轴对称变换培优专题
- 格式:docx
- 大小:183.16 KB
- 文档页数:4
轴对称培优(一)一.格点问题:例1.如图,A、B在格点位置上,若要在所给网格中再找一个格点,使它与点A、B连成的三角形是轴对称图形,图中满足这样条件的格点共有()个.A.7 B.8 C.9 D.10例2如图,在正方形格纸中,有一个以格点为顶点的三角形,请在格纸中找出所有与它轴对称的格点三角形,这样的三角形共有_________个,请在下面所给的格纸中一一画出.(所给的六个格纸未必全用).变式1:在3×3的正方形格点中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称请在下面的备用图中画4种这样的△DEF。
变式2:如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有(\例3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.变式1:在4×4的方格中有五个同样大小的正方形按图示位置摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有【▲ 】个.A.8 B.10 C.12 D.13变式2:如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有____变式3:如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有_ ▲种.变式4:如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形。
—二.剪纸问题:例4小强拿了张正方形的纸如图(1),沿虚线对折一次如图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )变式1:如图所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )@变式2:如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于( )A .108° B .124°C .126°D .129°三.线段垂直平分线问题:例5如图,△ABC 中,∠CAB 的平分线与BC 的垂直平分线DG 相交于D ,过点D 作DE⊥AB,DF⊥AC,求证:BE=CF .变式1:如图,AD 为△ABC 的角平分线,AD 的中垂线交AB 于点E 、BC 的延长线于点F ,AC 于EF 交于点O . (1)求证:∠3=∠B;(2)连接OD ,求证:∠B+∠ODB=180°>变式2:如图所示,在Rt△ABC 中,∠ACB=90°,AC=BC ,D 为BC 边上的中点,CE⊥AD 于点E ,BF∥AC 交CE 的延长线于点F ,求证:AB 垂直平分DF .变式3:如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上动点,过点H作直线l⊥AO 于H,分别交直线AB、AC、BC于点N、E、M.(1)当直线l经过点C时(如图2),证明:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.四.规律问题:;例6平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,-1)、C(-1,-1)、D(-1,1),y轴上有一点P(0,2),作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D 的对称点P4,作点P4关于点A的对称点P5,作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为变式1:在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:《第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:如图2,若延长MN交BC于P,△BMP是什么三角形请证明你的结论;AN 》MBCA’A’B’B’C’C’变式2:在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.|变式3:如图所示,△ABC和△A'B'C'关于直线MN对称,△A'B'C'和△A''B''C''关于直线EF对称.①画出直线EF;②直线MN与EF相较于点o,试探究∠BOB''与直线MN、EF所夹的锐角α的数量关系.如图所示,△ABC和△A'B'C'关于直线MN对称,△A'B'C'和△A''B''C''关于直线EF对称.①画出直线EF;②直线MN与EF相较于点o,试探究∠BOB''与直线MN、EF所夹的锐角α的数量关系.。
轴对称图形解答题较难题一、翻折变换题型1 .( 1 )数学课上,老师出了一道题,如图①, Rt △ ABC 中,∠ C=90°,AC=½AB,求证:∠ B=30°,请你完成证明过程.( 2 )如图②,四边形 ABCD 是一张边长为 2 的正方形纸片, E 、 F 分别为AB 、 CD 的中点,沿过点 D 的折痕将纸片翻折,使点 A 落在 EF 上的点 A′处,折痕交 AE 于点 G ,请运用( 1 )中的结论求∠ ADG 的度数和 AG 的长.( 3 )若矩形纸片 ABCD 按如图③所示的方式折叠, B 、 D 两点恰好重合于一点 O (如图④),当 AB=6 ,求 EF 的长.二、特异三角形1.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.( 1 )如图 1 ,△ ABC 中,∠ B=2 ∠ C ,线段 AC 的垂直平分线交 AC 于点 D ,交 BC 于点 E .求证: AE 是△ ABC 的一条特异线;( 2 )如图 2 ,若△ ABC 是特异三角形,∠ A=30°,∠ B 为钝角,求出所有可能的∠ B 的度数.5 .等腰△ ABC 中, CA=CB ,点 D 为边 AB 上一点,沿 CD 折叠△ CAD 得到△ CFD ,边 CF 交边 AB 于点 E , CD=CE ,连接 BF .( 1 )求证: FD=FB .( 2 )连接 AF 交 CD 的延长线于点 M ,连接 ME 交线段 DF 于点 N ,若EF=4EC , AB=22 ,求 MN 的长.三、点的运动变化题型8 .如图,△ ABC 是边长为 6 的等边三角形, P 是 AC 边上一动点,由 A 向 C运动(与 A 、 C 不重合), Q 是 CB 延长线上一点,与点 P 同时以相同的速度由 B 向 CB 延长线方向运动( Q 不与 B 重合),过 P 作 PE ⊥ AB 于 E ,连接PQ 交 AB 于 D .( 1 )当∠ BQD=30°时,求 AP 的长;( 2 )当运动过程中线段 ED 的长是否发生变化?如果不变,求出线段 ED 的长;如果变化请说明理由.9 .某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵黄桷树.如图,要求黄桷树的位置点 P 到边 AB 、 BC 的距离相等,并且点 P 到点 A 、 D 的距离也相等.请用尺规作图作出栽种黄桷树的位置点 P (不写作法,保留作图痕迹).四、等边三角形题型12 .已知:在△ AOB 和△ COD 中, OA=OB , OC=OD .( 1 )如图①,若∠ AOB= ∠ COD=60°,求证:① AC=BD ②∠ APB=60°.( 2 )如图②,若∠ AOB= ∠ COD=α,则 AC 与 BD 间的等量关系式为,∠ APB 的大小为(直接写出结果,不证明)。
