电磁场深度解析
- 格式:docx
- 大小:200.36 KB
- 文档页数:9
2电磁场与电磁波课后·训练提升基础巩固一、选择题(第1~3题为单选题,第4~6题为多选题)1.电磁波由真空进入介质中时,其波速变为原来的一半,则波长变为原来的()A.一半B.两倍C.不变D.无法判断,频率不变。
由v=λf知v减半,则λ减半。
2.在真空中传播的电磁波,当它的频率增大时,它的传播速度及其波长的变化情况是()A.速度不变,波长减小B.速度不变,波长增大C.速度减小,波长变大D.速度增大,波长不变3×108m/s,与频率无关;由c=λf,波速不变,频率增大,波长减小,故选项A正确,B、C、D错误。
3.下列关于电磁波的说法正确的是()A.电磁波必须依赖介质传播B.电磁波可以发生衍射现象C.电磁波不会发生偏振现象D.电磁波无法携带信息传播,可以发生衍射现象,故选项B正确。
电磁波是横波,能发生偏振现象,故选项C错误。
电磁波能携带信息传播,且传播不依赖介质,在真空中也可以传播,故选项A、D错误。
4.下列说法正确的是()A.电荷的周围一定有电场,也一定有磁场B.均匀变化的电场在其周围空间一定产生磁场C.任何变化的电场在其周围空间一定产生变化的磁场D.正弦交变的电场在其周围空间一定产生同频率交变的磁场,不产生磁场,运动的电荷周围的电场是变化的,所以产生磁场,选项A错误。
由麦克斯韦理论判断选项B、D正确,C错误。
5.按照麦克斯韦的电磁场理论,以下说法正确的是()A.恒定的电场周围产生恒定的磁场,恒定的磁场周围产生恒定的电场B.变化的电场周围产生磁场,变化的磁场周围产生电场C.均匀变化的电场周围产生均匀变化的磁场,均匀变化的磁场周围产生均匀变化的电场D.均匀变化的电场周围产生稳定的磁场,均匀变化的磁场周围产生稳定的电场:变化的电场产生磁场,变化的磁场产生电场。
对此理论全面正确理解为:不变化的电场周围不产生磁场;变化的电场可以产生变化的磁场,也可产生不变化的磁场;均匀变化的电场产生稳定的磁场;周期性变化的电场产生同频率的周期性变化的磁场。
第54卷第3期2021年3月Vol.54.No.3Mae2021微电机MICROMOTORS直线电机不均匀气隙磁场解析计算方法刘思嘉,刘子锐(北京信息科技大学化学院,北京100192)摘要:直线感应电机运行时,其初级和次级之间可能因不平行而形成不均匀气隙,从而造成电机磁场分布变化。
对于这种不均匀气隙的电机磁场分布的计算,沿用 的基于均匀气隙的公式则会大。
为问题,首先基于电磁论,提出了一种不均匀气隙直线感应电机磁场的解析计算公式;其次线电机对解析公式进行;最后将解析公式计算结果与有限元方法计算得到的气隙磁场分布结果进行了对比%对比结果表明,这种 了气隙不均匀的解析磁场计算方法相气隙不均匀的计算,其平均小50%以上,为直线感应电机的设计和控制效果的提升提供了一种有益的%关键词:直线感应电机;不均匀气隙;磁析计算;有限元中图分类号:TM359.4文献标志码:A文章编号:1001-6848(2021)03-0041-05An Analytical Calculation Method of Flux Density for Uneven Air-gapLinear Induction MotorLIUSojoa,LIU Zoeu o(School of Automation,,Beijing Information of Science&Technology Unnersity,Beijing100192,China)Abstract:The linear induction motor(LIM)may lead to an uneven air-cap bWwwn its pamda and second-o/duang