浊液等。
稳定性和胶体的分散质有关,也与胶体粒子的大小和形状有关,越小的胶粒,稳定性越高。
胶体粒子的稳定性不仅受到它本身结构的影响,而且还受到外界环境条件变化的影响。
胶体的稳定性的强弱可以用粘度来衡量。
测定方法: 1)毛细管法:将样品放入管内并使之充满液体,然后再逐滴加入毛细管中,当悬浮液呈现浑浊时,继续加入毛细管,直至出现明显的颜色分层时,则该悬浮液的浓度最大; 2)薄膜覆盖法:将试样制成平板,将一张薄膜覆盖在平板上,用另一张薄膜盖在上面,使二者连成一个封闭体系。
待封闭体系自行凝固,静置片刻后取下,观察到有无色分层。
这两种方法都需要仪器设备。
乳浊液的聚沉或絮凝乳浊液是由许多小液滴所组成的。
它们的大小通常是几十微米至几百微米,有时还会超过一千微米。
由于其表面积大,对电解质有很强的吸附力,因而不易沉降。
胶体的聚沉或絮凝作用,就是利用胶体粒子大小的差别。
当颗粒小于100nm时,它们的直径大约在几百纳米左右。
当颗粒大于100nm 时,直径往往大于1000nm。
当粒子表面被电解质所包围,即具有胶粒电性时,这些微粒对电解质起了反吸附作用,使胶体脱稳。
当粒子所带的电荷与电解质所带的电荷相反,胶体也会从溶液中析出。
盐析、晶种法、分子筛和硅胶分子筛等都是可用的方法。
加入电解质的目的,就是使溶液中的电解质聚集,形成均匀分散的胶粒,然后经过聚沉或絮凝过程将胶粒沉淀,分离出来。
除了利用胶体粒子的聚沉或絮凝作用外,电泳、静电沉淀、阳极溶出、磁性分离、选择性沉淀、离子交换以及透析等,也都可以应用。
高分子溶液的粘度由于高分子溶液粘度较大,沉降速度较慢,若不加入某种物质,可使高分子溶液稳定在某一低的高度,在这个位置上,不论搅拌或加入什么物质,高分子溶液的粘度不再发生显著变化,这种现象叫做高分子溶液的稳定性。
胶体的稳定性和聚沉憎液溶胶属热力学不稳定体系,有集结长大以至于聚沉的趋势。
但在短时间内甚至在相当长时间内(对某些特殊的溶胶如金溶胶),憎液溶胶却能稳定存在。
1.溶胶的稳定性除布朗运动外,溶胶的稳定性还与下面两个因素有关。
(1).胶粒的电性:带电的胶粒由于胶粒间的范德华力而相互吸引,而相同电荷的斥力又将使之分开。
胶粒是否稳定,取决于这两种相反的力的相对大小。
这也是20世纪40年代由Derjaguin、Landan、Verwey、Overbeek等人提出的溶胶稳定性理论(通常称为DLVO理论)的主要点。
(2).溶剂化作用:溶剂化作用降低了胶粒的表面能,同时溶剂分子把胶粒包围起来,形成一具有弹性的水合外壳。
当胶粒相互靠近时,水合外壳因受到挤压而变形,但每个变形胶团都力图恢复其原来的形状而又被弹开。
可见,水合外壳(溶剂化层)的存在起着阻碍聚结的作用。
综上所述:分散相粒子的带电、溶剂化作用、布朗运动是憎液溶胶三个最重要的稳定因素。
凡是能使上述稳定因素遭到破坏的作用,皆可以使溶胶聚沉2.溶胶的聚沉溶胶中的分散相微粒互相聚沉,颗粒变大,最后发生沉淀的现象称为聚沉。
溶胶的聚沉可分为二个阶段,第一为无法用肉眼观察出分散程度变化的阶段,称为"隐聚沉";第二阶段则可用肉眼观察到颗粒的变化,称为"显聚沉"。
(1).电解质的聚沉作用当往溶胶中加入过量的电解质后,往往会使溶胶发生聚沉。