一、选择题1.如图,在△ABD 中,分别以点A 和点D 为圆心,大于12AD 的长为半径画弧,两弧相交于点M 、N ,作直线MN 分别交BD 、AD 于点C 、E .若AE=5cm ,△ABC 的周长=15cm ,则△ABD 的周长是( )A .35cmB .30cmC .25cmD .20cm C解析:C【分析】 利用线段的垂直平分线的性质即可解决问题.【详解】解:∵MN 垂直平分线段AD ,∴AC=DC ,AE+ED=AD=10cm ,∵AB+BC+AC=15cm ,∴AB+BC+DC=15cm ,∴△ABD 的周长=AB+BC+DC+AD=15+10=25cm ,故选:C .【点睛】本题考查了作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021- A解析:A【分析】 关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大D解析:D【分析】 先根据等边三角形的性质可得60ABC ACB BAC ∠=∠=∠=︒,从而可得120EBD DCF ∠=∠=︒,再根据等腰三角形的性质、角的和差可得BAD E CDF ∠=∠=∠,然后根据三角形全等的判定定理与性质可得BE CD =,从而可得BED 周长为BE BD DE BC AD ++=+,最后根据点到直线的距离即可得出答案.【详解】 ABC 是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒,120EBD DCF ∴∠=∠=︒,DF AD =,CAD F ∴∠=∠,又6060BAD CAD BAC CDF F ACB ∠+∠=∠=︒⎧⎨∠+∠=∠=︒⎩, BAD CDF ∴∠=∠,DE AD =,BAD E ∴∠=∠,E CDF ∴∠=∠,在BDE 和CFD △中,EBD DCF E CDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CFD AAS ∴≅,BE CD ∴=,则BED 周长为BE BD DE CD BD AD BC AD ++=++=+,在点D 从B 运动到C 的过程中,BC 长不变,AD 长先变小后变大,其中当点D 运动到BC 的中点位置时,AD 最小,∴在点D 从B 运动到C 的过程中,BED 周长的变化规律是先变小后变大,故选:D .【点睛】本题考查了等腰三角形的性质、等边三角形的性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.4.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm B解析:B【分析】 由OB ,OC 分别是△ABC 的∠ABC 和∠ACB 的平分线和OD ∥AB 、OE ∥AC 可推出BD=OD ,OE=EC ,从而得出BC 的长等于△ODE 的周长即可.【详解】解:∵OD ∥AB ,OE ∥AC ,∴∠ABO=∠BOD ,∠ACO=∠EOC ,∵点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,∴∠ABO=∠OBD ,∠ACO=∠OCE ;∴∠OBD =∠BOD ,∠EOC=∠OCE ;∴BD=OD ,CE=OE ;∴△ODE 的周长=OD+DE+OE=BD+DE+EC= BC∵ODE 的周长为9cm ,∴BC=9cm .故选:B .【点睛】 此题考查了平行线性质,角平分线定义以及等腰三角形的判定定理,熟练掌握相关知识是解题的关键,难度中等.5.如图,在ABC 中,AB AC =,108BAC ∠=︒,72ADB ∠=︒,DE 平分ADB ∠,图中等腰三角形的个数是( )A .3B .4C .5D .6C解析:C【分析】利用等腰三角形的性质“等边对等角”,求出角的度数,再根据“等角对等边”证明三角形是等腰三角形.【详解】解:∵AB AC =, ∴ABC 是等腰三角形,∵108BAC ∠=︒, ∴180108362B C ︒-︒∠=∠==︒, ∵72ADB ∠=︒, ∴18072BAD B ADB ∠=︒-∠-∠=︒,∴ADB BAD ∠=∠,∴AB BD =,∴ABD △是等腰三角形,∵1087236DAC BAC BAD ∠=∠-∠=︒-︒=︒,∴DAC C ∠=∠,∴AD CD =,∴ACD △是等腰三角形,∵DE 平分ADB ∠, ∴1362ADE BDE ADB ∠=∠=∠=︒, ∴18072AED ADE DAE ∠=︒-∠-∠=︒, ∴AED DAE ∠=∠, ∴DE DA =, ∴ADE 是等腰三角形, ∵BDE B ∠=∠, ∴BE DE =, ∴BED 是等腰三角形,一共有5个等腰三角形.故选:C .【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定. 6.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40C解析:C【分析】 当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 7.已知点(),3M a ,点()2,N b 关于x 轴对称,则2020()a b +的值( ) A .3-B .1-C .1D .3C 解析:C【分析】根据关于坐标轴对称的规律,关于谁对称谁不变,另一个坐标变为相反数即可获得a 和b 的值,然后即可得解.【详解】∵点(),3M a ,点()2,N b 关于x 轴对称∴2a =,3b =-∴()()20182018231a b +=-= 故选:C . 【点睛】本题考查了在坐标平面直角坐标系中关于x 轴对称的点的坐标的变化规律,点(),x y 关于x 轴对称的点的坐标为()x y -,,熟记规律即可得到正确答案.8.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线D 解析:D【分析】对每个选项一一分析即可得到正确答案.【详解】解:A 、错误,正确的说法是:含30°的直角三角形中 30°的对边等于最长边的一半; B 、错误,例如a =1,b=2,满足a + b = 3 , ab = 2,但不满足a - b = 1;C 、错误,到三角形三边所在直线距离相等的点有4个,在三角形内部的有一个,是三个内角角平分线的交点,在三角形的外部还有三个,是三角形的外角角平分线的交点;D、正确,等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线,都在等腰三角形的底边的垂直平分线上,故选:D.【点睛】本题考查了含30°的直角三角形的性质,等腰三角形的性质,三角形的角平分线的性质,熟练掌握相关图形的性质是解决本题的关键.9.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②BP垂直平分CE;③PG=AG;④CP平分∠DCB;其中,其中说法正确的有()A.1个B.2个C.3个D.4个D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG=∠BAP,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN,PM=PO,则PN =PO,即可证明结论.【详解】解:∵AP平分∠BAC,PB平分∠CBE,∴∠CAB=2∠PAB,∠CBE=2∠PBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,即∠CBE=∠CAB+2∠APB,∴∠ACB=2∠APB.故①正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一).故②正确;∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴PG =AG .故③正确;如图,过点P 作PM ⊥AE 于点M ,PN ⊥AD 于点N ,PO ⊥BC 于点O ,∵AP 平分∠BAC ,PB 平分∠CBE ,∴PM=PN ,PM=PO ,∴PN =PO ,∴CP 平分∠DCB .故④正确.故选:D .【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.10.如图,在Rt △ABC 中,∠BAC =90°,∠ACB =45°,点D 是AB 中点,AF ⊥CD 于点H ,交BC 于点F ,BE ∥AC 交AF 的延长线于点E ,给出下列结论:①∠BAE =∠ACD ,②△ADC ≌△BEA ,③AC =AF ,④∠BDE =∠EDC ,⑤BC ⊥DE .上述结论正确的序号是( )A .①②⑤B .②④⑤C .①②④D .①②③A解析:A【分析】 由90BAE FAC ∠+∠=︒,90ACD FAC ,得出BAE ACD ∠=∠,①正确;由ASA 证明ADC BEA ∆≅∆,②正确;由AC AB AF ,得出③不正确;由全等三角形的性质得出AD BE =,由AD BD =,得出BE BD =,45BDE EDC ,④不正确;由等腰直角三角形的三线合一性质得出⑤正确;即可得出结论.【详解】90BAC ∠=︒,45ACB ∠=︒,ABC ∴是等腰直角三角形,90BAE FAC ∠+∠=︒,AB AC ∴=,45CBA ACB ,AF CD ⊥,90AHC ∴∠=︒,90ACD FAC ,BAE ACD ∴∠=∠,①正确;//BE AC ,180ABE BAC ,90ABE ∴∠=︒,在ADC ∆和BEA ∆中,90CADABE ACAB ACD BAE()ADCBEA ASA ,②正确; AC AB AF ,∴③不正确; ADC BEA , AD BE ∴=,点D 是AB 中点,AD BD ∴=,BE BD ∴=,45BDE EDC ,④不正确;90ABE ∠=︒,BE BD =,45CBA ∠=︒,45EBP ,即BP 平分ABE ∠,△BDE 为等腰直角三角形,∴根据“三线合一”可得BC ⊥DE ,⑤正确.故选:A .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟悉相关性质是解题的关键.二、填空题11.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.【分析】按程序先作y 轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P 变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成解析:(2,2017)--【分析】按程序先作y 轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P 变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】解:完成1次图形变换,点P (2,3)关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.12.平面直角坐标系中,已知A(8,0),△AOP为等腰三角形,且△AOP的面积为16,则满足条件的P点个数是______.10【分析】使△AOP为等腰三角形只需分两种情况考虑:OA当底边或OA当腰当OA是底边时有2个点;当OA是腰时有8个点即可得出答案【详解】∵A(80)∴OA=8设△AOP的边OA上的高是h则×8×h解析:10【分析】使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,有2个点;当OA是腰时,有8个点,即可得出答案.【详解】∵A(8,0),∴OA=8,设△AOP的边OA上的高是h,则12×8×h=16,解得:h=4,在x轴的两侧作直线a和直线b都和x轴平行,且到x轴的距离都等于4,如图:①以A 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合, ②以O 为圆心,以8为半径画弧,交直线a 和直线b 分别有两个点,即共4个点符合, ③作AO 的垂直平分线分别交直线a 、b 于一点,即共2个点符合,其中,没有重复的点,∴4+4+1+1=10.故选:B .【点睛】本题主要考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论. 13.如图,在ABC 和ADE 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,其中点C ,D ,E 在同一条直线上,连接BD ,BE .以下四个结论:①ACE DBC ∠=∠;②45ACE DBC ∠+∠=︒;③BD CE ⊥;④BD CE =.一定正确的是______.②③④【分析】根据题意易证△ABD ≌△ACE 根据三角形全等的性质及余角的性质角的和差关系可进行判断进而得出正确答案【详解】解:∠DAC=∠DAC △ABD ≌△ACEBD=CE ∠ABD=∠ACE④正确;解析:②③④【分析】根据题意易证△ABD ≌△ACE ,根据三角形全等的性质及余角的性质、角的和差关系可进行判断,进而得出正确答案.【详解】 解:90BAC DAE ∠=∠=︒,∠DAC=∠DAC ,∴BAD CAE ∠=∠,AB AC =,AD AE =,∴△ABD ≌△ACE ,∴BD=CE ,∠ABD=∠ACE ,④正确;∵AB AC =,90BAC ∠=︒,∴∠ABC=∠ACB=45°,即∠ABC=∠ABD+∠DBC=45°,∴45ACE DBC ∠+∠=︒,②正确;∵90BAC ∠=︒,∴∠ABC+∠ACB=90°,∴∠DBC+∠DCB=90°,∴BD ⊥CE ,③正确;∴由题意可知ACE DBC ∠=∠不一定成立,综上所述:②③④正确;故答案为:②③④.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的性质,熟练掌握全等三角形的性质与判定及直角三角形的性质是解题的关键.14.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.15.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2即:a1=1a2=2a3解析:20202【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2,即:a 1=1,a 2=2,a 3=4,a 4=8,,进而得出答案.【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2,A 3B 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,即:a 1=1,a 2=2,a 3=4,a 4=8,,以此类推:a n =2n-1.∴2021a =20202,故答案是:20202. .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,直角三角形30度角的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.16.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.【分析】过C 作CE ⊥AB 于E 交AD 于F 连接BF 则BF+EF 最小证△ADB ≌△CEB 得CE=AD=b 即BF+EF=b 再根据等边三角形的性质可得BE=a 从而可得结论【详解】解:过C 作CE ⊥AB 于E 交AD解析:+a b【分析】过C 作CE ⊥AB 于E ,交AD 于F ,连接BF ,则BF+EF 最小,证△ADB ≌△CEB 得CE=AD=b ,即BF+EF=b ,再根据等边三角形的性质可得BE=a ,从而可得结论.