预应力混凝土连续箱梁纵向受力分析
- 格式:doc
- 大小:26.00 KB
- 文档页数:4
预应力混凝土箱梁竖向预应力钢筋有效预应力检测研究摘要:在所有使用混凝土搭建的大跨度预应力桥梁当中,导致箱梁腹板出现斜裂缝的最重要的原因是预应力出现了数值过于巨大的损失或者是没有足够的竖向预应力,怎样让箱梁竖向预应力的钢筋的损失得到检测,找到能够方便简单的检测竖向预应力筋张拉力的方法是当前相关行业的工作人员所需要解决的重要问题。
本篇文章的主要目的是探讨一种能够快捷有效的检验箱梁施工过程当中的竖向预应力能否达到设计值,这篇文章的主要基本理论是结构动力学理论,使用有限元模型进行数量较大的模拟计算,让竖向预应力筋外露段的长度得到有效的建立,同时也能够得出外露段动力特性和锚固段刚度增大系数的具体参数关系,使用相关模型进行试验,同时建立起了箱梁竖向预应力筋有效的预应力以及锚固段刚度增大系数之间的关系,同时在作者所工作的某一座连续钢构桥当中对文章当中的方法和内容进行了实验和检测。
这篇文章当中所提到的方法效率较高,同时方法比较简单方便,能够给检测竖向预应力钢筋的有效预应力提供一个十分优秀的理论基础。
关键词:预应力混凝土;检测;箱梁现在出现次数最多的预应力混凝土连续箱梁的裂缝形式是腹板斜裂缝,引发腹板斜裂缝的原因有很多种,这其中引发开裂的最为重要的原因是腹板当中所承受的主拉应力过于巨大。
比如在进行设计的时候没有对结构的构造和主拉的盈利等方面的问题进行充足的考虑、在进行施工的时候没有严格控制施工的质量,导致纵向以及竖向的预应力产生了过大的损失或者是在运营的时候,路面所经过的车超载较为严重等问题都很有可能会导致出现过大的主拉应力。
虽然当前的腹板主拉应力的大小和纵向预应力筋的具体放置方法、温度应力、竖向预应力筋和徐变应力等多种方面都有着密切的联系,但是抵抗剪应力以及主拉拉力最重要的因素依然是箱梁当中所拥有的竖向预应力,特别是在不改变当前纵向预应力条件的情况下,全桥箱梁腹板的主拉应力会发生很大变化,并受竖向预应力的影响。
预应力混凝土连续箱梁桥底板纵向裂缝分析预应力混凝土连续箱梁桥底板是一种常见的桥梁结构,由于其承载能力强、使用寿命长等优势,广泛应用于公路和铁路交通建设中。
然而,在实际使用过程中,底板纵向裂缝的出现是一个普遍存在的问题,对桥梁的安全性和使用寿命产生一定影响。
本文将对预应力混凝土连续箱梁桥底板纵向裂缝进行分析。
首先,纵向裂缝的成因可以分为内力和外力两个方面。
在内力方面,由于预应力混凝土连续箱梁桥底板的设计和施工过程中,存在一定的预应力损失和应力集中问题。
预应力损失是由于混凝土硬化和收缩引起的,这种损失会导致底板内部的应力分布不均匀,从而产生一些区域的张应力较高。
同时,在施工过程中,如果预应力钢束的张紧力或锚固不当,也会导致底板内力分布不均匀。
在外力方面,预应力混凝土连续箱梁桥底板承受着来自交通荷载和温度荷载的作用。
交通荷载在桥梁使用过程中是不可避免的,会引起底板产生弯曲变形和应力。
而温度荷载则是由于气温变化引起的,当温度升高时,底板会产生热胀冷缩变形和应力。
其次,纵向裂缝的影响主要体现在两个方面。
首先,纵向裂缝会导致底板的强度和刚度下降。
裂缝的存在使得底板的梁体不能充分发挥作用,不仅会影响桥梁整体承载能力,还容易引起劣化和破坏。
此外,裂缝的存在还会进一步加剧渗水和腐蚀问题,加速桥梁的老化过程。
其次,纵向裂缝会影响桥梁的使用寿命和安全性。
裂缝的存在意味着底板的结构已经出现了一定的损伤,这种损伤会随着使用时间的延长而逐渐发展和扩展。