operation.This uneven air-cap will bring the vvriation of flux distribution in the LIM.The traditional calculation method for electric machine flux will enhanco ewor when not consideang the uneven airgap.Aiming to this problem,this paper firstly presented an analytic calculating metOod of the flux density based on MaxwWl's th—a,secondly provided a correction method consideang the uniqueness of LIM,finally compared Oie results with the results of th/inite element mwliod(FEM).The compaason Olustrates that the analytic method reduces the calculation wroe over50%Oian the calculation without consideang the uneven air-cap.This method provides a useful afeanco for the future design and conOol of LIMs.Key wo—t:linear induction motor;uneven air-cap;analytical lux calculation;finite element methodo引言长期以来,直线感应电机(Linear Induction Mo-tvr,LIM)在轨道交得到大量关注,在国内外有大量的工程应用。
深度解析麦克斯韦方程麦克斯韦方程是描述电磁场的基本方程组,由詹姆斯·克拉克·麦克斯韦在19世纪提出,并且对后来的电磁理论的发展产生了重要影响。
麦克斯韦方程包含了电磁场的生成、传播和相互作用的规律,为我们理解电磁现象提供了数学工具。
麦克斯韦方程包括四个基本方程,它们分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律的积分形式。
下面将分别对这四个方程进行深入解析。
首先是高斯定律,也称为电场高斯定律。
它描述了电场的产生与空间分布之间的关系。
根据高斯定律,电场通过一个闭合曲面的电通量与该闭合曲面内的电荷量成正比。
换句话说,电通量正比于内部电荷量:∮E dA = Q/ε0,其中∮E dA表示电场E通过闭合曲面的面积分,Q表示曲面内的电荷量,ε0为真空介电常数。
接下来是法拉第电磁感应定律,也称为法拉第定律。
它建立了电场变化产生磁场的定量关系。
法拉第电磁感应定律可以用一个积分形式来表示:∮E·dl = -dΦ/dt,其中∮E·dl表示电场E沿着闭合曲线的环路积分,dΦ/dt表示磁通量Φ随时间的变化率。
接下来是安培环路定律,也称为安培定律。
它描述了磁场的产生与空间分布之间的关系。
根据安培环路定律,磁场强度H沿着闭合曲线的环路积分等于该闭合曲线内的电流总和的倍数:∮H·dl = I +ε0 dΦE/dt,其中∮H·dl表示磁场强度H沿着闭合曲线的环路积分,I表示曲线内的电流总和,ε0为真空介电常数,dΦE/dt表示电场的磁通量随时间的变化率。
最后是法拉第电磁感应定律的积分形式,也称为法拉第定律的积分形式。
它描述了磁场变化产生电场的定量关系。