【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,∵△ABC是等边三角形,∴BE=12AB a=∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.17.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是________.6【分析】连接OD由题意可知OP=DP=OD即△PDO为等边三角形所以∠OPA =∠PDB =∠DPA=60°推出△OPA ≌△PDB 根据全等三角形的对应边相等知OA =BP =3则AP =AB−BP =6【详解解析:6【分析】连接OD .由题意可知OP =DP =OD ,即△PDO 为等边三角形,所以∠OPA =∠PDB =∠DPA=60°,推出△OPA ≌△PDB ,根据全等三角形的对应边相等知OA =BP =3,则AP =AB−BP =6.【详解】解:如图,连接OD ,∵PO =PD ,∴OP =DP =OD ,∴△PDO 为等边三角形,即∠DPO =60°,∵等边△ABC ,∴∠A =∠B =60°,AC =AB =9,∴∠OPA =180°−60°−∠DPA=120°−∠DPA∠PDB =180°−∠DPA−60°=120°−∠DPA∴∠OPA=∠PDB ,∴ 在△OPA 和△PDB 中,A B OPA PDB PO PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OPA ≌△PDB (AAS ),∵AO =3,∴AO =PB =3,∴AP =6.故答案是:6.【点睛】本题主要考查全等三角形的判定和性质、等边三角形的性质,关键在于求证△OPA ≌△PDB .18.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).【分析】作DH ⊥AB 根据直角三角形的性质求出DH 根据平行线的性质角平分线的性质解答【详解】解:作DH ⊥AB 于H ∵∴∠DEH=∠DBE+∠BDE=30°∴DH=∵DE ∥BC ∴∠DBF=∠BDE ∴∠DB 解析:12a 【分析】作DH ⊥AB ,根据直角三角形的性质求出DH ,根据平行线的性质,角平分线的性质解答.【详解】解:作DH ⊥AB 于H ,∵15DBE BDE ∠=∠=︒∴∠DEH=∠DBE+∠BDE=30°,DE BE a ==∴DH=11=22DE a , ∵DE ∥BC ,∴∠DBF=∠BDE , ∴∠DBF=∠DBH ,又DF ⊥BC ,DH ⊥AB ,∴DF=DH=12a , 故答案为:12a . 【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.19.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ;(3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ; (5)直线MN 与直线HL 相交于点O ;(6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.①③④【分析】根据题意可得点O 是三边中垂线的交点从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点即:MN ⊥ABHL ⊥AC ∴根据等边三角形 解析:①③④【分析】根据题意可得点O 是三边中垂线的交点,从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可.【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点,即:MN ⊥AB ,HL ⊥AC , ∴根据等边三角形的性质可得:∠DAO=∠EAO=30°,AD=AE ,∴△ADO ≌△AEO ,∴OD=OE ,又根据中垂线的性质得∠EAO=∠ECO=30°,∴在Rt △COE 中,OC=2OE ,∴OC=2OD ,故①正确;在Rt △ABE 中,显然AB=2AE ,而OA >AE ,∴AB≠2OA ,故②错误;根据中垂线性质可得OA=OB ,OA=OC ,∴OA=OB=OC ,故③正确;在四边形ADOE 中,∠ADO=∠AEO=90°,∠DAE=60°,∴∠DOE=360°-90°×2-60°=120°,故④正确;故答案为:①③④.【点睛】本题考查等边三角形的性质以及垂直平分线的画法和性质,以及全等三角形判定与性质,理解题意中所作图形的本质是解题关键.20.如图①,点D 为一等腰直角三角形纸片的斜边AB 的中点,E 是BC 边上的一点,将这张纸片沿DE 翻折成如图②,使BE 与AC 边相交于点F ,若图①中AB =2,则图②中△CEF 的周长为______________.【分析】如图作DM ⊥AC 于MDH ⊥BC 于HDN ⊥EB 于N 连接DF 首先证明△DFB ≌△DFC 推出CF=BF 可得再利用勾股定理求解即可得到答案【详解】解:如图作DM ⊥AC 于MDH ⊥BC 于HDN ⊥EB 于N 解析:2【分析】如图,作DM ⊥AC 于M ,DH ⊥BC 于H ,DN ⊥EB 于N ,连接DF .首先证明△DFB ≌△DFC ,推出CF=BF ,可得()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=,再利用勾股定理求解B C '即可得到答案.【详解】解:如图,作DM ⊥AC 于M ,DH ⊥BC 于H ,DN ⊥EB 于N ,连接DF .∵,90CA CB ACB ''=∠=︒,AD B D '=,∴CD DB AD DB '===,45DCB DCA '∠=∠=︒,45B B '∠=∠=︒.∴DH DM =,,B DE BDE '≌,DH DN ∴=,DH DM DN ∴==∴DFM DFN ∠=∠,∵∠BFM=∠EFC ,∴∠DFB=∠DFC ,在△DFB 和△DFC 中,B DCF DFB DFC DF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DFB ≌△DFC ,∴CF=BF ,∵()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=, ∵2AB '=,∴224B C AC '+=,,B C AC '= 2.B C '∴= (负根舍去)2.CEF C ∴=故答案为: 2.【点睛】本题考查翻折变换,等腰直角三角形的性质,全等三角形的判定和性质,角平分线的判定,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.三、解答题21.如图,△ABC 是边长为12cm 的等边三角形,动点M 、N 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动.(1)若点M 的运动速度是2cm/s ,点N 的运动速度是4cm/s ,当N 到达点C 时,M 、N 两点都停止运动,设运动时间为t (s ),当t=2时,判断△BMN 的形状,并说明理由; (2)当它们的速度都是2cm/s ,当点M 到达点B 时,M 、N 两点停止运动,设点M 的运动时间为t (s ),则当t 为何值时,△MBN 是直角三角形?解析:(1)△BMN 是等边三角形,见解析;(2)当t=2或t=4时,△BMN 是直角三角形.