当裂缝规模扩大到一定程度时,将会对桥梁的强度和刚度造成严重影响,甚至导致桥梁的倒塌。
最后,针对纵向裂缝的解决方法主要有以下几种。
一种方法是采取合适的预应力设计和施工工艺。
通过优化底板的预应力布置和张力控制,可以减少预应力损失和应力集中问题的发生,提高底板的整体力学性能。
另一种方法是采取适当的减振和防护措施。
针对交通荷载和温度荷载引起的应力和变形,可以采取减振和防护系统来减小底板的应力和变形,从而减少纵向裂缝的发生。
一预应力混凝土连续梁桥1.力学特点及适用范围连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。
作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。
由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。
预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。
2.立面布置预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。
结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。
图1连续梁立面布置1.桥跨布置根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。
当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5〜0.8倍。
对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。
若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。
当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。
桥跨布置还与施工方法密切相关。
长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。
等跨布置的跨径大小主要取决于经济分跨和施工的设备条件。
预应力混凝土连续梁合龙段裂缝分析及对策摘要:在实际工程中,预应力混凝土连续梁合龙段顶板底出现纵向裂缝的情况时有发生,运用桥梁结构分析系统BSAS和桥梁博士有限元软件建立平面杆系模型和合龙段截面模型,对某新建铁路工程中的连续梁在合龙段箱内顶板倒角出现裂缝的成因进行了结构计算分析,并从非结构性因素和现场施工等多方面进行了思考,给出整治建议。
关键词:铁路桥梁;预应力混凝土箱梁;合龙段;裂缝;有限元0 引言考虑到预应力混凝土连续梁合龙段顶板底产生的裂缝对梁部结构的安全性和耐久性可能会产生一定影响,针对某新建铁路工程中无横向预应力的(32+48+48+32)m双线连续梁在边跨合龙段箱内出现往顶板发展的裂缝情况,对梁部设计结构进行分析,并根据裂缝发生位置的实际情况,结合有限元模型分析,对合龙段箱内顶板裂缝产生的原因展开研究,为类似铁路连续梁的设计优化和施工保障安全奠定基础。
1 工程概况1.1设计条件(1)设计速度:250 km/h。
(2)线路情况:有砟轨道,双线,直线,正线线间距5.0m。
(3)施工方法:本桥采用悬灌法施工。
1.2设计参数桥跨布置为(32+48+48+32)m预应力混凝土连续梁,全长161.1m,(含两侧梁端至边支座中心各0.55m)。