根据法拉第电磁感应定律的积分形式,磁场变化产生的电场沿着闭合曲面的环路积分等于该闭合曲面内的磁通量的负变化率:∮B·dA = -dΦB/dt,其中∮B·dA表示磁场B通过闭合曲面的面积分,dΦB/dt表示磁场的磁通量随时间的变化率。
高考物理光学知识点之物理光学图文答案(6)一、选择题1.在杨氏干涉实验中,从两个狭缝到达像屏上的某点的光走过的路程相等,该点即为中央亮条纹的位置(即k=0对应的那条亮条纹),双缝屏上有上下两狭缝,设想在双缝屏后用一块极薄的玻璃片遮盖上方的缝,则屏上中央亮条纹的位置将( )A.向上移动 B.向下移动C.不动 D.可能向上移动,也可能向下移动2.下列说法不正确...的是()A.检验工件平整度的操作中,如图1所示,上面为标准件,下面为待检测工件,通过干涉条纹可推断:P为凹处,Q为凸处B.图2为光线通过小圆板得到的衍射图样C.图3的原理和光导纤维传送光信号的原理一样D.图4的原理和照相机镜头表面涂上增透膜的原理一样3.如图所示,一束光经玻璃三棱镜折射后分为两束单色光a、b,波长分别为λa、λb,该玻璃对单色光a、b的折射率分别为n a、n b,.则()A.λa<λb,n a>n b B.λa>λb,n a<n bC.λa<λb,n a <n b D.λa>λb,n a >n b4.已知某玻璃对蓝光的折射率比对红光的折射率大,则两种光A.在该玻璃中传播时,蓝光的速度较大B.以相同的入射角从空气斜射入该玻璃中,蓝光折射角较大C.从该玻璃中射入空气发生反射时,红光临界角较大D.用同一装置进行双缝干涉实验,蓝光的相邻条纹间距较大5.如图为LC振荡电路在某时刻的示意图,则A.若磁场正在减弱,则电容器上极板带正电B.若磁场正在增强,则电容器上极板带正电C.若电容器上极板带负电,则电容器正在充电D.若电容器上极板带负电,则自感电动势正在阻碍电流减小6.如图所示是双缝干涉实验,使用波长为600 nm的橙色光照射时,在光屏上的P0点和P0点上方的P1点恰好形成两列相邻..的亮条纹;若用波长为400 nm的紫光重复上述实验,则P0点和P1点形成的明暗条纹情况是A.P0点和P1点都是亮条纹B.P0点是亮条纹,P1点是暗条纹C.橙光的相邻亮条纹间距小于紫光的相邻亮条纹间距D.若分别用上述两种光通过同一装置做单缝衍射实验,紫光的衍射现象更明显7.下列说法不正确的是()A.在电磁波谱中,紫外线的热效应好B.天空是亮的原因是大气对阳光的色散C.天空呈蓝色的原因是大气对波长短的光更容易散射D.晚霞呈红色的原因是蓝光和紫光大部分被散射掉了8.我国南宋时期的程大昌在其所著的《演繁露》中叙述道:“凡雨初霁,或露之未晞,其余点缀于草木枝叶之末……日光入之,五色俱足,闪铄不定。
文章标题:从麦克斯韦方程组到法拉第电磁感应定律:深度探索电磁学原理在电磁学领域中,麦克斯韦方程组和法拉第电磁感应定律是两个重要的概念。
它们之间的关系和推导过程值得我们深入探讨。
本文将从麦克斯韦方程组出发,逐步推导法拉第电磁感应定律,通过对这些理论原理的深度解析,希望能够帮助读者更好地理解电磁学的基本原理和概念。
1. 麦克斯韦方程组的重要性麦克斯韦方程组是描述电磁场在空间和时间中变化规律的基本方程,它由四个方程组成,分别是高斯定律、安培环路定律、法拉第电磁感应定律和麦克斯韦-安培方程。
这些方程统一了电场和磁场的描述,并且揭示了它们之间的密切关系。
深入理解麦克斯韦方程组对于理解电磁学原理至关重要。
2. 法拉第电磁感应定律的概念法拉第电磁感应定律是电磁学的重要基础定律之一,它描述了磁场的变化会引起感生电动势的现象。
这个定律的提出对于电磁学的发展具有重大的意义,也为后来电磁感应现象的研究奠定了基础。
理解法拉第电磁感应定律对于理解各种电磁现象具有重要意义。