【分析】(1)先由等边三角形的性质解得,当t=2时,AM =4,BN=8,继而证明BM=BN ,再根据等边三角形的判定解题即可;(2)若△MBN 是直角三角形,则∠BNM=90°或∠BMN=90°,根据直角三角形含30°角的性质列方程解题即可.【详解】解:(1)△BMN 是等边三角形当t=2时,AM =4,BN=8,∵△ABC 是等边三角形且边长是12∴BM=12-4=8,∠B=60°∴BM=BN∴△BMN 是等边三角形;(2)△BMN 中,BM=12-2t ,BN=2t①当∠BNM=90°时,∠B=60°∴∠BMN=30° ∴12BN BM = ∴12(122)2t t =-∴t=2②当∠BMN=90°时,∠B=60°∴∠BNM=30°∴12BM BN = ∴112222t t -=⨯ ∴t=4综上:当t=2或t=4时,△BMN 是直角三角形.【点睛】本题考查直角三角形的判定、等边三角形的判定与性质、几何动点与一元一次方程等知识,涉及含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.如图,△ABC 是等边三角形,E 、F 分别是边AB 、AC 上的点,且AE =CF ,且CE 、BF 交于点P ,且EG ⊥BF ,垂足为G .(1)求证:∠ACE =∠CBF ;(2)若PG =1,求EP 的长度.解析:(1)见解析;(2)PE=2【分析】(1)证明△ACE≌△CBF(SAS),即可得到∠ACE=∠CBF;(2)利用由(1)知∠ACE=∠CBF,求出∠BPE=60°,又EG⊥BF,即∠PGE=90°,得到∠GEP=30°,根据在直角三角形中,30°所对的直角边等于斜边的一半,可求出EP 的长.【详解】(1)证明:∵△ABC是等边三角形,∴AC=BC,∠A=∠BCF=60°,AB=AC,在△ACE与△BCF中,AC=BC,∠A=∠BCF,AE=CF,∴△ACE≌△CBF(SAS),∴∠ACE=∠CBF;(2)解:∵由(1)知,∠ACE=∠CBF,又∠ACE+∠PCB=∠ACB=60°,∴∠PBC+∠PCB=60°,∴∠BPE=60°,∵EG⊥BF,即∠PGE=90°,∴∠GEP=30°,∴在Rt△PGE中,PE=2PG,∵PG=1,∴PE=2.【点睛】本题考查了全等三角形的性质定理与判定定理、等边三角形的性质,含30度的直角三角形的性质,解决本题的关键是证明△ACE≌△CBF.23.如图,网格中小正方形的边长为1,(1)画出△ABC关于x轴对称的△A1B1C1(其中A1、B1、C1分别为A、B、C的对应点);(2)△ABC的面积为;点B到边AC的距离为;(3)在x轴上是否存在一点M,使得MA+MB最小,若存在,请直接写出MA+MB的最小值;若不存在,请说明原因解析:(1)见解析;(2)112,113434;(3)存在,17 【分析】 (1)根据对称点的坐标规律,关于x 轴对称的点,横坐标相同,纵坐标互为相反数,找出对称点,顺次连接即可;(2)利用△ABC 所在矩形面积减去周围三角形面积,计算后即可得出答案,点B 到边AC 的距离即为△ABC 的AC 边上的高,利用勾股定理求得AC 的长,再根据已求得的△ABC 的面积从而求解结果;(3)根据两点之间线段最短,利用轴对称的性质先作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于点M ,此时MA +MB 最小,且最小值为线段A 'B 的长度,利用勾股定理计算即可.【详解】 解:(1)如图所示,△A 1B 1C 1即为所求.(2)S △ABC =11111451235342222⨯-⨯⨯-⨯⨯-⨯⨯=. 设点B 到边AC 的距离为h ,∵网格中小正方形的边长为1, ∴AC 223534+=∵11122ABC Sh AC ==, 即1113422h =, 解得113434h =. 故答案为:1121134 (3)如图,在x 轴上存在一点M ,使得MA +MB 最小,作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于一点,此交点即为点M ,由两点之间线段最短可得,此时MA +MB 最小.根据轴对称的性质可得:MA =MA ', ∴22'4117MA MB A B +==+=.【点睛】此题考查了轴对称变换、三角形面积的计算等知识,掌握轴对称与坐标变换并根据题意得出对应点位置是解题关键.24.如图,在四边形ABCD 中,//AB CD ,ABC ∠的平分线交CD 的延长线于点E ,F 是BE 的中点,连接CF 并延长交AD 于点G .(1)求证:BCG DCG ∠=∠.(2)若50CGD ︒∠=,58ABC ︒∠=,求ADE ∠的度数.解析:(1)见解析;(2)111ADE ︒∠=.【分析】(1)根据BE 平分ABC ∠,得到12ABF CBF ABC ∠=∠=∠,由 AB CD ∥,可证得BCE 是等腰三角形,根据F 为BE 的中点,可证BCG DCG ∠=∠;(2)根据AB CD ∥,58ABC ︒∠=,可得 122BCD ︒∠=,利用CG 平分BCD ∠,求得1612GCD BCD ︒∠=∠=,根据 50CGD ︒∠=,ADE CGD GCD ∠=∠+∠,可求得 111ADE ∠=︒.【详解】解:(1)∵BE 平分ABC ∠,∴12ABF CBF ABC ∠=∠=∠. ∵AB CD ∥,∴ABF E ∠=∠,∴CBF E ∠=∠,∴BC =CE , ∴BCE 是等腰三角形.∵F 为BE 的中点,∴CF 平分BCD ∠,即BCG DCG ∠=∠.(2)∵AB CD ∥, ∴180ABC BCD ∠+∠=︒.∵58ABC ︒∠=,∴122BCD ︒∠=.∵CG 平分BCD ∠,∴1612GCD BCD ︒∠=∠=. ∵50CGD ∠=︒,ADE CGD GCD ∠=∠+∠,∴111ADE ∠=︒.【点睛】本题考查了等腰三角形的判定和性质,平行线的性质,三角形外角的性质等等知识点,判断出△BCE 是等腰三角形是解题的关键.25.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.26.如图,在ABC ∆中,60B ∠=︒,点M 从点B 出发沿线段BC 方向,在线段BC 上运动.在点M 运动的过程中,连结AM ,并以AM 为边在线段BC 上方,作等边AMN ∆,连结CN .(1)当_________BAM ∠=时,2AB BM =;(2)请添加一个条件:_________,使得ABC ∆为等边三角形;当ABC ∆为等边三角形时,求证:CN CM AC +=;解析:(1)30;(2)AB=AC;证明详见解析.【分析】(1)根据含30°角的直角三角形的性质解答即可;(2)利用等边三角形的判定即可解答;利用等边三角形的性质和全等三角形的判定证得△BAM≌△CAN(SAS),利用全等三角形的性质即可求证结论.【详解】(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为AB=AC;①∵△ABC与△AMN是等边三角形,∴BC=AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,即∠BAM=∠CAN,∴△BAM≌△CAN(SAS),∴BM=CN,∴BM+CM=CN+CM即BC=AC=CN+CM.【点睛】本题考查等边三角形的判定及性质、全等三角形的判定及性质、含30°角的直角三角形的性质,解题的关键是熟练掌握所学知识.27.如图,在ABC ∆中,AB AC =.(1)尺规作图:作边AB 的垂直平分线,交AB 于点D ,交AC 于点E ,连结BE ;(保留作图痕迹,不写作法)(2)若6AB =,4BC =,求BEC ∆的周长.解析:(1)见详解;(2)10.【分析】(1)分别以A 、B 两点为圆心,以大于12AB 长度为半径画弧,在AB 两边分别相交于两点,然后过这两点作直线即为AB 的垂直平分线;(2)由中垂线的性质得AE =BE ,根据△EBC 的周长=BE +CE +BC =AE +CE +BC =AC +BC ,进而可得答案.