巧抓不变量解题
- 格式:doc
- 大小:77.00 KB
- 文档页数:2
抓不变量解题方法(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如故事大全、作文大全、教案大全、游戏大全、句子大全、诗词大全、家庭教育、幼儿教育、小学教育、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of classic sample essays, such as stories, composition, lesson plans, games, sentences, poems, family education, early childhood education, primary education, other models, etc. If you want to know the difference Please pay attention to the format and writing of the sample essay!抓不变量解题方法奥数学习有利于训练孩子的思维能力,让孩子在解题的过程中能够从不同的角度进行思考。
六年级化学抓住不变量解应用题在化学研究中,我们经常遇到一些解应用题的情况。
解应用题的关键是能够抓住其中的不变量,并且应用相应的化学知识进行解答。
本文将介绍一些六年级化学解应用题的技巧和方法。
1. 熟悉化学基础知识在解应用题之前,首先要掌握一些基础的化学知识。
这包括化学元素、化合物的性质和反应等。
只有对这些基础知识有一定的了解,才能在解应用题时游刃有余。
2. 确定问题的不变量在解应用题时,需要仔细阅读问题,并确定其中的不变量。
不变量是指在问题中始终保持不变的物质或性质。
通过确定不变量,可以简化问题,将其转化为更容易解答的形式。
例如,如果问题中涉及到水的蒸发过程,那么水的性质就是一个不变量。
我们可以根据水的性质,结合蒸发的原理进行解答。
3. 运用相应的化学知识一旦确定了问题的不变量,就可以运用相应的化学知识进行解答。
这可能涉及到化学方程式、物质的量关系、溶解度等知识。
例如,如果问题是关于溶解度的,我们可以通过查阅相关的化学手册或者使用溶解度规律进行解答。
4. 灵活运用数学方法解应用题时,有时也需要进行一些数学计算。
这可能涉及到浓度的计算、物质的量的转化等。
例如,如果问题需要计算溶液的浓度,我们可以利用溶液的质量和体积数据进行计算。
5. 独立思考和反思在解应用题的过程中,要保持独立思考和反思的能力。
不仅要理解问题的背景和要求,还要审视解决方法是否合理和有效。
通过不断地思考和反思,我们可以提升解决问题的能力,更好地应对化学研究中的应用题。
总之,化学解应用题需要我们掌握化学基础知识,抓住问题的不变量,并灵活运用相应的化学知识和数学方法进行解答。
同时,我们还要保持独立思考和反思的能力,不断提升自己的解决问题的能力。
抓不变量解题技巧
抓不变量是解题中重要的技巧之一。
不变量是指在问题的求解过程中保持不变的性质或条件。
通过抓住不变量,可以帮助我们更好地理解问题,分析问题,以及找到解决问题的方法。
以下是一些抓不变量的技巧:
1. 观察问题的性质:仔细观察问题,找出其中保持不变的性质。
这可能涉及到数据结构的变化、某种关系的变化或者特定的条件。
2. 列举特例:通过列举一些特殊情况,观察问题的变化规律。
这可以帮助我们找到问题保持不变的部分,并推导出通用的规律。
3. 使用归纳法:如果可以证明某种性质在问题的每一步都得以保持,那么该性质就是一个不变量。
使用归纳法来证明问题中的不变量,可以帮助我们更好地理解问题的解决过程。
4. 分析问题的关键步骤:将问题的求解过程分解为多个步骤,分析每个步骤中保持不变的性质。
这有助于我们更好地理解问题的解决方法,并指导我们进行下一步的求解。
5. 使用反证法:如果可以证明存在某个假设,使得问题的不变量被破坏,那么这个假设就是错误的。
通过使用反证法,可以帮助我们找到问题的不变量,并排除一些错误的假设。
6. 运用数学技巧:对于一些数学问题,我们可以使用一些数学技巧来抓住不变量。
例如,使用数学归纳法,找到问题中递推的关系等。
以上是一些常用的抓不变量的技巧,通过运用这些技巧,我们可以更好地分析和解决问题。
六年级奥数——抓“不变量”解题一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
二、精讲精练【例题1】将4361 的分子与分母同时加上某数后得79,求所加的这个数。
