2020年SPSS相关性分析Pearson相关与偏相关分析的实现步骤(实用)
- 格式:docx
- 大小:444.25 KB
- 文档页数:6
S P S S皮尔逊相关分析实例操作步骤精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-SPSS皮尔逊相关分析实例操作步骤选题:对某地29名13岁男童的身高(cm)、体重(kg),运用相关分析法来分析其身高与体重是否相关。
实验目的:任何事物的存在都不是孤立的,而是相互联系、相互制约的。
相关分析可对变量进行相关关系的分析,计算29名13岁男童的身高(cm)、体重(kg),以判断两个变量之间相互关系的密切程度。
实验变量:编号Number,身高height(cm),体重weight(kg)原始数据:实Array Array验方法:尔逊相关分析法软件:spss19.0操作过程与结果分析: 第一步:导入Excel 数据文件?1.open data document ——open data ——open ;2. Opening excel data source ——OK.第二步:分析身高(cm )与体重(kg )是否具有相关性1. 在最上面菜单里面选中Analyze ——correlate ——bivariate?,首先使用Pearson ,two-tailed ,勾选flag significant correlations 进入如下界面:2. 点击右侧options ,勾选Statistics ,默认Missing Values ,点击Continue 输出结果:图为基本的描述性统计量的输出表格,其中身高的均值(mean )为152.576cm 、标准差(standarddeviation )为8.3622、样本容量(number of cases )为29;体重的均值为37.65kg 、标准差为5.746、样本容量为29。
两者的平均值和标准差值得差距不显着。
Descriptive Statistics Mean Std. Deviation N身高(cm ) 152.576 8.3622 29体重(kg) 37.65 5.746 29Correlations身高(cm )体重(kg)身高(cm )Pearson Correlation 1.719** Sig. (2-tailed).000Sum of Squares and Cross-products 1957.953967.816Covariance 69.92734.565N29 29 体重(kg)Pearson Correlation .719** 1Sig. (2-tailed).000 Sum of Squares and Cross-products967.816924.312析结果表,从表中可以看出体重和身高之间的皮尔逊相关系数为0.719,即|r|=0.719,表示体重与身高呈正相关关系,且两变量是显着相关的。
SPSS皮尔逊相关分析实例操作步骤选题:对某地29名13岁男童的身高(cm)、体重(kg),运用相关分析法来分析其身高与体重是否相关。
实验目的:任何事物的存在都不是孤立的,而是相互联系、相互制约的。
相关分析可对变量进行相关关系的分析,计算29名13岁男童的身高(cm)、体重(kg),以判断两个变量之间相互关系的密切程度。
实验变量:编号Number,身高height(cm),体重weight(kg)原始数据:实验方法:皮尔逊相关分析法软件:操作过程与结果分析:第一步:导入Excel 数据文件1.open data document ——open data ——open ;2. Opening excel data source ——OK.第二步:分析身高(cm )与体重(kg )是否具有相关性1. 在最上面菜单里面选中Analyze ——correlate ——bivariate ,首先使用Pearson ,two-tailed ,勾选flag significant correlations 进入如下界面:2. 点击右侧options ,勾选Statistics ,默认Missing Values ,点击Continue 输出结果:图为基本的描述性统计量的输出表格,其中身高的均值(mean )为、标准差(standard deviation )为、样本容量(number of cases )为29;体重的均值为、标准差为、样本容量为29。
两者的平均值和标准差值得差距不显着。