桥面宽12.6m,桥梁建筑总宽12.9m,挡砟墙内侧净宽9.4m;结构横截面中心梁高在端支座为2.69m,中支点处为3.49m(含顶板顶面横坡)。
2 裂缝情况及成因初步分析2.1裂缝排查情况该跨绕城高速连续梁无横向预应力,在边跨合龙段箱内顶板倒角往内约50cm处出现纵向裂缝,中跨合龙段横隔梁过人孔的上倒角处出现往顶板发展的裂缝,具体情况为:中跨跨中处横隔梁裂缝宽0.2mm,长70cm;边跨跨中横隔梁两处裂缝,宽为0.12mm,长为70cm。
2.2成因初步分析混凝土结构表面产生裂缝是比较常见的现象,引起裂缝的原因大致可归纳为由外荷载引起的结构性裂缝,以及由温度变化和混凝土收缩等原因引起的非结构性裂缝两大类。
预应力混凝土梁桥裂缝成因及其对策预应力梁桥〔包括简支梁、连续梁、连续刚构〕目前是我国修建最多桥梁。
在这些桥梁修建过程中与运营过程中,有时会发现梁体不同部位出现龟裂、横向、纵向与斜向裂缝。
裂缝一但出现,轻那么影响构造耐久性、重那么直接影响构造承载能力,甚至危及构造平安,值得予以重视,并应弄清裂缝产生原因,首先采取措施预防裂缝发生,一旦裂缝发生,那么必须采取适当措施,予以及时观察监测与处理,以保证桥梁平安与耐久性能。
]一、预应力梁桥裂缝种类及其原因1、预应力简支梁桥裂缝种类及其原因〔1〕龟裂预应力简支梁桥在预制时容易产生龟裂,其原因除了由于混凝土配比不适宜,个别混凝土浇筑不均匀外,在养护过程中洒水不及时,覆盖不严,采用蒸养时过快升、降温等均可能产生梁体外表龟裂。
〔2〕纵向裂缝纵向裂缝多发生在运营期间,其原因除了张拉力过大〔设计不合理或施工超张拉〕外,也与混凝土质量有关,如有一些铁路运营线上预应力混凝土简支梁,在运营10多年或20多年后出现沿纵向力筋裂缝,后通过调查确定为碱骨料反响导致混凝土承载力下降造成。
由于这种裂缝处于主要受力钢束部位,极易引起纵向钢束锈蚀,对构造影响非常大。
〔3〕横向裂缝横向裂缝多发生在运期间,超载、各种原因是预应力损失超过设计预想,都可能导致裂缝发生。
此外,由于徐变上拱发生与开展,在梁上翼缘也会产生横向裂缝,特别对活荷载比重较大铁路桥梁更是如此,而且随徐变开展,裂缝也会开展,而当桥上荷载较大时,这种裂缝又会暂时闭合。
〔4〕主拉应力方向斜裂缝这种裂缝一般发生在运营期间,且多在跨度四分之一附近区域腹板上,可以认为根本上是由于主拉应力方向抗裂平安储藏缺乏而造成。
2、预应力连续梁及连续刚构桥裂缝种类及其原因〔1〕外表龟裂与预应力简支梁类似,这种裂缝一般是由于连续梁与连续刚构在施工过程中养护不及时或温度变化较大时产生。
由于这类桥在国内大局部是采用悬臂灌注或支架法施工,高空养护条件比地面更差,极易因养护浇水不及时而造成混凝土外表干缩快,内部干缩慢,使外部混凝土受拉超过混凝土抗拉强度,产生开裂。
引言概述:现浇预应力混凝土箱梁是一种常见的桥梁结构形式,在桥梁工程中得到了广泛应用。
本文将从结构特点、设计原理、施工流程、质量控制以及优缺点等方面详细阐述现浇预应力混凝土箱梁的相关内容。