3. 由麦克斯韦方程组推导法拉第电磁感应定律在麦克斯韦方程组中,法拉第电磁感应定律是其中一个方程,通过对麦克斯韦方程组进行分析和推导,可以得到法拉第电磁感应定律的表达式。
这个推导过程既复杂又精妙,需要运用一系列的数学方法和物理原理。
通过推导的过程,我们能够清晰地理解法拉第电磁感应定律的物理意义和数学表达。
4. 个人观点和理解在深入探讨麦克斯韦方程组和法拉第电磁感应定律的过程中,我对这些电磁学原理有了更深刻的理解。
我认为,这些定律不仅仅是理论上的概念,它们对我们理解电磁现象、应用电磁技术具有重要的指导意义。
通过深度探究这些定律的推导过程,也能够激发我们对物理学和数学的兴趣,促进我们对知识的进一步探索。
总结回顾通过本文的探讨,我们了解了麦克斯韦方程组和法拉第电磁感应定律的重要性和深刻意义,以及它们之间的关系。
从麦克斯韦方程组出发,逐步推导出法拉第电磁感应定律的过程,让我们更清晰地理解了这些电磁学原理的物理本质和数学表达。
介电常数电容介电损耗阻抗标题:深度解析介电常数、电容、介电损耗和阻抗在物理学和电工领域中,介电常数、电容、介电损耗和阻抗是一系列相互关联的重要概念,它们在电磁学、电子工程和材料科学中扮演着至关重要的角色。
本文将会对这些概念进行深入解析,并探讨它们在现实应用中的意义和价值。
一、介电常数1. 介电常数的定义在物理学中,介电常数是介质相对真空的电容率,通常用ε表示。
介电常数的大小直接影响着介质的电容性能和电磁场的传播特性。
2. 介电常数的影响因素介电常数受介质内部分子结构、外电场强度等因素的影响,不同介质的介电常数差异巨大。
3. 介电常数的作用介电常数决定了介质中电荷的分布和电场的传播速度,是材料的重要电学参数。
二、电容1. 电容的概念和分类电容是指导体上储存电荷的能力,根据结构和性能不同,电容可以分为平行板电容、电介质电容等多种类型。
2. 电容与介电常数的关系介电常数决定了电容器的电学性能,其大小直接影响着电容器的储能能力和工作特性。
三、介电损耗1. 介电损耗的成因介电损耗是介质在交变电场中发生能量损耗的现象,主要由介质内部的分子摩擦、极化、载流子效应等因素引起。
2. 介电损耗的影响介电损耗会导致电器件的热量产生、信号衰减等现象,直接影响着电路和电子设备的性能和稳定性。
四、阻抗1. 阻抗的概念和分类阻抗是指电路对交变电流的阻碍程度,可以分为纯电阻、纯电感和纯电容等不同类型。
2. 阻抗与介电常数的关系介电常数会影响电路中的电容器和电感器的阻抗大小和相位差,是电路分析和设计的重要考量因素。
总结和回顾通过本文的深度解析,我们对介电常数、电容、介电损耗和阻抗的概念和关系有了更清晰的认识。
在实际应用中,我们需要根据材料的介电常数和电容特性来设计和选择合适的电器件,同时要重视介质的介电损耗和电路的阻抗匹配,以确保电路和系统的性能和稳定性。
个人观点和理解作为一个电子工程师,我深知介电常数、电容、介电损耗和阻抗在电路设计和材料选择中的重要性。
广域电磁法解析灵敏度矩阵-概述说明以及解释1.引言1.1 概述在广域电磁法领域,灵敏度矩阵是一种重要的工具,用于分析地下介质的电磁响应特性。
通过对地下材料对电磁场的响应进行分析,我们可以获取到更加准确的电磁参数信息,并帮助地质勘探工作者更好地理解地下构造和储集层特征。
本文将重点讨论广域电磁法解析灵敏度矩阵的计算方法和应用意义,从而为相关研究和实践提供参考和指导。
1.2 文章结构文章结构部分需要对整篇文章的组织结构进行说明,包括各个章节的内容概述和连接关系。
在本篇文章中,主要分为引言、正文和结论三个部分。
引言部分主要介绍了文章的背景和目的,使读者对广域电磁法解析灵敏度矩阵有一个整体的了解。
在本篇文章中,引言部分包括概述、文章结构和目的三部分。
概述部分简要介绍了广域电磁法以及其在地质勘探中的重要性;文章结构部分即为当前所在章节,说明了文章的整体框架和各个部分的内容;目的部分说明了本文的研究目的和意义。