这是由于电解质加入后,电解质中与扩散层反离子电荷符号相同的那些离子将由于同电排斥而将反离子压入到吸附层,从而减少胶粒的带电量,ζ电势降低。
当扩散层中的反离子被全部压入吸附层内,胶粒处于等电状态,ζ电势为零,此时溶胶的稳定性最差,非常易于聚沉。
如豆浆使荷负电的蛋白质胶体,卤水中的Ca2+、Mg2+、Na+等离子压缩扩散层厚度,使ζ电势下降并使蛋白质聚沉。
实验表明,当溶胶的ζ电势降低到一定值时,(不必降到零!),就可观察到聚沉现象的发生。
胶体的稳定性和聚沉作用
摘要:化学物品胶体已经广泛应用于现代生活,了解胶体的稳定性和聚沉作用对于我们高效利用有很大帮助。
关键词:稳定性胶体聚沉电解质
溶胶的稳定
根据胶体的各种性质。
溶胶稳定的原因可归纳为:
(1)溶胶的动力稳定性
胶粒因颗粒很小,布朗运动较强,能克服重力影响不下沉而保持均匀分散。
这种性质称为溶胶的动力稳定性。
影响溶胶动力稳定性的主要因素是分散度。
分散度越大,颗粒越小,布朗运动越剧烈,扩散能力越强,动力稳定性就越大,胶粒越不溶易下沉。
此外分散介质的粘度越大,胶粒与分散介质的密度差越小,溶胶的动力稳定性也越大,胶粒也越不溶易下沉。
(2) 胶粒带电的稳定作用
下图表示的是一个个胶团。
蓝色虚线圆是扩散层的边界,虚线圆以外没有净电荷,呈电中性。
因此,当两个胶团不重迭时,如左图,它们之间没有静电作用力,只有胶粒间的引力,这种引力与它们之间距离的三次方成反比,这和分子之间的作用力(分子之间的作用力与分子之间距离的六次方成反比)相比,是一种
远程力,这种远程力驱使胶
团互相靠近。
当两个胶团重迭时,如右图,它们之间就产生静电排斥力。
重叠越多,静电排斥力越大。
如果静电排斥力大于胶粒之间的吸引力,两胶粒相撞后又分开,保持了溶胶的稳定。
胶粒必须带有一定的电荷才具有足够的静电排斥力,而胶粒的带电量与ζ电势的绝对值成正比。
因此,胶粒具有一定的ζ电势是胶粒稳定的主要原因。
(3) 溶剂化的稳定作用
物质和溶剂之间所起的化合作用称为溶剂化,溶剂若为水,则称水化。
憎液溶胶的胶核是憎水的,但它吸附的离子都是水化的,因此增加了胶粒的稳定性。
由于紧密层和分散层中的离子都是水化的,这样在胶粒周围形成了水化层。
实验证明,水化层具有定向排列结构,当胶粒接近时,水化层被挤压变形,它有力图恢复定向排列结构的能力,使水化层具有弹性,这成了胶粒接近时的机械阻力,防止了溶胶的聚沉。
以上影响溶胶稳定的三种因素中,尤以带电因素最重要。
溶胶的聚沉
溶胶中的分散相颗粒相互聚结而变大,以至最后发生沉降的现象称为聚沉。
一般ζ电势的绝对值大于0.03伏时,溶胶是稳定的。
造成溶胶聚沉的因素很多,如浓度、温度、光的作用、搅拌、外加电解质、胶体相互作用和高分子化合物的作用等,其中尤以外加电解质和胶体相互作用最为重要。
(1) 电解质的作用
由实验得知,不断向胶体溶液中加入电解质,胶粒的ζ电势的绝对值不断下降;当ζ电势的绝对值小至某一数值时,溶胶开始聚沉。
ζ电势的绝对值越小,聚沉速度越快;ζ电势的绝对值等于0,即等电态时,聚沉速度达到最大。
在电解质的作用下,溶胶开始聚沉的电动电势称临界电势。
多数溶胶的临界电势在±(25~30)mv之间。
所有电解质达到某一浓度时,都能使溶胶聚沉。