正文内容:一、结构特点1.1现浇预应力混凝土箱梁的构造特点1.2现浇预应力混凝土箱梁的受力特点1.3现浇预应力混凝土箱梁的变形特点1.4现浇预应力混凝土箱梁的施工特点1.5现浇预应力混凝土箱梁的使用特点二、设计原理2.1现浇预应力混凝土箱梁的受力分析2.2现浇预应力混凝土箱梁的截面设计2.3现浇预应力混凝土箱梁的预应力设计2.4现浇预应力混凝土箱梁的支座设计2.5现浇预应力混凝土箱梁的施工工序设计三、施工流程3.1现浇预应力混凝土箱梁的施工准备3.2现浇预应力混凝土箱梁的模板搭设3.3现浇预应力混凝土箱梁的钢筋绑扎3.4现浇预应力混凝土箱梁的混凝土浇筑3.5现浇预应力混凝土箱梁的预应力张拉和固定四、质量控制4.1现浇预应力混凝土箱梁的材料质量控制4.2现浇预应力混凝土箱梁的施工工艺控制4.3现浇预应力混凝土箱梁的质量检测方法4.4现浇预应力混凝土箱梁的质量验收标准4.5现浇预应力混凝土箱梁的质量控制措施五、优缺点5.1现浇预应力混凝土箱梁的优点5.2现浇预应力混凝土箱梁的缺点5.3现浇预应力混凝土箱梁的改进措施5.4现浇预应力混凝土箱梁的应用前景5.5现浇预应力混凝土箱梁的经济性分析总结:现浇预应力混凝土箱梁具有构造特点明确、受力分析合理、施工工序严谨等优点,在大跨度桥梁工程中得到了广泛应用。
设计原理和施工流程的合理把握能有效提高施工质量,而质量控制的慎重把控则能够保证桥梁工程的安全可靠性。
现浇预应力混凝土箱梁在施工过程中也存在一些不足之处,但通过改进措施和经济性分析,可以推动该结构形式在桥梁工程中的应用前景。
引言概述:现浇预应力混凝土箱梁作为一种常用的桥梁结构形式,在现代桥梁建设中得到了广泛应用。
其独特的结构设计和施工工艺使其具备了很多优势,如强度高、刚性好、抗震能力强,并且可以适应各种跨径和荷载要求。
预应力曲线连续箱梁桥支座径向反力分析董涛;曹阳;万善强【摘要】预应力曲线连续箱梁桥支座径向反力关乎桥梁结构安全性和功能性,但其影响因素较多,计算比较繁琐,设计人员往往无暇深究.以某高速公路互通区3座不同形式的预应力曲线连续箱梁匝道桥为例,运用M idas Civil建立计算模型,对影响预应力曲线连续箱梁桥支座径向反力的各种荷载进行独立分析,得出预应力荷载和结构整体温度荷载,是预应力曲线连续箱梁桥支座径向反力大小主要影响因素的结论.最后对如何防止预应力曲线连续箱梁桥发生支座病害提出设计建议.【期刊名称】《交通科技与经济》【年(卷),期】2018(020)003【总页数】4页(P72-75)【关键词】预应力曲线连续箱梁桥;支座径向反力;主要影响因素【作者】董涛;曹阳;万善强【作者单位】湖北省城建设计院股份有限公司 ,湖北武汉 430051;湖北省城建设计院股份有限公司 ,湖北武汉 430051;湖北省城建设计院股份有限公司 ,湖北武汉430051【正文语种】中文【中图分类】TU745随着我国公路系统的进一步完善,公路里程在不断增加。
预应力曲线连续箱梁桥因稳定性好、线性优美、能较好地克服地形限制等优点而被广泛应用于公路互通和枢纽工程中。
预应力曲线连续箱梁桥成桥后会产生支座径向反力,这与预应力曲线连续箱梁桥特殊的构造形式和受力状态有关。
影响预应力曲线连续箱梁桥的支座径向反力大小的荷载种类较多,包括结构自重荷载、预应力荷载、二期恒载、结构收缩徐变、整体温度荷载、梯度温度荷载、支座不均匀沉降和车辆荷载等。
若预应力曲线连续箱梁桥的支座径向反力超出容许范围,可能导致桥梁支座发生剪切破坏,对桥梁的结构安全性和使用功能性产生不利影响。
在预应力曲线连续箱梁桥设计过程中,其支座径向反力的计算比较烦琐,相关规范对支座径向反力的计算方法和要求也没有给出明确规定,而公路工程设计往往任务重,工期较为紧迫。
设计人员普遍较为关注预应力曲线连续箱梁体的翘曲与支座脱空问题,而对于支座的径向反力问题研究较少。