正文部分是文章的核心部分,主要介绍了广域电磁法的基本原理、灵敏度矩阵的概念以及解析灵敏度矩阵的重要性。
这部分内容将比较详细地介绍相关知识和理论,从而阐述本文的研究内容和观点。
结论部分对整篇文章进行总结和展望,概括并强调了本文的重点内容和研究成果。
在本篇文章中,结论部分包括总结、应用前景展望和结论三部分。
总结部分总结了文章的主要内容和论点,应用前景展望部分展望了广域电磁法解析灵敏度矩阵在未来的应用前景,结论部分对本文的研究成果进行总结和概括。
1.3 目的:本文的主要目的是探讨广域电磁法解析灵敏度矩阵在地球物理勘探中的重要性和应用。
通过对广域电磁法和灵敏度矩阵的概念进行介绍和分析,希望能够说明广域电磁法解析灵敏度矩阵在勘探实践中的作用和价值。
同时,本文也将展望广域电磁法解析灵敏度矩阵的未来发展方向,为相关领域的研究和应用提供参考和借鉴。
通过深入探讨这一主题,旨在推动广域电磁法技术的发展,促进地球物理勘探领域的进步和创新。
1、波长波长是描述信号在一个波长内的变化情况,其实就是相位和幅度变化情况,理想情况下电压、电流按正弦波规律变化,对应的电场和磁场也是按这个变化,在一个长的均匀平行传输线中,每隔一个波长位置信号电压是完全相同的,每隔半个波长位置信号电压是完全相反的2、波长和器件尺寸问题若信号的频率是50Hz,那么它的波长就是6000Km,那么所有器件尺寸在此波长下都不足为奇,所以信号在经过某个器件时基本上认为其相位和幅度没有变化;如果信号频率是3000MHz,那么波长为10cM,如果一个两根传输线同时传输此信号,若一根信号比另一根短5CM,那么其信号相位差90°,因该说信号频率越高,其波长越短,其对于所走路径的尺寸越敏感。
3、信号与能量信号只是一个信息或者说事件,其本身不具备什么意义,能量是信号的载体,信号的传递即为能量的传递,能量是以电场和磁场的形式存在的(比如在平衡传输线中,我们更喜欢使用两根平衡传输线上面分布了正负电荷形成的电场来分析,这个电场到哪儿了,与其相垂直的电荷就到哪了了),电场分布于两个导线之间(存在压差即存在电场),磁场环绕于导线外围(存在电流即存在磁场)。
4、导线电场理想的导线连接电池和负载时,因导线是理想导体,故其正负极的导线得电压就等于电池的正负极电压,因为存在电位差,故两导线之间存在电场。
5、理想导体内部不存在电场,因为其出处等电势,这只是针对直流电或者低频电路来说的,对于高频电路其实存在电压差,即存在电场。
6、在闭合电路里面电路能量形式:7、四分之一周期信号变化形式:假设一个300MHz的正弦波信号,其波长为1m,四分之一波长即为0.25m,从电压的角度来说就是从0变到最大值的时间或者说所走的路程,如下图:假设负载为20欧姆,Vdc电压为20V,取电池中心点为参考点,那么正极为10V,负极为-10V,四分之一周期后的波形如下图所示。
标识(1)处正极为10*Cos(75) = 2.6V,(2)处正极为10*Cos(60)=5V,依次类推。
两导线对称点之间的电压从负载20V到信号源0V依次变小深度解析:(1)与(2)的线电压差就有2.4V,因为理想导线内部是不允许有电场的,那么这个因为电场正弦分布引起的导线线电压差必须要由另外一个反电动势来抵消。
这个时候,必须要降低(1)、(2)之间的导线电流(因为电场方向是从(2)到(1),所以电流变小),电流对应的是磁场,变小的磁场产生一个反电动势抵消(1)、(2)的导线线电压差(楞次定律),依次类推到负载,于是导线上的电流也是按照正弦波规律从信号源的0A到负载最大值的1A。
8、一个周期正弦波信号变化300MHz的正弦波信号的一周期就是电压幅度从0到0的过程,具体变化如下:一个周期内形成了2个方向相反的电流圈。
