七年级数学正数和负数
- 格式:pdf
- 大小:776.13 KB
- 文档页数:10
人教版七年级数学上册:1-1、正数和负数(含知识点、练习与答案)人教版七年级数学上册:第一章:有理数1.1、正数和负数【知识点总结】1、正数和负数的概念负数:比0小的数;正数:比0大的数;0既不是正数,也不是负数。
2、注意:①当字母x表示正数时,-x是负数;当字母x表示负数时,-x是正数;当字母x表示0时,-x是0。
②正数有时也可以在前面加“+”,有时“+”可以省略不写。
3、具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有与该正数相反意义的量。
4、0表示的意义(1)0表示“没有”;(2)0是正数和负数的分界线,0既不是正数,也不是负数;(3)0表示一个确切的量。
【新课同步练习】1、下列各数中,是负数的是()。
A、0.8B、-5C、0D、32、在-3.1,+2,5.7,0,-9,13这几个数中,正数有()。
A、1个B、2个C、3个D、4个3、如果把向左走8米记为+8,则向右走6米可记为()。
A、+2B、-2C、+6D、-64、如果+250米表示一辆汽车向东行驶了250米,那么-380米表示这辆汽车()。
A、向西行驶了380米B、向南行驶了380米C、向北行驶了380米D、向上行驶了380米5、学校新买了4个新的排球,每个排球的标准质量是250克。
这4个新排球的质量(单位:克)纪录分别是:-0.7、+0.8、+1.2、-1,其中正数表示超过标准质量的克数,负数表示不足标准质量的克数。
仅从轻重的角度看,这4个新排球最接近标准的排球质量的是()。
A、-0.7B、+0.8C、+1.2D、-16、下列说法中,正确的是()。
A、-y一定是一个负数。
B、不大于0的数一定是负数。
C、一个数如果不是正数,则一定是负数。
D、负数比0小。
7、观察下列一组数:-2,4,-6,8,-10,12,…,则第50个数是()。
A、100B、-100C、102D、-1028、某种溶液的说明书上标明,这种溶液的保存温度为(18±2)℃,那么这种溶液可以在()保存。
七年级上册数学正数和负数知识点
1. 正数和负数:正数是大于0的数,用正号表示,例如1、2、3等;负数是小于0的数,用负号表示,例如-1、-2、-3等。
2. 数轴:数轴是一个直线上从左到右的有序排列的数的集合。
正数在数轴右侧,负数在数轴左侧,0位于数轴中间。
3. 数的绝对值:数的绝对值是这个数到0的距离,用两个竖线表示,例如|-3|=3,|5|=5。
4. 正数和负数的加减:正数与正数相加减,结果仍为正数;负数与负数相加减,结果仍为负数;正数与负数相加减,结果为两数绝对值较大的那个数的符号。
5. 数的比较:正数之间比较大小,绝对值较大的数较大;负数之间比较大小,绝对值较小的数较大;正数和负数比较大小,正数较大。
6. 数的相反数:两个数互为相反数,它们的绝对值相等,但符号相反,例如3的相反数是-3,-7的相反数是7。
7. 数的倒数:倒数是指数的相反数,其乘积等于1,例如3的
倒数是1/3,-5的倒数是-1/5。
8. 同号数的乘法:两个正数或两个负数相乘,结果为正数;一个正数与一个负数相乘,结果为负数。
9. 异号数的乘法:一个正数与一个负数相乘,结果为负数。
10. 同号数的除法:两个正数或两个负数相除,结果为正数;一个正数除以一个负数,结果为负数。
11. 异号数的除法:一个正数除以一个负数,结果为负数。
12. 数的平方:一个数的平方是这个数乘以它本身,例如3的平方是3x3=9,-4的平方是-4x-4=16。
以上是七年级上册数学正数和负数的主要知识点。
正数和负数本节主要通过生活中的实例,引导学生发现问题:负数的产生,通过具有相反意义的量来帮助学生理解掌握负数的含义,并通过丰富的实例加深印象。
结合以前的知识引入了有理数的概念及分类,为后面的学习打下了良好的基础。
一、用正负数来表示具有相反意义的量这是本节的重点知识,设置了【知识点击】中【针对训练】第1题,【当堂检测】中第3题,【课时作业】中第6题【备选题目】第1题。
二、正负数在实际的应用本知识既是重点又是难点,为突破此知识,特设置了【典例引路】中例1,【课时作业】中第18题。
三、易错题目【课时作业】中第1题,【典例引路】中例2,在进行分类时,要注意不同的标准下所包含的范围大小,做到不重不漏。
在找规律时看清各数间的变化情况。
点击一:正数、负数概念在以前学过的0以外的数前面加上负号“-”的数叫负数,如:-1,-2,-3等;把在以前学过的0以外的数都叫正数.有进正数前面也加上“+”(正号),一个数前面的“+”、“-”号叫做它的符号.数0既不是正数,也不是负数.点击二:相反意义的量1、引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。