- -1532010年第12期(总第147期)NO.12.2010(CumulativetyNO.147)China Hi-Tech Enterprises摘要:文章利用有限元ANSYS 对比分析了在三种不同的温度应力场的作用下连续箱梁顶板拉应力的大小,验证了温度应力是产生箱梁顶板纵向裂缝重要因素之一。
设计和施工工程中,应该对当地的温度对桥梁结构的影响需要充分的考虑,加强桥梁结构的抗裂性能,保证桥梁使用的耐久性。
关键词:温度应力;连续箱梁;温度梯度;纵向裂缝;计算模型中图分类号:U448 文献标识码:A 文章编号:1009-2374(2010)12-0153-02浅析温度应力对连续箱梁顶板纵向裂缝的影响宋春玲(中铁十三局集团第二工程有限公司,广东 深圳 518083)预应力混凝土连续箱梁在自然条件变化下在箱梁中产生较大的温度梯度,温差作用产生变形,受到箱梁的纵横向纤维约束或超静顶结构体系的多余约束时,就会产生很大的温差应力。
温度应力包括内约束应力和外约束应力,内约束应力是指结构内部某一构件单元,在非线性温差作用下纤维间温度不同,引起的应变不同而受到约束引起的应力;外约束应力是指结构内部各构件因温度不同产生不同变形受到约束或结构外部为超静定约束,无法实现自由变形引起的应力。
理论分析及实践经验表明:大跨度预应力混凝土连续箱梁,温度应力可以达到甚至超过活载产生的应力,以被认为是预应力混凝土桥梁结构产生裂缝的主要原因之一。
一、温度场的分解(一)英国BS5400规范温度梯度图1 英国BS5400规范中的箱梁顶板温度分布h1=0.3h ≤0.15mh2=0.3h ≥0.10m ≤0.25m h3=0.3h ≤[0.1m+面层厚度(m)h/m T1/℃T2/℃T3/℃≤0.28.5 3.50.5≤0.412.0 3.0 1.5≤0.613.0 3.0 2.0≥0.813.53.02.5h1=h4=0.2h ≤0.25m h2=h3=0.25h ≥0.2mh/m T1/℃T2/℃T3/℃T4/℃≤0.2 2.00.50.5 1.5≤0.4 4.5 1.4 1.0 3.5≤0.66.51.81.55.0≤0.87.6 1.7 1.5 6.0≤1.08.0 1.5 1.5 6.3≥1.58.40.51.06.5(二)新规范竖向温度梯度A =300mm T 1=250C T 2=6.70C图2 JTG D60-2004规范中的竖向温度梯度二、计算模型及结果分析(一)工程背景根据两种规范规定的温度梯度,以佛开高速潭洲大桥主桥为研究对象,潭洲大桥主桥为双向四车道分离式桥梁,全宽为27.7m,单幅宽为11.128m,混凝土桥面铺装。
1 装配式预应力混凝土箱梁主要病害:腹板斜裂缝、底板纵向裂缝、底板横向裂缝、翼缘板底面的横向裂缝、桥面连续出开裂。
1.1 腹板斜裂缝表现特征:一般主要分布在1/8跨与3/4跨之间,沿跨中左右两侧对称分布,与水平夹角多为15°至50°。
产生原因:腹板最大主拉应力超过混凝土抗拉强度或斜截面抗剪强度不足。
引起腹板抗力不足的原因可能有:计算模型与结构实际状太相差较大,如温度模式、横向车队布置和纵向双向受力耦合影响等;纵向预应力筋预应力损失较大;弯起钢筋和分布箍筋布置不合理;腹板厚度不足等。
1.2 底板纵向裂缝表现特征:通常主要分布在底板底面中间区域,沿横断面方向呈跨中密、粗而长,两侧相对较疏、细而短。
产生原因:底板跨中抵抗弯矩不足。
引起抵抗弯矩不足的原因通常有:预应力钢束曲线径向力:预应力钢束在转折角处产生的集中力的合力;横向温度应力;横向筋不足;截面尺寸不合理等。
1.3 底板横向裂缝表现特征:通常分布在跨中或1/4跨位置附近,沿横截面方向发展。