9、两个周期正弦波信号变化信号源按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。
这个相当于在一个周期内形成了4个电流圈,用圈表示,仅为形象简化,表示半个周期,紧挨着的相反的一对为一个周期。
当频率越高,圈圈的密度就越大,圈圈内包含的就是能量,电场(电压)和磁场(电流)的能量。
一个个圈圈的从信号源传到负载那儿去,电磁场的传输很像现在的高速铁路,传输线两根导线,如同铁轨,要均匀对齐,这样适合电场和磁场均匀无变化的向前推进,每节车厢里装两个圈圈,一正一反的,一个波长。
这列火车有N节车厢,一直不停的往前开。
深度解析:电磁场或者说电磁波是一种波,波的传输是质点在随时间做上下正弦波的运动,其位置是不变的,但是其同一位置在不同时刻的能量是不同的,即能量在传输。
针对质点的分析,如果横坐标是时间,那么就只是针对此质点的能量变化进行分析,如果横坐标是距离,那么是针对此波上面所有的质点的能量变化的描述。
10、电场与磁场共存导线线方向的电压差,由垂直围绕导线的磁场变化产生的反电动势来抵消。
同理,导线线方向的电流差,由垂直导线放射型的电场变化产生的反磁动势来抵消。
传输线两导线之间的电场分布如下图所示,当这个电场变化的时候,会产生对应垂直于电场的磁动势,也就产生了磁场,如上右图所示,实线为电场,虚线为磁场。
变化的电场所产生的磁场,是垂直电场的,垂直导线,围绕导线的。
这就是传输线里面,电磁场磁生电、电生磁本质,都是为了一个平衡。
深度解析:首先因为电压呈现正弦波变化,所以在导体不同地方的电压是不同的,故而形成导体内部的电场,导体内部的电场是与电流方向相反的,因为导体内部不存在电场,所以需要将其抵消,此电厂阻碍了电流,故其使电流将要变小,即磁场变小,由楞次定律可知,会产生一个反向电动势阻碍磁场变小,此电动势就可以和导体内部电压抵消;导线之间的电场的变化同样会形成磁场,传输线两导线之间的电场分布如下图所示,当这个电场变化的时候,会产生对应垂直于电场的磁动势,也就产生了磁场,如上右图所示,实线为电场,虚线为磁场。
变化的电场所产生的磁场,是垂直电场的,垂直导线,围绕导线的;故磁场由两部分产生,即磁场由两部分产生,一部分是电荷移动产生的电流对应的磁场,一部分是变化的电场产生的磁场(即麦克斯韦方程(1))11、特性阻抗从1/4波长图上我们可以看到,当电场、磁场在导线线方向都满足正弦,磁场变化产生的反电动势与导线线方向上的电压差是线性一致的,同理,电场变化产生的磁动势跟导线线方向上的磁压差是线性一致的,因为线性一致,若电场强度与磁场强度之间若满足一定的比例关系,则反电动势等于电压差,反磁动势等于磁压差。
那么这时电场强度、磁场强度的比例关系,就叫做传输线阻抗,它表征了能让传输线传递电磁场所要求的电场与磁场之间强度的关系。
Z = E/H12、传输线模型书本上的传输线模型如下图:实际的传输线模型是这样的:因为电磁场中,磁生电、电生磁,两者是相互转换的,这从能量守恒角度来讲,电场能量必然等于磁场能量,所以有以下公式:1/2*C*U*U= 1/2*L*I*I整理可得Z = SQR(L/C),SQR为根号13、麦克斯韦方程方程(1)为安培环路定律,磁场由两部分产生,一部分是电荷移动产生的电流对应的磁场,一部分是变化的电场产生的磁场(可理解为传输线之间的电场)。
方程(2)为法拉利电磁感应定律,因为现实中还不存在磁单极,所以电场只由变化的磁场产生。
方程(3)因为不存在磁单极,所以磁场只存在漩涡磁场。
方程(4)为高斯定律,因为存在正负电荷,所以存在激励辐射电场。
深度解析:(1)我们回到传输线中,导线线方向存在电流差,所以存在磁压差,这个磁压差由垂直于导线辐射的电场变化产生的反磁动势来抵消,满足方程(1)。