2、在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。
3、要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。
正数和负数可以代表意义相反的量.如:正数可代表:上升,盈利,增加,运入,海平面以上,零度以上……负数可代表:下降,亏本,减少,运出,海平面以下,零度以下……针对性练习:1.用正负数表示具有相反意义的量。
(1)如果零上3 ℃记为+3 ℃,那么-7 ℃表示的意义是___ ___;(2)如果下降了3米记为-3米,那么上升5米记为_ _____;(3)如果前进5千米记为+5千米,那么后退6千米记为___ ___;【解析】要知道上与下、下降与升高、前进与后退、运进与运出等表示相反意义.答案: (1)零下7 ℃; (2)+5米;(3)-6千米;类型之一:应用创新型例1.(1)在知识竞赛中,如果用+10表示加10分,那么扣20分怎样表示?(2)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?【解析】因为“加分与扣分”、“逆时针转圈与顺时针转圈”、“超出标准质量与低于标准质量”是相反意义的量,所以加分用正数表示则扣分就用负数表示;逆时针转圈用正数表示则顺时针转圈就用负数表示;超出标准质量记作正数则负数表示低于标准质量.【答案】(1)扣20分记作-20分;(2)沿顺时针方向转了12圈记作-12圈;(3)-0.03克表示乒乓球的质量低于标准质量0.03克.类型之二:规律探索型例2.观察下列按次序排成的一列数,你能发现它的排列有什么规律?它后面的三个数能是什么数?试把它写出来.(1)2,-4,6,-8,10,-12,________,________,________.(2)-2 004,-2 002,-2 000,________,________,________.【解析】研究数字的排列规律,要从两方面入手,一是符号的排列规律;二是数字本身与序号及其他数字之间的关系.(1)序号为奇数的数为正数,序号为偶数的数为负数,且它们与序号的关系依次为2×1,-2×2,2×3,-2×4,2×5,-2×6,…,依此规律,后面的三个数分别为14,-16,18;(2)都为负数,且后面的数都比前面的数大2,依此规律,后面的三个数分别为-1 998,-1 996,-1 994.【答案】14,-16,18; -1 998,-1 996,-1 994.1.如果向东走3米,记作+3米,那么向西走4米,记作( ).A.1米B.7米C.-4米D.-7米解析:向东与向西是一对相反意义的量.选择C.2.下面各数2,-3,+1,31,-1.5,0,0.2,341,-453中,哪些是正数,哪些是负数? 【解析】根据正数负数概念进行判断.【答案】正数:12,+1,31,0.2,341;负数:-3,-1.5,-453; 3.小明的妈妈今天经商,营利为50元,记作+50元,那么亏损40元怎样记作?【解析】根据营利与亏损是一对相反意义的量.则亏损记作负40元.【答案】-40元.4.0是正数吗?还是负数?为什么?解析:根据0是正数,负数的分界点,是基数,也就是0即不是正数也不是负数.【答案】0即不是正数也不是负数.因为根据0是正数,负数的分界点,是基数.1.一袋面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有( )A.24.70千克B.25.30千克C.25.51千克D.24.80千克【解析】D “25±0.25千克”的含义是这袋面粉的质量在(25-0.25)千克与(25+0.25)千克之间,即24.75—25.25千克.只要面粉的质量在24.75—25.25千克之间就是合格产品.2.下列语句中正确的是( )A 、一个正数是1B 、一个负数是-1C 、正数和负数都包括0D 、0不是正数,也不是负数.【解析】D 这时主要考查对正负数概念的理解. A 、B 、C 三项将所属范围弄错.3.用正负数表示具有相反意义的量。
七年级正数和负数知识点正数和负数是数学中的基础知识点,也是我们日常生活中必备的概念。
在七年级的数学中,正数和负数的学习是重要的,掌握了这一部分知识,才能够更好地理解高中数学的相关内容。
下面将重点介绍七年级正数和负数的知识点。
一、正数和负数正数是大于0的数,用“+”表示。
例如:1、2、3、4等等。
负数是小于0的数,用“-”表示。
例如:-1、-2、-3、-4等等。
二、数轴数轴是表示数的一种工具,用于帮助我们直观地理解正数和负数的概念。
数轴的中心是0点,向右数轴为正,向左数轴为负。
例如在数轴上表示数字2,可以在0点右边2个单位的位置上画一个点,这样我们就可以立即看到2是正数。
三、正数和负数的加减法1.同号相加时,先把数的绝对值相加,再加上相同的符号。
例如:5+3=8;-5+(-3)=-8。