【详解】(1)如图所示:(2)∵6AB =,∴6AC AB ==,∵DE 是AB 的垂直平分线,∴AE=BE ,∴BEC ∆的周长=BC+CE+BE=BC+CE+AE=BC+AC=4+6=10.【点睛】本题考查了线段的垂直平分线的性质及等腰三角形的性质及基本作图,解题的关键是掌握垂直平分线上的点到线段两端点的距离相等.28.已知,如图ABC ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,点F 在AB 的延长线上,EG AC ⊥,垂足为点G ,ED 垂直平分BC ,D 为垂足,连结BE ,CE . 求证:BEF CEG △≌△.解析:见解析【分析】利用角平分线的性质得出EF EG =,再利用线段垂直平分线的性质得出BE CE =,最后证明Rt △BEF ≌Rt △CEG 即可.【详解】证明:AE ∵平分FAC ∠,EF AF ⊥,EG AC ⊥,EF EG ∴=, DE 垂直平分BC ,BE CE ∴=,EF AF ⊥,EG AC ⊥,90BFE CGE ∴∠=∠=︒,在Rt BEF 和Rt CEG △中,BE CE EF EG =⎧⎨=⎩Rt Rt (HL)BEF CEG ∴△≌△.【点睛】本题考查了全等三角形的判定与性质, 角平分线的性质及线段垂直平分线的性质,解题的关键是灵活运用性质解决问题.。
第13章轴对称(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列图形中是轴对称图形的是()A .B .C .D .2.如图,点A 在直线l 上,△ABC 与AB C '' 关于直线l 对称,连接BB ',分别交AC ,AC '于点D ,D ¢,连接CC ',下列结论不一定正确的是()A .BACB AC ∠=∠''B .CC BB '' C .BD B D =''D .AD DD ='3.我们知道光的反射是一种常见的物理现象.如图,某V 型路口放置如图所示的两个平面镜1l ,2l ,两个平面镜所成的夹角为1∠,位于点D 处的甲同学在平面镜2l 中看到位于点A 处的乙同学的像,其中光的路径为入射光线AB 经过平面镜1l 反射后,又沿BC 射向平面镜2l ,在点C 处再次反射,反射光线为CD ,已知入射光线2AB l ∥,反射光线1CD l ∥,则1∠等于()A .40︒B .50︒C .60︒D .70︒4.如图,已知a b ∥,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交直线a ,b 于点D 、C ,连接AC ,若135∠=︒,则BAD ∠的度数是()A .35︒B .55︒C .65︒D .70︒5.如图,在等腰Rt ABC △,90BAC ∠=︒,AB AC =,BD 为ABC V 的角平分线,过点C 作CE BD ⊥交BD 的延长线与点E ,若2CE =,则BD 的长为()A .3B .4C .5D .66.如图,90ACB AED ∠=∠=︒,CAE BAD ∠=∠,BC DE =,若BD AC ∥,则ABC ∠与CAE ∠间的数量关系为()A .2ABC CAE∠=∠B .ABC CAE ∠=∠C .290ABC CAE ∠+∠=︒D .2180ABC CAE ∠+∠=︒7.某平板电脑支架如图所示,其中AB CD =,EA ED =,为了使用的舒适性,可调整AEC ∠的大小.若AEC ∠增大16︒,则BDE ∠的变化情况是()A .增大16︒B .减小16︒C .增大8︒D .减小8︒8.如图,在ABC V 中,80BAC ∠=︒,边A 的垂直平分线交BC 于点E ,边AC 的垂直平分线交AC 于点F ,连接AE ,AG .则EAG ∠的度数为()A .35︒B .30︒C .25︒D .20︒9.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 是△ABC 的角平分线,若P ,Q 分别是AD 和AC 边上的动点,则PC +PQ 的最小值是()A .65B .2C .125D .5210.如图,在ABC V 中,90BAC ∠=︒,A 是高,BE 是中线,C 是角平分线,C 交A 于G ,交BE 于H ,下面说法:①ACF BCF S S = ;②AFG AGF ∠=∠;③2FAG ACF ∠=∠;④BH CH =.其中正确的是()A .①②③④B .①③C .②③D .①③④二、填空题(本大题共8小题,每小题4分,共32分)11.如图,在ABC V 中,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交AB 于点D ,连接CD ,若ABC V 的周长为24,9BC =,则ADC △的周长为.12.如图,直线m n ∥,点A 是直线m 上一点,点B 是直线n 上一点,AB 与直线m ,n 均不垂直,点P为线段AB 的中点,直线l 分别与m ,n 相交于点C ,D ,若90,CPD CD ∠=︒=m ,n 之间的距离为2,则PC PD ⋅的值为.13.如图,A EGF ∠=∠,F 为BE CG ,的中点,58DB DE ==,,则AD 的长为.14.如图所示,在平面直角坐标系中,ABC V 满足45,90BAC CBA ∠=︒∠=︒,点A ,C 的坐标分别是()()2,0,3,5--,点B 在y 轴上,在坐标平面内存在一点D (不与点C 重合),使ABC ABD △≌△,且AC 与AD 是对应边,请写出点D 的坐标.15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB 以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.16.如图,锐角ABC 中,30A ∠=︒,72BC =,ABC 的面积是6,D ,E ,F 分别是三边上的动点,则DEF 周长的最小值是.17.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ,…在x 轴正半轴上,点1B ,2B ,3B ,…在直线()0y x =≥上,若()11,0A ,且112A B A △,223A B A △,334A B A △,…均为等边三角形,则线段20212022A A 的长度为.18.如图,将长方形纸片ABCD 沿EF 折叠(折线EF 交AD 于E ,交BC 于F ),点C D 、的对应点分别是1C 、1D ,1ED 交BC 于G ,再将四边形11C D GF 沿FG 折叠,点1C 、1D 的对应点分别是2C 、2D ,2GD 交EF 于H ,给出下列结论:①2EGD EFG∠=∠②2180EFC EGC ∠=∠+︒③若26FEG ∠=︒,则2102EFC ∠=︒④23FHD EFB∠=∠上述正确的结论是.三、解答题(本大题共6小题,共58分)19.(8分)在ABC V 中,90ACB ∠=︒,AC BC BE ==,AD EC ⊥,交EC 延长线于点D .求证:2CE AD =.20.(8分)如图,点P 是AOB ∠外的一点,点E 与点P 关于OA 对称,点F 与点P 关于OB 对称,直线FE 分别交OA OB 、于C 、D 两点,连接PC PD PE PF 、、、.(1)若20OCP F ∠=∠=︒,求CPD ∠的度数;(2)若求=CP DP ,13CF =,3DE =,求CP 的长.21.(10分)如图,在ABC V 中,AD 平分BAC ∠,点E 为AC 中点,AD 与BE 相交于点F .(1)若38,82ABC ACB ∠=︒∠=︒,求ADB ∠的度数;(2)过点B 作BH AD ⊥交AD 延长线于点H ,作ABH 关于AH 对称的AGH ,设BFH △,AEF △的面积分别为12,S S ,若6BCG S V =,试求12S S -的值.22.