解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的79 ,由此可求出新分数的分子和分母。
”分母:(61-43)÷(1-79 )=81分子:81×79 =6381-61=20或63-43=20解法二:4361 的分母比分子多18,79的分母比分子多2,因为分数的 与分母的差不变,所以将79的分子、分母同时扩大(18÷2=)9倍。
① 79 的分子、分母应扩大:(61-43)÷(9-7)=9(倍)② 约分后所得的79 在约分前是:79 =7×99×9 =6381③ 所加的数是81-61=20答:所加的数是20。
练习1:1、 分数97181 的分子和分母都减去同一个数,新的分数约分后是25 ,那么减去的数是多少?2、 分数113 的分子、分母同加上一个数后得35 ,那么同加的这个数是多少?3、319 的分子、分母加上同一个数并约分后得57,那么加上的数是多少? 4、 将5879 这个分数的分子、分母都减去同一个数,新的分数约分后是23,那么减去的数是多少?【例题2】将一个分数的分母减去2得45 ,如果将它的分母加上1,则得23 ,求这个分数。
解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得45”可知,分母比分子的54 倍还多2。
由“分母加1得23 ”可知,分母比分子的32 倍少1,从而将原题转化成一个盈亏问题。
抓不变量解决问题-61+121+201+…..+ 99001 34-158-3512- 6316 -……-96031961+261+3121+4201+……+3311221 4321⨯⨯+5431⨯⨯ +6541⨯⨯在许多应用题中,看似很复杂,只要抓住某一个量是不变的,问题就好解决了。
和不变,也就是总量不变,就以不变量为单位“1”,再用“量”“率”对应解题,就很简单了。
有些应用题中,原来两个量的总量不同,它们用去同样多后,所剩下的总量还是不同的,但是,原来总量的差等于现在两个量的差,它们的差是不变的抓住部分量不变为突破口进行分析数量关系,能使学生理清解题思路,突破难点,达到化难为易。
例1:第一桶柴油的重量是第二桶的6 倍,从第一桶取出12 千克柴油加入第二桶,这时第一桶柴油的重量是第二桶的4 倍,原来第一桶有柴油多少千克?分析:两桶柴油的重量总是不变的,又未知,要看作单位“1”的量。
练习:小强和小明各有图书若干本。
已知小强的图书本数占两人图书总数的60%,当小强借给小明20 本后,小强和小明图书本数的比是2:3。
两人一共有图书多少本?例2:新兴小学六年级有两个班,六年一班有学生48 人,六年二班有学生56 人,两个班各转出相同的人数后,六年二班人数还比六年一班人数多112,两个班各转出多少人? 分析:两个班的人数都发生了变化。
谁不变呢?惟有转出人数相同是不变的量,所以转出前后两班人数差是不变的。
练习:甲电话是乙电话价格的之比是37,如果他们的价格分别上涨70 元后,甲电话价格是乙电话价格的47。
这两种商品原来的价格各是多少元?例3:两个工程队,原来甲队人员比乙队少41,后来甲队增加21 人,这时乙队人员是甲队的98,现在甲队有多少人? 分析:题目中乙队人数是不变量,又不易直接求出,所以必须以乙队人员为单位“1”的量。
练习:有两根塑料绳,一根长80 米,另一根长40 米,如果从两根上各剪去同样长的一段后,短绳剩下的长度是长绳剩下的72,两根绳各剪去多少米?例4:学校阅览室有36 名学生看书,其中女生占94,后来又有几名女生来看书,这时女生人数占所有看书人数的199。
六年级奥数——抓“不变量”解题一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
二、精讲精练【例题1】437将的分子与分母同时加上某数后得,求所加的这个数。
619解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是7分母的,由此可求出新分数的分子和分母。
”97分母:(61-43)÷(1-)=8197分子:81×=63981-61=20或63-43=20437解法二:的分母比分子多18,的分母比分子多2,因为分数的与分母的差不变,所以6197将的分子、分母同时扩大(18÷2=)9倍。
97①的分子、分母应扩大:(61-43)÷(9-7)=9(倍)9777×963②约分后所得的在约分前是:==98199×9③所加的数是81-61=20答:所加的数是20。