(2)导线间电场按正弦波分布,所以导线线方向存在的电压差,这个电压差由垂直围绕导线的磁场变化产生的反电动势来抵消,满足方程(2)。
(3)按照(1)、(2)方程基于数学推导的结果,波形只能是正弦波,并且很容易导出阻抗及传输速度C。
14、震荡与电磁波振荡是L与C中的电磁能量互为转换的过程,但不是同一时刻相互进行的。
这一时刻电场能量变成磁场能量,下一时刻,磁场能量变成电场能量。
若用二维坐标轴描述,它们在Y 轴一维上进行,震荡是之前有能量输入,所以才会在电能和磁能之间转换,单纯的LC是没办法自主产生能量的,其能量来自于外因。
电磁波是电场与磁场相互转换,同时进行的,电场的变化引起磁场的变化,磁场的变化引起电场的变化,所以其是同时进行的,故其相位是相同的。
所以无法在二维坐标轴的Y 轴上描述,必须要基于三维坐标轴空间表达,但因为电场和磁场在空间上按Y、Z轴分布,Y、Z轴本身就已经相差90度了,所以电场与磁场幅度在Y、Z上就同相位了,这就是波的概念,对于波来说只要其行进方向正交即可,而不是时域上面的正交。
从扩散角度看电磁场下图为的平板电容器的电场模型图:红线为正极电板,下面黑线为负极电板,蓝色带箭头线为电场。
那么,这个电场是怎么扩散出去的呢?我们很自然的想到在我们生活中,存在各种各样的扩散现象,比如水滴落到地面的扩散,不同密度的气体的扩散等等,这些扩散,都是基于一个基本理论基础,牛顿定律:F = M * A,在力的作用下对水分子或者气体分子产生加速度。
扩散的快慢取决于力的大小及质量的大小。
我们把这个平板电容器,接上电阻负载,如下图模型:我们试着从电荷的扩散角度解释电路问题,正极因为缺少电子而表现为正电荷,负极因为有过多的电子,而表现为负电荷。
越靠近电容端,电荷密度越高,同种电荷相互排斥,相反电荷相互吸引,所以存在扩散基础,通过扩散电荷实现了电流。
以上这个解释,属于经典物理的解释,比较容易接受,实际上,这样的观点,也可以起很大的作用,起码让自己不惑,可以解释很多现象,比单纯的电路回路概念,提高了一个等级。
因为这个扩散模型表达了信号是从源端到负载的过程,更接近电磁场理论了。
常规的电路理论,脑子中,电子是从负极出来经过负载再回到正极,走一圈回去。
但是,以上的电荷扩散模型存在一个致命的逻辑错误,那就是,电荷,也就是电子存在质量,而我们都知道,信号的建立是光速,而要想达到光速,质量必须为零,所以,基于电荷的扩散模型,跟理论冲突,不符合实际。
那么这个模型中,那个东西是不存在质量的呢?那就是电场,电场是不存在质量的,所以具备达到光速的可能。
但是又有一个逻辑问题,那就是,电场的质量为零,加速度应该是无限的,最终速度应该是无限的,为什么是光速定值呢?我们再看物理学,有一个很有意思的现象,所有的公式,都是一个“等式”,自然界不存在“极点”,无穷大,那么既然电场的质量为零而导致加速度无穷大,速度无穷大,这个不符合自然界特点,所以,自然界必须引入另一个质量也为零的场,而这个场与电场的特性恰好相反以解决无穷大问题,这就是磁场,电场与磁场满足安培定律和法拉第定律,相互约束。
电场与磁场是一阴一阳,相生相克的,如同男女,相互支持,相互约束,以近20年为一代的速度繁衍生息,而电场与磁场呢,恰好以速度C向前推进的时候,电场与磁场取得平衡,可以理解为速度C就是电场与磁场推进的平衡点,这个很类似L、C谐振回路的谐振点,只是普通的L、C回路,电场和磁场分别约束在L与C中,能量在一个维度上来回震荡当电场能量最大时,磁场能量为0,当磁场能量最大时,电场能量为0,可以认为两者相位相差90度正交,而电磁场,电场与磁场分布在三维空间上,电场与磁场为90度正交场,运动方向在第三个维度上,因为空间上电场与磁场已经成正交90度了,所以运行时,两者同相位运行,同时最大,也同时最小,以正弦波的方式向前运行。