产生原因:原结构预应力钢束布置不合理,预应力损失较大造成主梁开裂。
1.4 翼缘板底面的横向裂缝表现特征:主要出现在负弯矩较大的墩顶至1/3跨区域的翼缘底板面,少数在跨中的翼缘板底面,越靠近支点截面而越密;呈横桥向发展,基本与箱梁中心线垂直。
产生原因:翼缘板截面抵抗弯矩不足。
引起的可能原因有:翼板纵向预应力计算便于不安全;未考虑剪力滞作用;此裂缝通常分布在支座至1/3跨径范围内,越靠近支点的截面越严重,裂缝出现均从翼缘板下缘开始;外荷载偏大;温度变形、混凝土收缩和不均匀沉降。
1.5 桥面连续出开裂表现特征:主要出现墩顶负弯矩区桥面铺装横向开裂,严重的已经贯穿桥面板,桥面水已经能渗至桥墩梁顶。
而负弯矩结构开裂,墩顶连续部分失效,使主梁不能按原设计的连续梁模式传递弯矩,桥梁受力模式发生变化。
桥梁由连续结构趋近于简支结构,边跨、中跨实际弯矩均较原设计预期有所增大,致使主梁产生明显的受力裂缝。
预制箱梁因其经济性、安全、美观等特点,在全国得到广泛使用,使用效果也非常好。
中小跨径桥梁实际运营汽车荷载超越现行规范汽车荷载标准的问题突出,大跨径桥梁的实际运营汽车荷载与规范汽车标准的适应性相对较好。
本文介绍预制预应力混凝土箱梁设计及施工关键技术问题。
设计、施工中存在的主要问题1 我国现役桥梁存在耐久性不足问题2 横隔板的设置问题3 矩钢束采用扁锚问题负弯矩钢束采用扁型波纹管时容易出现漏浆堵塞管道,影响穿束,且压浆很难保证饱满,影响结构耐久性。
4 负弯矩波纹管在支点附近与支点加强粗钢筋在同一竖直面上,存在干扰。
5 梁端钢束张拉锚具与底板粗钢筋干挠。
6 底板钢束在支点附近与箍筋干挠问题。
7 支座承载力06版《公路桥梁板式橡胶支座规格系列》减少了圆形支座型号,原来是25mm 一级,现在是50mm一级,同样尺寸的支座承载力减少较多。
按现行标准,所需支座型号需增加5~10cm,导致梁底截面较为紧张,大跨径时不得不改用矩形橡胶支座或盆式支座。
8 扁波纹管纵向连接问题曲线上桥梁,邻近孔横坡存在变化,如两孔预制梁横坡不一致,两波纹管位置会有错台。
9 底板偶有纵向裂缝:主要在箱梁中央部位,裂缝呈断续或连续状,一般贯穿箱梁底板,缝宽在0.1㎜—0.25㎜之间。
10 偶有湿接缝纵向裂缝预制箱梁设计及计算要点一、主要技术标准:1、汽车等级:公路-Ⅰ级;2、设计安全等级:一级,桥梁结构的重要性系数取1.1;3、环境类别:Ⅰ类(一般环境);4、环境作用等级:B级。
二、结构体系20、25、30、35、40m箱梁采用先简支后桥面连续体系;35m、40m箱梁采用先简支后结构连续体系;30m以下跨径简支箱梁经济性较为明显,所以采用简支结构;35m、40m箱梁简支与连续造价相当,提供两种选择。
预制梁顶板设计成2%的横坡,底板设计成平坡,边梁顶宽按2.85m设计,中梁顶宽按2.4m设计,底宽均设计成1m。
悬臂设0.2m的等直段,便于调整曲线桥的弓弦差。
第一章绪论LI引言随着现代社会的进展,经济的提高和科技的进步,我们我国的土木工程建设项目正处于新的高潮期,重大的工程结构,如超大跨桥梁、超高层建筑、大型场馆和大型水利工程等正在不断建成,桥梁工程的进展如今更是突飞猛进。
梁是由支座支撑的主要承受弯矩和剪力的构件。
在机械,建筑等工程中存在大量受弯曲的杆件,例如起重机大梁,火车轮轴等,主要承受的外力以横向力为主。
社会的飞速进展给人们带来了诸多的便利,同时,也使我们我国的建筑土木行业得到了空前的进展,在建筑结构中,不管从它的承载力还是构造等,梁的地位显得尤为重要,由于在建筑结构中,梁是最具有典型特征的元素,它以多种形态展现在人们面前,以线性受力体系为主要的特征。