图为相关分析结果表,从表中可以看出体重和身高之间的皮尔逊相关系数为,即|r|=,表示体重与身高呈正相关关系,且两变量是显着相关的。
另外,两者之间不相关的双侧检验值为,图中的双星号标记的相关系数是在显着性水平为以下,认为标记的相关系数是显着的,验证了两者显着相关的关系。
所以可以得出结论:学生的体重与身高存在显着的Descriptive StatisticsMean Std. Deviation N身高(cm ) 29体重(kg) 29Correlations身高(cm )体重(kg)身高(cm )Pearson Correlation 1.719** Sig. (2-tailed).000SumofSquaresandCross-productsCovariance N29 29 体重(kg)Pearson Correlation .719** 1Sig. (2-tailed) .000 SumofSquaresandCross-productsCovariance N2929**. Correlation is significant at the level (2-tailed).正相关性,当体重越高时,身高也越高。
SPSS第十四讲偏相关性分析精讲SPSS的偏相关性分析是一种探究两个变量之间的关系的统计方法。
它可以消除其他变量的干扰,更准确地评估这两个变量之间的关系。
本文将详细介绍SPSS中偏相关性分析的步骤和解读结果。
偏相关性分析的步骤如下:第一步,打开SPSS软件,并导入数据集。
选择“变量查看器”来查看数据集中的变量。
确保要分析的两个变量已被正确地导入。
第二步,选择“相关性分析”菜单。
在下拉菜单中选择“偏相关”。
在弹出的对话框中,将要分析的两个变量移动到“变量”框中。
同时,将其他可能的干扰变量移动到“控制变量”框中。
单击“确定”按钮。
第三步,在输出窗口中查看分析结果。
输出结果将显示样本的偏相关系数、显著性水平和样本大小。
偏相关性分析的结果解读如下:1.偏相关系数:偏相关系数是表示两个变量关系的统计指标。
它的取值范围从-1到1之间。
当偏相关系数为0时,表示两个变量之间没有任何关系。
当偏相关系数为正时,说明两个变量呈正相关关系,即一个变量的增加会导致另一个变量的增加。
当偏相关系数为负时,说明两个变量呈负相关关系,即一个变量的增加会导致另一个变量的减少。
2.显著性水平:偏相关性分析还会计算一个显著性水平,用于判断偏相关系数的显著性。
显著性水平通常用p值表示,如果p值小于设定的显著性水平(通常设为0.05),则偏相关系数被认为是显著的,即两个变量之间的关系不是由随机性造成的。
3.样本大小:偏相关性分析还会提供样本的大小。
样本的大小对于统计分析的可信度很重要,较小的样本可能导致结果的不稳定性。
偏相关性分析的优势在于可以消除其他变量的干扰,更准确地评估两个变量之间的关系。
它适用于探究变量之间的因果关系,并可以提供结果的显著性。
然而,偏相关性分析也存在一些限制。
首先,偏相关性分析依赖于样本数据。
样本的大小和抽样方法都会对结果产生影响。
其次,偏相关性分析只能确定两个变量之间的关系,不能确定因果关系。
最后,偏相关性分析只适用于连续型变量,无法处理离散型变量。
SPSS皮尔逊相关分析实例操作步骤选题:对某地29名13岁男童的身高(cm)、体重(kg),运用相关分析法来分析其身高与体重是否相关。
实验目的:任何事物的存在都不是孤立的,而是相互联系、相互制约的。
相关分析可对变量进行相关关系的分析,计算29名13岁男童的身高(cm)、体重(kg),以判断两个变量之间相互关系的密切程度。
实验变量:编号Number,身高height(cm),体重weight(kg)原始数据:实验方法:逊相关分析法软件:spss19.0操作过程与结果分析:第一步:导入Excel数据文件???1.?open data document ——open data ——open ;2. Opening excel data source ——OK.第二步:分析身高(cm )与体重(kg )是否具有相关性1. 在最上面菜单里面选中Analyze ——correlate ——bivariate?,首先使用Pearson ,two-tailed ,勾选flag significant correlations 进入如下界面:2. 点击右侧options ,勾选Statistics ,默认Missing Values ,点击Continue 输出结果:图为基本的描述性统计量的输出表格,其中身高的均值(mean )为152.576cm 、标准差(standarddeviation )为8.3622、样本容量(number of cases )为29;体重的均值为37.65kg 、标准差为5.746、样本容量为29。