(10分)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠+∠=︒.(1)如图1,当BP OM ∥时,求证:OB PB =.(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:2OA OB AC -=.23.(10分)已知,在ABC V 中,90CAB ∠=︒,AD BC ⊥于点D ,点E 在线段BD 上,且CD DE =,点F 在线段AB 上,且45BEF ∠=︒(1)如图1,求证:DAE B∠=∠(2)如图1,若2AC =,且2AF BF =,求ABC V 的面积(3)如图2,若点F 是AB 的中点,求AEF ABCS S的值.24.(12分)如图,在ABC V 中,90ACB ∠=︒,30ABC ∠=︒,CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE EB=(2)如图2,当点E 在ABC V 内部时,猜想ED 和EB 数量关系,并加以证明;(3)如图3,当点E 在ABC V 外部时,EH AB ⊥于点H ,过点E 作GE AB ,交线段AC 的延长线于点G ,5AG CG =,3BH =,求CG 的长.。
轴对称变换一般应用于处理整个图形是非轴对称图形而其中有部分轴对称图形(相对于整个图形而言,称为轴对称子图形),构造往往非常巧妙,往往不容易想到,但是同学们要掌握构造轴对称的思想。
本讲主要讲解在中考中和直升考试中,常见的一些构造轴对称的模型:倍角模型;等线段、等腰三角形与轴对称变换;构造特殊角形成特殊的三角形。
模块一倍角模型倍角模型与半角模型类似,本质都是转化成等角模型;利用轴对称思想构造出角平分线,进而得到等腰三角形就是解决问题的一种常见方法。
以构造出两个等腰三角形△ABE和△ AEC .解法三:延长CB至点E ,使得BE AB ,则容易证明△ ACE也为等腰第12讲几何变换之轴对称(二)如图所示,在△ ABC中,AD BC 于点D, B 2 C •求证:AB BD CD .解法一:用倍角模型容易解决.如图作线AD关于BCB 2C ,因此AB BD解法二:由已知△ ABC关于BC的垂直平分线对称的△ ACB ,A'D',则而AA DD CD CD CD BD的垂直平分线对称为••• AB AA AC ,CD .AD BC , B 2 C,如果我们在CD上截取DE DB,连接AE,设高就可例1例2形.如图,△ AOB是等腰三角形,AO AB , △ AOB与厶AOB关于直线I对称.连接BB和AB , 如果ABB 2 ABB,那么BAO和BAB的数量关系是_________________ .问题:已知△ ABC 中,BAC 2 ACB ,点D 是厶ABC 内的一点, 究 DBC 与 ABC 度数的比值. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1 )当 BAC 90时,依问题中的条件补全图形.观察图形,AB 与AC 的数量关系为 _________ ;DAC 15时,可进一步推出 DBC 的度数为DBC 与 ABC 度数的比值为 ___________ • BAC 90时,请你画出图形,研究DBC 与 ABC 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.二 KD BD BA KC •••• BK II AC ,••• ACB 6 •KCA 2 ACB , 5 ACB • •56 •• KC KB • • KD BD KB •KBD 60° • T ACB 6 60°1 ,AB 平分 Z ABB •连接AA , AA II BB •• Z A AB Z BBA ,又 •• Z ABB Z ABA• Z A AB Z ABA , • AA AB ,又• AB AO AO AB• △ AOA 是等边三角形, 设 Z OAB y , • Z AB B 60 y• Z ABB 120 2y , • • Z BAB 180 (60 y) (120 2y) • 3 BAO BAB •且 AD CD , BD BA •探当推出 可得到 (2 )解析由“ 3y ,ABB 2 ABB ”联想到角平分线,其实对称起到了角的转移,BAC 2 ACB 120° 2 1 ••/ 1 (60°1) (120°2) 1 2 180° ,2 2 1.DBC与ABC度数的比值为1:3 .模块二等腰三角形与轴对称变换对于整个图形是轴对称图形的平面几何问题,如果以其对称轴为对称轴作轴对称变换,则整个图形毫无变化,因此对解决问题是没有丝毫帮助的. 但如果只是一部分图形是轴对称图形,此时以其对称轴为对称轴作轴对称变换,再找出轴对称图形之外的有关元素的像,则原来的几何图形即发生了变化,从而有可能使问题得到解决.等腰三角形问题在平面几何中占有很大的比例,它是一类典型的轴对称图形,因而等腰三角形除了可以考虑用旋转变换处理外,还可以考虑用轴对称变换处理,对称轴即等腰三角形的对称轴.如图所示,在△ ABC中,AB AC , AD是BC边上的高,点P在厶ABD内部,求证:APB APC .作点P关于AD的对称点P',连接AP'并延长交PC于点Q,连接P'C . 因为AB AC , AD是BC边上的高,易得AP'C APB .因为AP'C P'QC , P'QC APC,故APB APC .已知:△ ABC是一个等腰直角三角形,PBC PCB 15,求证:AB AP.A CBCAB BC , △ ABC内部有一点P,连接PA, 例4在厶ABC内取一点M,使得MBA 30 , MAB AMC .10 ,设ACB 80 , AC BC,求如图所示,△ ABC的高CH与直线BM交于点E, 则AEBE .而EAM EAB- 1 - MAB 30 10 20 ,ACE-ACB240 ,EAC CAH EAB(90 AME MAB MBA1040 ) 30贝U △ AME ACE(SAS), 因此AM AC ,30 20 , 40 ,AMC ACM【教师备课提示】1(180 CAM )2通过这道题,让孩子们自己体会下用哪种方法,总结是不是所有的这种题三种方法都可以,如果不是,那什么样的题适合用什么样的方法?70 .如图所示,在 △ ABC 中, BAC BCA 44 , MABC 内一点,使得 MCA 30 ,MAC 16,求 BMC 的度数.模块三构造特殊角形成特殊的三角形在一些题当中,往往出现两角和或者差为特殊的角度, 但是两个角度又离的比较远或者 位置比较特殊,这个时候可以考虑三大变换来解决问题,但是构造比较巧妙,往往不容易想到,在这里把这样的一些利用轴对称构造特殊角度形成特殊的三角形如直角三角形, 等边三角形等的题总结下.例7在凸四边形ABCD中, 边ADB ABC 105 , CBD 75 •如果AB CD 15cm,求四形ABCD的面积.1复习巩固PCA 120 BAC ,求 CBP 的度数.模块一倍角模型在△ ABC 中,AB AC , 60BAC 120P 为△ ABC 内部一点,PC AC ,已知点M 是四边形ABCD 的BC 边的中点,且AMD 120,证明:AB BC CD > AD • 2例1041在等腰直角三角形 ABC 中,P 为内部一点,满足 PB PC , AP AC .求证:BCP 156■演练3如图,在 △ ABC 中, BAC 80 , AB AC , O 为△ ABC 内一点,且 OBC 10 , OCA 20,求 BAO 的度数.E龟■演练2如图所示,在 △ ABC 中, ACB 2 ABC , P 为三角形内一点, AP AC , PB PC ,求 图① 图②模块三构造特殊角形成特殊的三角形厲演练5设M是凸四边形ABCD的边BC的中点,AMD 135,求证:AB —2 BC CD > AD 如图所示,在四边形ABCD中,AB 30 , AD 求四边形ABCD的面积.。