1. 2国内外梁受力分析讨论的现状20世纪以来,世界各地也相继兴建了很多以斜拉桥、悬索桥为主的大跨桥粱结构。
斜拉桥的主跨也从当时的100米左右进展到了现在的上千米。
90年月到现在,仅我们我国建筑的主跨在400米以上的斜拉桥也已有几十座。
现在世界上跨度超过IOOO米的悬索桥则更是不计其数。
由于这些大跨桥梁不仅可以满意更大流量的交通要求,并且造型轻快美观。
一般都是作为城市交通运输的重要枢纽工程和标志性建筑,投资特别巨大,对国民经济持续、稳定的进展有着特别重要的作用,这些结构假如一旦发生损坏,就会造成特别重大的人员伤亡和经济损失,并且也会产生极坏的社会影响,桥梁损坏造成的严峻损失也将是难以估量的。
桥梁在长期运营过程中也不行避开的会受到环境和有害化学物质的侵蚀,并要承受车辆,风暴、地震、破坏、爆炸、疲惫等因素的作用,这些因素使桥梁的自身性能不断退化,从而导致结构的各部分在没有达到设计年限就发生不同程度的损伤和劣化。
其中,循环荷载作用下的疲惫损伤累积和有损结构在动力荷载作用下的裂纹失稳扩展是造成很多桥梁发生灾难性事故的主要缘由,据美国土木工程协会(ASCE)统计斟,80%〜90%钢结构的破坏与疲惫损伤有关。
预应力混凝土连续箱梁纵向受力分析
摘要:以某三跨预应力混凝土连续箱梁为例,利用有限元分析软件Midas/Civil分别建立了单梁模型和梁格法模型。
通过对两种模型计算结果的比较,分析了单梁模型和梁格模型计算结果之间的差异,提出了设计计算分析中的一些建议。
结论对同类桥梁的设计计算分析具有一定的参考意义。
关键词:连续箱梁平面杆系梁格法
1引言
对箱型梁桥进行有限元分析时通常可建立三种模型进行计算分析,即平面杆系、空间杆系以及空间实体模型。
平面杆系模型方法简便,仅能反映杆系截面的平均力学特征,可用于简单结构的粗略分析;空间实体模型建模工作量大,适用于结构的局部分析;空间杆系模型在合理建模的情况下,能较为全面地反映结构的空间受力特点,具有基本概念清晰、易于理解和使用等特点[1]。
本文从适用性和经济性出发,结合具体实例采用梁格法进行结构分析,并与平面杆系模型的计算结果进行比较分析验证梁格法的适用性。
2工程实例概况
本文以某三跨等截面预应力混凝土连续箱梁桥为例,桥跨布置为20m+32m+20m,桥面宽12.0m,为单箱双室截面,如图1所示;两侧翼缘悬臂板长2.0m,箱底宽7.5m,梁高1.45m,连续梁双点支撑,跨间无横隔板,仅在支点处设支座横梁。
设计荷载:汽车-15、挂-80。
图1 桥梁简图(单位:cm)
3计算模型及计算结果分析
本文采用桥梁有限元分析软件Midas/Civil分别建立桥梁的单梁模型和梁格模型。
3.1单梁模型
采用Midas/Civil的空间梁单元建立桥梁的单梁模型,共建立节点73个,单元72个,如图2所示。
其中汽车荷载的作用通过定义车道偏心加以考虑。
图2 Midas单梁计算模型
3.2梁格法模型
综合考虑梁格划分的影响因素,箱梁纵向划分为3条纵梁,即边肋1、2及中肋以及2条虚拟纵梁,支点处端横隔梁按实际情况布置,虚拟横梁按照腹板宽度极小的工字梁来模拟箱梁格室的顶、底板,并按 E.C.汉勃利[2]介绍的有关公式进行修正。
在保证计算精度前提下,梁格模型共建立单元总数660个,节点总数373个,梁格划分及梁格模型如图3所示。
图3 Midas梁格单元计算模型
3.3模型计算结果及对比分析