两者的平均值和标准差值得差距不显着。
图为相关分析结果表,从表中可以看出体重和身高之间的皮尔逊相关系数为0.719,即|r|=0.719,表示体重与身高呈正相关关系,且两变量是显着相关的。
另外,两者之间不相关的双侧检验值为0.000,图中的双星号标记的相关系数是在显着性水平为0.01以下,认为标记的相关系数是显着的,验证了两者显着相关的关系。
SPSS相关分析实例操作步骤-SPSS做相关分析SPSS(Statistical Product and Service Solutions)是目前在工业、商业、学术研究等领域中广泛应用的统计学软件包之一。
Correlation是SPSS的一个功能模块,可以用于分析两个或多个变量之间的关系。
下面是SPSS进行相关分析的具体步骤:1. 打开SPSS软件,选择“变量视图”(Variable View),输入相关的变量名,包括数字型变量和分类变量。
2. 进入“数据视图”(Data View),输入数据,并保存数据集。
3. 打开菜单栏中的“分析”(Analyze),选择“相关”(Correlate),再选择“双变量”(Bivariate)。
4. 在双变量窗口中,选择包含需要分析的变量的变量名,并将其移至右侧窗口中的变量框(Variables)。
5. 如果需要控制其他变量的影响,可以选择“控制变量”(Options)。
6. 点击“确定”(OK)按钮后,SPSS将输出结果,并将其显示在输出窗口中。
相关系数(Correlation Coefficient)介于-1和1之间,可以用来衡量两个变量之间的线性关系的强度。
7. 如果需要对结果进行图形化展示,可以选择“图”(Plots),并选择适当的图形类型。
需要注意的是,进行相关分析时需要确保变量之间存在线性关系。
如果变量之间存在非线性关系,建议使用其他统计方法进行分析。
同时,SPSS进行相关分析的结果只能描述变量之间的关系,不能用于说明因果关系。
以上是SPSS做相关分析的具体步骤,希望能对大家进行SPSS 数据分析有所帮助。
SPSS相关性分析Pearson相关与偏相关分析的实现步骤
一、Pearson相关分析
二、偏相关分析
方法一正规步骤,但就是麻烦
1、分析——相关——偏相关。
2、选择变量,导入右侧框。
再点击选项,选择零阶相关系数(可选可不选,零阶先关系数就就是pearson相关系数,选了偏于对比查瞧)。
继续——确定。
3、结果分析:总磷Pearson相关不显著,但偏相关显著。
Pearson相关系数,显著性P值为0、416>0、05,相关性不显著。
偏相关,显著性P值为0、001<o、o1,极显著相关。
(显著性瞧sig、P值,
P<0、05,“*”显著;
P<0、01,“**”极显著)
方法二:简便方法,快捷迅速,不用挨个分析偏相关,可以一下子出来。
1、分析——回归——线性。
2、“溶解氧、氨氮、总磷、总氮、水温”与“叶绿素”的偏相关分析。
如图,先选择变量,再选择“统计量”。
“统计量”一定要选择“部分相关与偏相关性”。
其她的可以不选。
继续—确定。
3、结果分析,分别瞧Sig、显著性,与偏相关系数。
以总磷为例,与之前单独做“偏相关”分析结果就是一样的。
其她变量与叶绿素的偏相关关系也可以在上表瞧出来。
SPSS相关性分析(Pearson,Spearman和卡方检验)一、相关分析方法的选择及指标体系(一)两个连续变量的相关分析1、Pearson相关系数最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。
该系数的计算和检验为参数方法,适用条件如下:(1)两变量呈直线相关关系,如果是曲线相关可能不准确。
(2)极端值会对结果造成较大的影响(3)两变量符合双变量联合正态分布。
2、Spearman秩相关系数对原始变量的分布不做要求,适用范围较Pearson相关系数广,即使是等级资料,也可适用。
但其属于非参数方法,检验效能较Pearson系数低。
(二)有序分类变量的相关分析有序分类变量的相关性又称为一致性,即行变量等级高的列变量等级也高,如果行变量等级高而列变量等级低,则称为不一致。
常用的统计量有:Gamma、Kendall的tau-b、Kendall的tau-c 等。