1练习1:9721、分数的分子和分母都减去同一个数,新的分数约分后是,那么减去的数是多少?1815132、分数的分子、分母同加上一个数后得,那么同加的这个数是多少?13535 的分子、分母加上同一个数并约分后得、,那么加上的数是多少?31975824、将这个分数的分子、分母都减去同一个数,新的分数约分后是,那么减去的数是793多少?【例题2】42将一个分数的分母减去2得,如果将它的分母加上1,则得,求这个分数。
534解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得”5523可知,分母比分子的倍还多2。
由“分母加1得”可知,分母比分子的倍少1,432从而将原题转化成一个盈亏问题。
35分子:(2+1)÷(-)=12243分母:12× -1=172解法二:两个新分数在未约分时,分子相同。
小升初数学要抓不变量解题知识导航:在小学数学应用题中犹以分数应用题为学生的一大难点。
其中一类分数应用题以其特有的结构和数理关系使多数学生难以入手。
为此,经过多年的实践和摸索,我总结了一套行之有效的方法,让教者易教,学者易学。
那就是找准题目中的不变量,以不变量为突破口,根据数量间的数理关系解决问题。
抓不变量问题主要分以下三种情况。
一.抓住“和不变”在许多应用题中,看似很复杂,只要抓住某一个量是不变的,问题就好解决了。
和不变,也就是总量不变,就以不变量为单位“1”,再用“量”“率”对应解题,就很简单了。
例如:第一桶柴油的重量是第二桶的6 倍,从第一桶取出12 千克柴油加入第二桶,这时第一桶柴油的重量是第二桶的4 倍,原来第一桶有柴油多少千克?分析:两桶柴油的重量总是不变的,又未知,要看作单位“1”的量。
则“取前”第二桶占两桶总量的1÷(1 6)=1/7,“取后”第二桶占两桶总量的1÷(1 4)=1/5,第一桶取前取后差12千克,占两桶总量的1/5-1/7=2/35,故两桶总量为:12÷2/35=210(千克)。
原来第一桶:210×6/7=180(千克)二. 抓住“差不变”有些应用题中,原来两个量的总量不同,它们用去同样多后,所剩下的总量还是不同的,但是,原来总量的差等于现在两个量的差,它们的差是不变的。
例如:新兴小学六年级有两个班,六年一班有学生48 人,六年二班有学生56 人,两个班各转出相同的人数后,六年二班人数还比六年一班人数多2/11,两个班各转出多少人?分析:两个班的人数都发生了变化。
谁不变呢?惟有转出人数相同是不变的量,所以转出前后两班人数差是不变的,又未知,必须要先求出来。
即两班人数差为:56-48=8(人),对应转出后六年二班人数还比六年一班人数多2/11。
因此转出后一班人数为:8÷2/1144(人),转出人数是:48-44=4(人)。
抓住不变量解分数应用题的方法例1、甲乙两个班,甲班的人数是乙班的54,现在从甲班调2位男生到乙班,这时甲班的人数是乙班的43。
甲班原有多少人?分析与解答:解决这道题的关键就是抓住两班的总人数不变,由于甲班的人数是乙班的54,则甲班人数是两班总人数的454+=94,同理从甲班调2位男生到乙班,这时甲班的人数是两班总人数的433+=73,这时乙班男生人数比甲班男生人数多了总数的73-94=631,则总人数的631就是从甲班调2位男生到乙班的人数所对应的分率,那么两班的总人数就是2÷631=126(人),再由甲班的人数是乙班的54可知,甲班人数占总人数的94,因此甲班有126×94=56(人)。
例2、六(1)班男生是女生的54,后来又招来2名女生,现在男生是女生的43。
六(1)原来有多少人?分析与解答:解决这道题的关键是抓住招聘前后的男生人数不变,由于招聘前男生是女生的54,则女生人数是男生人数的45,后来又招来2名女生后女生人数是男生人数的34,这时女生人数就比男生人数多了34-45=121,那么男生人数有2÷121=24(人),由男生是女生的54可知,男生人数是全班人数的454+=94,所以六(1)原来有24÷94=54(人)。
例3、六年级男生占全年级人数的52,现在男生和女生各增加100人,这时男生人数占全年级人数的125。
现在六年级男生、女生各有多少人?分析与解答:解决这道题的关键是抓住男女生人数差不变,增加前,男女人数差占全年级的523-=51=102(差相同),增加后,男女人数差占全年级的1257-=122,因为男生和女生各增加100人,那么总人数就增加了100×2=200(人),由上面分析可知,总人数增加200人以后,总人数增加了12-10=2(份),说明每份就是200÷2=100(人),又因为男生和女生各增加100人后男生人数占全年级人数的125,说明现在男生人数占5份,女生人数占12-5=7份,所以现在男生人数有100×5=500(人),女生有100×7=700(人)。