2.异号相加时,先把绝对值相减,差的符号与绝对值大的数的符号相同。
例如:5+(-3)=2;-5+3=-2。
四、绝对值绝对值是一个数的大小,与正负无关,用竖线“| |”来表示。
例如:|-2|=2;|3|=3。
当然,对于整数来说,绝对值就是这个数本身。
五、小数和分数小数是指一个有小数点的数,例如:0.5、1.2、3.6等等。
分数是指一个数可以表示为两个整数的除数和被除数的比值,例如:1/2、2/3、5/8等等。
在数学中,我们要会将小数转化为分数,也要会将分数转化为小数。
六、应用1.正数、负数与温度:正数表示高温,负数表示低温,在气象预报中有广泛应用。
2.财务方面:营业额、成本、利润等都是正数;支出、亏损等都是负数。
3.地理方面:由于海平面随着时间的变化而变化,地形起伏不一,有时候高于海平面,有时候低于海平面,因此地平面的高度也可以用正负数来表示。
综上所述,正数和负数是七年级数学中非常重要的基础知识点。
在学习中,我们要充分运用数轴、运算法则等方法来加深理解,这样才能更好地应用数学知识于实践中。
初一数学第1章有理数知识点:正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
初一数学第1章有理数知识点:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数正有理数正分数有理数有理数(0不能忽视) 负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数初一数学第1章有理数知识点:数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
初一数学正数和负数知识点
初一数学正数和负数
知识点一:正数和负数的概念
•正数:大于0的数,例如1、2、3等。
•负数:小于0的数,例如-1、-2、-3等。
知识点二:正数和负数的表示方式
1.正数直接写出,例如1、2、3等。
2.负数在前面加上负号“-”,例如-1、-2、-3等。
知识点三:正数和负数的比较
•正数比较:数值大的正数大,数值小的正数小。
•负数比较:数值大的负数小,数值小的负数大。
•正数和负数比较:正数大于任何一个负数。
知识点四:正数和负数的运算
•正数与正数相加、相减,结果仍为正数。
•负数与负数相加、相减,结果仍为负数。
•正数与负数相加、相减,结果的符号由数值大的数决定。
知识点五:正数和负数在数轴上的表示
•正数在数轴上向右表示。
•负数在数轴上向左表示。
•数轴上的0既不是正数也不是负数。
知识点六:正数和负数的绝对值
•正数的绝对值等于自身,例如|5|=5。
•负数的绝对值等于去掉负号,例如|-5|=5。
结语:
正数和负数是数学中重要的概念,我们需要了解他们的定义、表示方式、比较和运算规则以及在数轴上的表示。
同时,也需要注意正数和负数的绝对值的概念和计算方法。
通过对正数和负数的学习,我们可以更好地理解数学中的各种概念和运算。
七年级正数负数知识点正数和负数是数学中最基本的概念之一,是我们在生活中经常会碰到的数。
在七年级的数学中,学习正数负数的知识点是非常重要的,因此,本文将会就该知识点进行详细的介绍和讲解。
一、正数和负数的概念正数是指大于零的数,例如 1、2、3、4……,用“+”号表示;而负数则是小于零的数,例如-1、-2、-3、-4……,用“-”号表示。
正数和负数是以零为分界点的数轴两侧的数,并且它们可以相加、相减、相乘以及相除。
二、正数和负数的加法正数和正数相加,结果仍然是正数;负数和负数相加,结果仍然是负数;而正数和负数相加,则需要根据两个数的绝对值来判断结果的正负性。
如果两个数的绝对值相等则结果为零,如果两个数的绝对值不相等,则结果的正负性由绝对值大的数所带的符号决定。
例如,3 + 5 = 8;-3 + (-5) = -8;3 + (-5) = -2。
三、正数和负数的减法正数和负数的减法可以转化为加法。
对于两个数 a 和 b,a - b 可以转化为 a + (-b)。
因此,正数和正数、负数和负数相减,结果仍然是正数或负数;而正数和负数相减,结果的正负性由两个数的绝对值大小以及绝对值大的数的符号决定。
例如,5 - 3 = 2;-3 - (-5) = 2;-3 - 5 = -8。
四、正数和负数的乘法正数和正数相乘,结果仍然是正数;负数和负数相乘,结果也是正数。
而正数和负数相乘,则结果为负数。
例如,3 × 4 = 12;-3 × (-4) = 12;-3 × 4 = -12。
五、正数和负数的除法两个负数相除,结果仍然是正数;两个正数相除,结果仍然是正数。
而正数除以负数,结果为负数;负数除以正数,结果也为负数。
例如,12 ÷ 3 = 4;-12 ÷ (-3) = 4;-12 ÷ 3 = -4。
六、正数和负数的性质正数和负数的性质有很多,其中最重要的性质是它们可以彼此抵消。