(三)无序分类变量的相关分析最常用的为卡方检验,用于评价两个无序分类变量的相关性。
根据卡方值衍生出来的指标还有列联系数、Phi、Cramer的V、Lambda 系数、不确定系数等。
OR、RR也是衡量两变量之间的相关程度的指标。
二、SPSS相关操作SPSS的相关分析散布在交叉表和相关分析两个模块中。
(1)交叉表过程如下图:以上的指标很全面,解释如下:(1)“卡方”复选框:为常用的卡方检验,适用于两个无序分类变量的检验。
(2)“相关性”复选框:适用于两个连续性变量的相关分析,给出两变量的Pearson相关系数和Spearman相关系数。
(3)“有序”复选框组:包含了一组反映有序分类变量一致性的指标,只能用于两变量均为有序分类变量的情况。
(4)“名义”复选框组:包含一组分类变量相关性的指标,有序和无序分类时都可使用,但变量为有序时,检验效能没有“有序”复选框组中的统计量高。
(5)Kappa:为内部一致性系数。
(6)风险:给出OR或RR值。
如何用spss做相关性分析例:学生每天学习时间T与学习综合成绩G之间的相关性原始数据T G1.1 541.5 602.2 623 70.13.4 744 74.54.2 775.5 81.55.9 856 85.56.5 86.28 90G=f(T),其中T为自变量,G为因变量step1:建立数据文件 file——new——data;定义变量选中左下角菜单Variable view,输入变量名T,其他选项不变,令起一行,输入变量名G其他选项不变,切换到data view(在左下角),将数据复制进去。
Step2:进行数据分析:在spss最上面菜单里面选中Analyze——correlate——bivariate(双变量)左边包含G,T的框为源变量框,后面的空白框为分析变量框,我们现在需要分析G和T的关系,因此将源变量框中的G和T选进分析变量框待分析。
(1)correlation coefficients(相关系数)包括三个选项:Pearson:皮尔逊相关,计算连续变量或是等间距测度的变量间的相关分析;Kendall:肯德尔相关,计算等级变量间的秩相关;Spearman:斯皮尔曼相关,计算斯皮尔曼秩相关。
注:Pearson可用来分析①分布不明,非等间距测度的连续变量Kendall可用来分析①分布不明,非等间距测度的连续变量,②完全等级的离散变量,③数据资料不服从双变量正态分布或总体分布型未知。
第②种情况只能用Kendall分析Spearman可用来分析数据资料不服从双变量正态分布或总体分布型未知(2)Test of significance选项Two-tailed:双尾检验,如果事先不知道相关方向(正相关还是负相关)则可以选择此项;One-tailed:单尾检验,如果事先知道相关方向可以选择此项。
(3)Flag significant correlations:表明显著水平,如果选择此项,输出结果中在相关系数值右上方使用*标示显著性水平为5%,用**标示其显著性水平为1%首先使用pearson,two-tailed(下图),点击右侧optionsstatistics为统计量,包括均值和标准差叉积离方差和协方差missing values 选择默认点击continue——ok输出结果(下图)相关系数为0.975,显著性p=0.000<0.01,有统计学意义选用Kendall 肯德尔,结果如下:选用spearman 斯皮尔曼,结果如下:画散点图:选中Graphs——Scatter/dot-----Simple scatter------define。
SPSS皮尔逊相关分析实例操作步骤选题:对某地29名13岁男童的身高(cm)、体重(kg),运用相关分析法来分析其身高与体重是否相关。
实验目的:任何事物的存在都不是孤立的,而是相互联系、相互制约的。
相关分析可对变量进行相关关系的分析,计算29名13岁男童的身高(cm)、体重(kg),以判断两个变量之间相互关系的密切程度。