抓“不变量”解题【知识、方法梳理】一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
【典例精讲】例1. 将4361 的分子与分母同时加上某数后得79,求所加的这个数。
解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的79,由此可求出新分数的分子和分母。
”分母:(61-43)÷(1-79)=81分子:81×79=6381-61=20或63-43=20 解法二:4361 的分母比分子多18,79的分母比分子多2,因为分数的 与分母的差不变,所以将79的分子、分母同时扩大(18÷2=)9倍。
① 79的分子、分母应扩大:(61-43)÷(9-7)=9(倍)② 约分后所得的79 在约分前是:79 =7×99×9 =6381③ 所加的数是81-61=20答:所加的数是20。
练习1:1、 分数97181 的分子和分母都减去同一个数,新的分数约分后是25,那么减去的数是多少?2、 分数113 的分子、分母同加上一个数后得35,那么同加的这个数是多少?3、 319 的分子、分母加上同一个数并约分后得57 ,那么加上的数是多少?4、 将5879 这个分数的分子、分母都减去同一个数,新的分数约分后是23 ,那么减去的数是多少?例2:将一个分数的分母减去2得45,如果将它的分母加上1,则得23,求这个分数。
解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得45”可知,分母比分子的54倍还多2。
由“分母加1得23”可知,分母比分子的32倍少1,从而将原题转化成一个盈亏问题。
分子:(2+1)÷(32-54)=12分母:12×32-1=17解法二:两个新分数在未约分时,分子相同。
巧抓不变量解题概念即解释:巧抓不变量,又称作约束条件的常数法,是在求解复杂数学问题时不变量的一种重要思维方式,它可以为我们节省推理时间,减轻推理负担,提高求解效率。
巧抓不变量,就是抓住某些数学问题中不变的量,联系它们与其他变量间的性质关系,来求解复杂数学问题。
它不仅可以帮助我们快速推导出结果,还能保证我们推导出的结果是正确的。
如何使用巧抓不变量?1、首先,我们要充分理解问题,熟记易忘的概念。
完全理解问题的前提是熟知各种概念,如果你能够充分理解概念,无论是数学概念还是其他科学概念,你就能够认真考虑和解决问题,这对于抓住不变量来说至关重要。
2、其次,我们要把握解题的正确思路。
在解答数学问题的过程中,除了充分理解概念之外,我们还要把握正确的思路,比如说,可以从已知条件出发,分析各种可能的解法,来寻找最合适的解决方案,或者直接从基本方程出发,构造出更复杂的方程组,以此达到找出答案的目的。
3、再次,我们要通过抓住不变量来解决复杂数学问题。
复杂数学问题尤其容易让我们懵懂,无从下手,这时就要冷静地分析,找出不变量,这种情况下,我们要避开不可变更的量,而对被赋予一定性质的量进行记录,并说明它们之间的关系,这种方法可以让你仅涉及必要的变量,从而加快求解的速度,提高求解的效率,而不受各种局部变量的影响,使你的推理路径变得简单清晰明了。
举例说明巧抓不变量的作用:以三角形的唯一性为例,三角形的唯一性的证明如下:(1)三边a、b、c同时相等,则三角形一定是等边三角形,唯一性成立。
(2)若两边相等,一边不等,则3角形为等腰三角形,依据三角形的关系式:a + b > c,且a <b +c,此时我们可以抓住a、b、c 三个不变量中的2个不变量,来确定最后一个变量的值,即此时的三角形一定是等腰三角形,唯一性成立。
(3)若三边都不相等,根据勾股定理,可以抓住a + b = c 三个变量中的2个不变量,来确定最后一个变量的值,即此时的三角形一定是直角三角形,唯一性成立。
六年级奥数抓不变量解题
在六年级奥数中,抓不变量是一种常用的解题方法。
抓不变量是指在问题的每一步变换中,通过找到一个保持不变的性质来解决问题。
以下是一些常见的抓不变量解题方法和例子:
1. 总数不变:问题中的某些属性总数保持不变。
例子:有一串递增的连续整数,如果删除其中一个数,则剩下的数可以排成递增的连续整数。
这里总数不变的抓不变量是递增的连续整数的总数。
2. 和不变:问题中的某些数的和保持不变。
例子:一个棋盘上有若干个棋子,每次转动或移动棋盘上的一行或一列。
证明每次转动或移动后,棋盘上白色棋子的和与黑色棋子的和保持相同。
这里和不变的抓不变量是白色棋子的和与黑色棋子的和。
3. 差不变:问题中的某些数之间的差保持不变。
例子:有一组数字,每次选择其中的两个数a和b,然后将它们替换为a+b 和|a-b|。
