可用二项移动平均法预测 (28.25+26.75)÷2=27.5(万公升)
• 根据季节模型预测各季销售量
一季度:27.5×124.4%=34.21(万公升) 二季度:27.5×90%=24.75(万公升) 三季度:27.5×77.5%=21.31(万公升) 四季度:27.5×108.1%=29.73(万公升)
直线趋势方程为:yt=a+bt,见P159书上例子
三、数 学 模 型 法
数学模型法是根据动态数列的资料配合一个 方程式,据以计算各期的趋势值。
直线趋势的测定方法
如果动态数列逐期增长量相对稳定,则采用直线 作为趋势线,来描述动态数列的趋势变化,并进 行预测。
直线趋势方程为: yc abt
公式中: yc 因变量,代表所研究现象的预测值
t 自变量,代表时间的序号
a、b为方程参数
用最小平方法求解方程参数 a、b:
bnn tty2 ( t t)2y
aybtybt nn 例题:教材P403表9-18
1990—2019年粮食产量资料
年份
时间代 粮食产
码t
量y
t2
ty Yc=80.23+5.23t
1990
1
85.6
曲线趋势的测定与分析(略)
• 时间数列的变动趋势有直线型和曲线型,在 建立方程之前先要确定趋势的形态,判断趋 势的形态的方法主要有:(1)画散点图(2)根据 动态分析指标分析.而直线型变动是曲线型 变动分析的基础.
根据散点图的分 布规律进行选择
直线型
o
抛物线型
o
指数曲线型
季节变动的测定与分析
• 季节变动及意义 • 季节变动是指某些现象由于受自然因素和