实验变量:编号Number ,身高height (cm ),体重weight (kg )原始数据:实验方法:皮尔逊相关分析法 软件:操作过程与结果分析: 第一步:导入Excel 数据文件 1. open data document ——open data ——open ;28 40 29322. Opening excel data source——OK.第二步:分析身高(cm)与体重(kg)是否具有相关性1.在最上面菜单里面选中Analyze——correlate——bivariate ,首先使用Pearson,two-tailed,勾选flag significant correlations进入如下界面:2.点击右侧options,勾选Statistics,默认Missing Values,点击Continue输出结果:Descriptive StatisticsMean Std. Deviation N身高(cm)29体重(kg)29图为基本的描述性统计量的输出表格,其中身高的均值(mean)为、标准差(standard deviation)为、样本容量(number of cases)为29;体重的均值为、标准差为、样本容量为29。
两者的平均值和标准差值得差距不显著。
Correlations身高(cm)体重(kg)身高(cm)Pearson Correlation1.719**Sig. (2-tailed).000Sum of Squares andCross-productsCovarianceN2929体重(kg)Pearson Correlation.719**1Sig. (2-tailed).000Sum of Squares andCross-productsCovarianceN2929**. Correlation is significant at the level (2-tailed).图为相关分析结果表,从表中可以看出体重和身高之间的皮尔逊相关系数为,即|r|=,表示体重与身高呈正相关关系,且两变量是显著相关的。
SPSS皮尔逊相关分析实例操作步骤选题:对某地29名13岁男童的身高(cm)、体重(kg),运用相关分析法来分析其身高与体重是否相关。
实验目的:任何事物的存在都不是孤立的,而是相互联系、相互制约的。
相关分析可对变量进行相关关系的分析,计算29名13岁男童的身高(cm)、体重(kg),以判断两个变量之间相互关系的密切程度。
实验变量:编号Number,身高height(cm),体重weight(kg)原始数据:实验方法:皮尔逊相关分析法软件:spss19.0操作过程与结果分析:第一步:导入Excel数据文件1. open data document——open data——open;2. Opening excel data source——OK.第二步:分析身高(cm)与体重(kg)是否具有相关性1.在最上面菜单里面选中Analyze——correlate——bivariate ,首先使用Pearson,two-tailed,勾选flag significant correlations进入如下界面:2.点击右侧options,勾选Statistics,默认图为基本的描述性统计量的输出表格,其中身高的均值(mean)为152.576cm、标准差(standard deviation)为8.3622、样本容量(number of cases)为29;体重的均值为37.65kg、标准差为5.746、样本容量为29。
图为相关分析结果表,从表中可以看出体重和身高之间的皮尔逊相关系数为0.719,即|r|=0.719,表示体重与身高呈正相关关系,且两变量是显著相关的。
另外,两者之间不相关的双侧检验值为0.000,图中的双星号标记的相关系数是在显著性水平为0.01以下,认为标记的相关系数是显著的,验证了两者显著相关的关系。
所以可以得出结论:学生的体重与身高存在显著的正相关性,当体重越高时,身高也越高。
第三步:画散点图:选中Graphs——Legacy Dialogs——Scatter/dot——Simple scatter——define.得到散点图,如下图:测量学试卷 第 6 页(共 7 页)《测量学》模拟试卷1.经纬仪测量水平角时,正倒镜瞄准同一方向所读的水平方向值理论上应相差(A )。
SPSS Pearson 相关性分析∙ 1∙ 2∙ 3∙ 4∙ 5∙ 6∙7分步阅读世间万物都是存在相关联系的,我们在医学上以及社会学上都常常需要对两个变量进行相关性分析。
如果两个变量都是分类变量或者有一个是分类变量,则需要用Spearman 相关分析,如果两个变量都是连续性的变量,则Pearson 分析方法更加适合工具/原料∙spss软件∙连续性的两个变量方法/步骤1. 1打开SPSS软件;点击“开始”按钮,双击“SPSS ”软件。
导入数据:点击左上角“文件”-----“打开”-----“数据”,并选择你的数据如果为spss数据可以直接导入,若为excel 格式,需要在“文件类型”框中选择“excel格式”2. 2开始做数据分析:在工具栏处,点击:“分析”----”相关”----“双变量”,如下图所示,则开始进行变量的选择3. 3如图,需要先确定要分析的变量,首先将两个变量放入“变量”框中。