为了比较全面、准确地对两种模型进行比较且限于篇幅,本文对桥梁在自重、移动荷载作用下箱梁上缘效应分别进行比较。
3.3.1应力分析
在自重作用下,箱梁上缘两种模型计算应力的结果如图4所示,在表1列出其比较结果,其中梁格模型的计算结果为纵梁系应力均值。
各梁系箱梁上缘应力计算结果如图5所示,并将与单梁模型计算结果的比较列于表2中。
图4 自重作用下箱梁上缘应力
表1 自重作用下Midas单梁模型与梁格法模型计算箱梁上缘应力比较
注:应力差值、偏差均以单梁模型计算结果为基准,下同
图5 Midas梁格模型各纵梁上缘应力
表2 自重作用下Midas梁格法模型计算各纵梁上缘应力比较
根据图表比较结果可以看出,两种模型的计算结果在支点及中跨跨中截面处差距较明显,总体比较接近。
由梁格法计算各梁系的应力结果比较也可以看出,中肋在中支点处及边肋2在中跨跨中处差距最明显,差值分别为-0.32Mpa、-0.16Mpa,偏差为8.5%、5.9%。
两种模型的计算精度无明显差异,但由于一方面梁格法按支座的实际位置模拟,而单梁模型无法考虑支座横梁的刚度只能采用简化合并的处理方式,另一方面桥梁跨径的布置不同,使得两种计算模型的计算结果存在差异。
在移动荷载作用下,两种模型的计算结果如图6所示,两者的比较列于表3中。
图6 移动荷载作用下单梁模型与梁格法模型计算箱梁上缘应力
表3 移动荷载作用下Midas单梁模型与梁格法模型计算箱梁上缘应力比较
图7 移动荷载作用下梁格模型各纵梁上缘应力
根据图表比较结果可以看出,两种模型的计算结果差异主要仍是在支座处,最大偏差为40%(差值为0.04MPa)。
跨中应力也有一定的偏差,基本在10%以内。
一方面是由于单梁模型对支座横梁的简化处理方式,另一方面梁格模型对车道的模拟比单梁更为准确,而由于移动荷载加载形式非对称,对模型的构造较敏感。
3.3.2刚度分析
在自重和移动荷载作用下,单梁模型和梁格模型的挠度计算结果如图8、图9所示。
图8 自重作用下单梁模型和梁格模型挠度计算结果(mm)
图9 移动荷载作用下单梁模型和梁格模型挠度计算结果(mm)
根据上图可以看出,在自重和移动荷载作用下,单梁模型和梁格模型计算桥梁挠度结果基本接近,偏差基本在5%以内。
4结论
1)对于直线型预应力混凝土等截面连续箱梁,单梁模型计算建模简便,计算成本低,计算结果能够反映结构的整体受力性能,可用于初步设计或方案比较阶段。
2)单梁模型建立模型时,对支座只能进行简化处理,无法考虑横梁刚度的贡献;对汽车荷载的作用只能通过定义车道偏心加以考虑。
3)梁格法模型能够在很大程度上正确反映出桥梁结构的真实受力状况,通过对支座实际位置的模拟,考虑支座横梁的横向刚度,可以对结构受力作出准确分析;通过布置虚拟车道梁较好地模拟车道的横向分布。
4)梁格法建模较单梁模型建模繁琐,但可以较好的解决单梁模型计算中遇到的问题,计算精度优于单梁模型。
当然,通常所用的梁格理论大多是不考虑翘曲作用,也不能考虑泊松比的影响(钢筋混凝土结构与预应力混凝土结构一般采取纵横向双向配筋),但是梁格法对于设计来说精度是满足要求的,尤其是涉及到一些弯桥、异形桥时,梁格法的优势就会得到体现。
5)单梁模型和梁格法模型计算截面的应力结果除在支点及中跨跨中截面处差距较明显,总体比较接近。
在设计中进行支座配筋时,要考虑误差存在的影响,优先选用梁格法。
6)单梁模型和梁格法模型计算桥梁挠度结果基本接近,说明两种模型对桥梁纵向刚度的模拟比较接近,两种模型的计算结果均可以进行桥梁结构总体设计复核。
注:文章内所有公式及图表请用PDF形式查看。