证明无论选择哪两个数,替换后的数列的最小值都保持不变。
这里差不变的抓不变量是任意两个数的差的绝对值。
抓不变量方法通常需要通过观察问题的性质和变换规律来发现,并根据它们构造合适的抓不变量。
通过抓不变量,可以简化问题的复杂性,提供思考方向,使问题的解决更加直观和简单。
抓住不变量,份数巧解题江苏省江阴市:蒋仪有些分数或比的应用题,在进行解答时,如果能抓住不变的量,运用份数解题,能解得更巧妙。
例1、一只袋子里原有红球与白球的数量比是19∶13,如果放进若干只红球后,红球与白球的数量比是5∶3;如果再放进若干只白球后,红球与白球的数量比是13∶11。
已知放入的红球比白球少80只,问原先袋子里有红球和白球各多少只?分析与解答:因为袋子里原有红球与白球的数量比是19∶13,19∶13=57∶39;当放入若干只红球后,这时红球与白球的数量比是5∶3,5∶3=65∶39。
即可得,当白球未曾发生变化,放进若干只红球后,红球比原来增加了:65-57=8份。
当再次放进若干只白球后,红球没有发生变化,而这时红球与白球的数量比是13∶11,13∶11=65∶55。
这时红球没有变化,仍为65份,而白球却比原来多了:55-39=16份。
因为当放进若干只红球后,红球比原来多了8份,再放进若干只白球后,白球比原来多了16份,可知放进的红球比白球少放进了:16-8=8份,红球比白球正好少放了80只,因此可知,每份球的只数为:80÷8=10(只)。
因此可求得原来红球的只数为:10×57=570(只)。
白球的只数为:10×39=390(只)。
例2、某种浓度的盐水中,加入若干水后,得到的盐水浓度为20%;如果在新盐水中再加入与前面相等重量的盐后,盐水的浓度为1/3,求原来盐水的浓度是多少?分析与解答:因为某种浓度的盐水中,加入若干水后,得到的盐水浓度为20%,20%=1/5,即可得,加入若干水后得到的新盐水中,盐为1份,水为:5-1=4份,当再在新的盐水中加入与前面相等重量的盐后,盐水的浓度为1/3,1/3 =2/6 ,这时盐为2份,水仍为:6-2=4份,比原来多了1份盐,因此可得,原来盐水为盐的重量为1份,在原来的盐水中加入的水的重量也为1份,因此可知,原来的盐水中。
第5讲 巧抓不变量解题
知识导航
在解决分数应用题时,有些时候需要找准题目的不变量,抓不变量来解决。
共有三种形式:一是抓住和不变;二是抓住部分不变;三是抓住差不变。
精典例题
例1:有含糖率为7%的糖水600克,要使含糖率变为10%,需再加入
多少克糖? 思路点拨
模仿练习
有含盐率15%的盐水200千克,要使含盐率降为5%,需要加水多少千克?
例2:某校合唱队人数是舞蹈队人数的2
3,如果将合唱队队员调10人到舞蹈队,则合唱队人数变为舞蹈队人数的8
7,原合唱队有多少人?
思路点拨
模仿练习
某校一年级有两个班,一班人数是二班人数的5
3,从二班调5人到一班后,一班人数是二班的人数的9
7,求原来一、二班共有多少人?
例3:将40千克含盐25%和60千克含盐10%的两种盐水混合在一
起,求混合后盐水的浓度。
思路点拨
模仿练习
浓度为 70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后所得的酒精溶液的浓度是多少?
例4:某校六年级有学生260人,其中男生占全年级总数的13
8
,为了让女生至少能占总人数的7
3,那么至少还要招多少名女生?
模仿练习
一个装有各种颜色钢笔的盒中,共装有36支,其中黑色钢笔支数占总数的
125,后来又放进一些黑色钢笔,这时黑色钢笔占总数的3
2
,后来放进多少支黑色钢笔?现在共有黑色钢笔多少支?
拓展练习
1. 五一班原计划抽5
1的人参加大扫除,临时又有2人主动参加,使实际参加大扫除的人数是余下人数的3
1,则原计划抽出多少人参加大扫除?
2.某学校开学时中学生占
100
61
,后来有50名小学生转入,这样中学生就只占全校人数的5
3。
那么开学时有小学生多少人?
家庭作业
1. 把含盐10%的盐水20千克,改制成含盐20%的盐水。
需要加盐多少千克?
2. 有盐水750千克,含盐20%,加了一些水后含盐8%,加水多少千克?
3. 将80千克含盐25%和20千克含盐10%的两种盐水混合在一起,求
混合后盐水的浓度。
4.乙包糖的重量是甲包糖重量的4
1,如果从甲包中取出10克放入乙包后,乙包的重量就变为甲包的7
5。
两包糖一共重多少克?
5.一堆棋子有黑、白两种颜色,其中黑子占
17
6
,若取走14枚白子,这时黑子占9
4
,那么这堆棋子原来有多少枚?(2009年成外小升初试题)
思维点拨:可以抓黑子不变,用列方程来解。