此时,需要注意,要分析哪几个变量就只能选择那几个变量,而不能将所有的变量选入,而且,这里是双变量分析,因此,最多可以选择两个变量4. 4然后,选择在“相关系数”框中选择“Pearson”。
因为,这里的两个变量为连续性的变量,因此采用pearson 相关分析;若为两个分类变量,或者一个分类变量一个连续性的变量,则可以用Spearman 相关分析5. 5选择好变量之后,如果需要对数据进行一定的描述,或者查看,可以打开右上角的按钮,即选择“选项”,如下图所示6. 6大部分分析需要对原始数据进行统计描述,即如果需要进行描述性分析,可以选择均值和标准差,如上图所示的mea n (均值)和 sd (标准差),分别对数据的大小和离散程度作出一定的描述,并点击“确定按钮”7.7如果需要对数据进行模拟分析,则可以选择右上角的“bootsTrap”模拟分析,打开后如下图所示。
其中样本数为需要模拟的总共的次数,可以自己定义;后面的种子数,是开始模拟随机数字的起始种子数,同样可以自行定义。
Pearson相关的超详细SPSS操作方法Pearson相关的超详细SPSS操作方法作者:张耀文(医咖会)1、问题与数据某研究者拟探讨在45岁至65岁健康男性中胆固醇浓度与观看电视的时间是否有关。
他猜测:看电视时间较长者,血液中的胆固醇浓度要高一些。
研究者收集了研究对象每天看电视时间(变量time_tv)和胆固醇浓度(变量cholesterol)。
部分数据如图1.1。
图1.1 部分数据2、对问题的分析研究者想观察两个连续变量之间的相关性,可以使用Pearson相关分析。
使用Pearson相关分析时,需要考虑5个假设。
假设1:两个变量都是连续变量。
假设2:两个连续变量应当是配对的,即来源于同一个个体。
假设3:两个连续变量之间存在线性关系,通常做散点图检验该假设。
假设4:两个变量均没有明显的异常值。
Pearson相关系数易受异常值影响。
假设5:两个变量符合双变量正态分布。
假设1和假设2与研究设计有关。
经分析,本研究数据符合假设1和2。
如何考虑和处理假设3-5呢?3、SPSS操作3.1 检验假设3:两个连续变量之间存在线性关系Pearson要求两个变量之间存在线性关系。
本例要求观看电视时间(time_tv)和胆固醇浓度(cholesterol)之间存在线性关系。
要确定是否存在线性关系,研究者需要查看两个变量的散点图。
如果散点图大致呈一条直线,说明有线性关系。
但是,如果不是一条直线(如一条曲线)则没有线性关系。
散点图1.2给出了线性和非线性关系的例子:图1.2 两个变量的散点图计算Pearson相关系数时,最好有类似于上述第一个散点图的线性关系。
如果两变量间不存在线性关系,下面还会介绍如何应对这种非线性关系并计算Pearson相关系数。
以下先说明将如何在SPSS中生成散点图,检验线性关系。
在主界面点击Graphs→Chart Builder,在Chart Builder对话框下,选择Gallery→Choose from→Scatter/Dot。
SPSS相关性分析Pearson 相关与偏相关分析的实现
步骤
SPSS相关性分析Pearso n相关与偏相关分析的实现
步骤
一、Pearson相关分析
二、偏相关分析
方法一正规步骤,但是麻烦
1、分析——相关——偏相关。
2、选择变量,导入右侧框.再点击选项,选择零阶相关系数(可选可不选,零阶先关系数就是pearson相关系数,选了偏于对比查看)。
继续--确定。
3、结果分析:总磷Pearson相关不显著,但偏相关显著.
Pearson相关系数,显著性P值为0。
416〉0.05,相关性不显著。
偏相关,显著性P值为0.001<o.o1,极显
著相关。
(显著性看 sig。
P值,
P<0。
05,“*"显著;
P〈0.01,“**"极显著)
方法二:简便方法,快捷迅速,不用挨个分析偏相关,可以一下子出来.
1、分析——回归——线性.
2、“溶解氧、氨氮、总磷、总氮、水温”与“叶绿素”的偏相关分析。
如图,先选择变量,再选择“统计量”。
“统计量”一定要选择“部分相关和偏相关性”。
其他的可以不选。
继续—确定。
3、结果分析,分别看Sig。
显著性,和偏相关系数。
以总磷为例,与之前单独做“偏相关”分析结果是一样的.其他变量与叶绿素的偏相关关系也可以在上表看出来。
...谢阅...。