引起溶胶明显聚沉所需电解质的最小浓度,称为该电解质的聚沉值。
而聚沉值的倒数定义为聚沉能力。
电解质的聚沉能力一般有如下规律:
电解质中能使溶胶聚沉的离子是与胶粒电荷相反的异电离子,随着异电离子价数的增高,聚沉能力迅速增加。
这就是舒尔采-哈迪(Schulze-Hardy)价数规则。
例如,对带负电的As2S3胶粒起聚沉作用的是阳离子,含不同价数阳离子的盐KCl、MgCl2和AlCl3对As2S3溶胶的聚沉值分别为KCl :49.5,MgCl2:0.7,AlCl3:0.093 mol/m3
若以一价阳离子为标准,其聚沉能力有如下关系:
Me+︰Me2+︰Me3+= 1︰71︰532
一般可认为
Me+︰Me2+︰Me3+= 16︰26︰36= 1︰64︰729
应该指出,舒尔采-哈迪价数规则是很粗略的,不同的作者得出的数据有较大的差别,但价数不同的离子的聚沉能力的显著差别仍然
存在,并且保持着上述顺序。
另外价数规则不适用的例子也很多,如H+虽为一价,却有很高的聚沉能力;又如有机化合物离子不论价数如何,其聚沉能力都很强。
(2)相同价数离子的聚沉能力不同
如同一种阴离子NO3-的各种一价盐,其阳离子对负溶胶的聚沉能力顺序为
Cs+>Rb+>K+>Na+>Li+
这个顺序与它们的水化作用相反。
同一种阳离子的各种一价盐,其阴离子对正溶胶的聚沉能力顺序为
Cl->Br->NO3->I-
这种将价数相同的阳离子或阴离子按聚沉能力排成的顺序称为感胶离子序。
(1)胶体的相互作用
将带相反电荷的溶胶互相混合,也会发生聚沉。
明矾[KAl(SO4)312H2O]在水中形
成Al(OH)3正溶胶与水中微粒一起沉淀就是一例。
然而与电解质的聚沉作用不同之处在于两种溶胶用量应恰能使其所带的总电量相同时,才会完全聚沉,否则可能不完全聚沉,甚至不聚沉。
表4 用不同数量(mg)的氢氧化铁正溶胶和定量的硫化锑负溶胶(含0.56mg Sb2S3)作用时观察到的情况。
高分子化合物对溶胶的作用
在溶胶中加入少量的高分子化合物,有时会降低溶胶的稳定性,甚至发生聚沉,这种现象称为敏化作用。
产生这种现象的原因可能是由于高分子化合物数量少,无法将胶体颗粒完全覆盖,胶粒附着在高分子化合物上,附着多了,质量变大而引起聚沉,如图。
但加入较多的高分子化合物后,高分子化合物被吸附在胶粒的表面,包围着胶粒,使胶粒对分散介质的亲和力增加,从而增加了溶胶的稳定性。
这种现象称为高分子化合物对溶胶的保护作用,如图。
高分子化合物的这种保护作用应用很广,例如血液中所含的难溶盐类,象碳酸钙和磷酸钙等,就是靠血液中的蛋白质保护而存在。
医药上点眼用的蛋白银就是蛋白质保护的银溶胶。
照相用的软片是用明胶所保护的AgBr悬浮体。
溶胶浓度的影响
溶胶浓度增大时,则因布朗运动的作用,使胶团互相碰撞的次数增加,聚集成大颗粒机会增多,溶胶的稳定性降低,因而将加速溶胶的聚沉。
五、参考文献
[1] 傅献彩, 沈文霞, 姚天扬. 物理化学. 高等教育出版社.2005
[2] 何广平, 南俊民, 孙艳辉. 基础物理化学实验. 化学工业出版社.2008
[3] 陈宗琪,戴闽光.胶体化学.高等教育出版社.1984
[4] 江龙编著.胶体化学概论.科学出版社.2002。