2020年四川省成都市中考数学B卷培优专练(18)轴对称变换问题一、单选题1.如图,在黄金矩形ABCD中,四边形ABFG、GHED均为正方形,,现将矩形ABCD沿AE 向上翻折,得四边形AEC'B',连接BB',若AB=2,则线段BB'的长度为()A. B. C.2 D.2.如图,把△ABC纸片沿DE折叠,当A落在四边形BCDE内时,则与之间有始终不变的关系是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=∠1+∠2D.3∠A=2(∠1+∠2)3.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.4.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF (E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数是()A.128°B.118°C.108°D.98°5.如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A.①②B.②③C.①④D.③④6.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.D.7.如图,△ABE,△ADC是△ABC分别沿着边AB,AC翻折形成的,若∠BCA:∠ABC:∠BAC=28:5:3,BE与DC交于点F,则∠BFC的度数为()A.15°B.20°C.30°D.36°8.如图,在正方形中,是边的中点,将沿折叠,使点落在点处,的延长线与边交于点.下列四个结论:①;②;③;④S正方形ABCD,其中正确结论的个数为()A.个B.个C.个D.个9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,在四边形ABCD中,∠C=70°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.30°B.40°C.50°D.70°二、填空题11.在矩形中,,,点,分别为,上的两个动点,将沿折叠,点的对应点为,若点落在射线上,且恰为直角三角形,则线段的长为________.12.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________.13.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为________.14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为________.15.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.16.∠A=65º,∠B=75º,将纸片一角折叠,使点C 落在△ABC外,若∠2=20º,则∠1的度数为________.17.如图,在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF⊥AC分别交AD、AB于点E、F,将△AEF沿EF折叠,点A落在A′处,当△A′BC是等腰三角形时,AP的长为________.18.如图①的长方形ABCD中,E在AD上,沿BE将A点往右折成如图②所示,再作AF⊥CD于点F,如图③所示,若AB=2,BC=3,∠BEA=60°,则图③中AF的长度为________.19.如图,在平面直角坐标系中,长方形ABCO的边COOA分别在x轴,y轴上,点E在边BC上,将该长方形沿AE折叠,点B恰好落在边OC上的点F处,若OA=8,CF=4,则AE所在直线的表达式为________。
几何变换-轴对称变换提高题【知识提要】1. 如果已知平面上直线l 和一点A ,自点A 作l 的垂线,垂足设为H ,在直线AH 上、l 的另一侧取点A ',使得A H AH '=,如图所示,我们称点A '是点A 关于直线l 的轴对称点,或者说点A 与点A '关于直线l 为轴对称,其中l 称为对称轴.2. 图形F 的每一点关于直线l 的对称点组成的图形F ',称为F 关于轴l 的轴对称图形.把一个图形变为关于直线l 的轴对称图形的变换,叫作轴对称变换(或反射变换),直线l 称为对称轴(反射轴).3. 我们容易想到,一条线段AA '关于它的垂直平分线为轴对称图形,一个角AOA '∠关于它的角平分线为轴对称图形.在几何证题或解题时,如果图形是轴对称图形,则经常要添加对称轴以便充分利用轴对称图形的性质;如果图形不是轴对称图形,往往可选择某直线为对称轴,补为轴对称图形,或将对称轴一侧的图形反射到该直线的另一侧,以实现条件的相对集中.4. 在几何问题中有两种常用而比较普遍的对称图形,它们是轴对称图形和中心对称图形.利用对称性解题是解决几何问题的有效方法之一,本讲重点讲解轴对称图形.(1) 轴对称变换:把一个图形变为关于某一直线为对称轴的轴对称图形,这种变换称为轴对称变换.在几何图形中,如果是轴对称图形,则常添加对称轴,以充分利用对称的性质.如等腰三角形、等腰梯形的对称轴可以应用三线合一等;对于正方形、菱形,经常添加对角线等.(2) 中心对称变换:把一个图形绕着一个定点按一定方向、一个角度旋转而得到另一个图形,这种变换称为旋转变换.特殊地,当旋转角为180 时,称为中心对称变换.平行四边形是中心对称图形,矩形、菱形、正方形既是中心对称图形,又是轴对称图形.在对称变换下,可使某些相关元素相对集中,为充分运用已知条件、转化结论提供方便.【例题精讲】【例1】在ABC ∆中,由A 点向BC 边引高线,垂足D 落在BC 上,如果2C B ∠=∠,求证:AC CD BD +=.A AB CD C 1AB C D【解法1】如图所示,以AD 为对称轴翻折ADC ∆到1ADC ∆的位置,则1C 在BD 上,1AC AC =,1C D CD =,12AC D ACD B ∠=∠=∠.在1ABC ∆中,根据外角定理可知11ABC BAC ∠=∠, 所以11AC BC =,故1111AC CD AC C D BC C D BD +=+=+=.【解法2】以AD 为对称轴翻折ABD ∆到AED ∆的位置,则12AED ABD ACB ∠=∠=∠,从而CA CE =.进而AC CD CE CD DE +=+=,而DE BD =(由“翻折”的特点决定), 故AC CD BD +=.【解法3】回顾一下我们在第10讲中所学的知识,可知2()c b a b =+,即22c b ab -=.注意到2222222()2c b BD CD a x x a ax -=-=--=-,故22a ax ab -=, 即2a x b -=,亦即a x b x -=+,故BD AC CD =+.【点评】题设中的2C B ∠=∠给了我们太多的联想!我们不妨回忆一下第4讲、第5讲、第10讲,看看是否还有其他解法(比如延长AC 至E ,使CE CD =).【例2】如图所示,在四边形ABCD 中,BC CD =,60BCA ACD ∠-∠=︒,求证:AD CD AB +≥.AB C D ED CBA D'D CBA a-x x cbD C B A【解析】注意到60BCA ACD ∠-∠=︒,这提示我们可以进行对称变换以“创造”出60︒角.以AC 为对称轴将DAC ∆翻折到'D AC ∆的位置,连接'BD . 则'CD CD BC ==,''60BCD BCA ACD BCA ACD ∠=∠-∠=∠-∠=︒, 故'D BC ∆为等边三角形.从而''AD CD AD D B AB +=+≥, 等号成立时AC 平分BAD ∠.【变式】(第3届英国数学奥林匹克竞赛试题) 如图所示,在ABC ∆中,AB AC >,BE 、CF 为ABC ∆的两条高,求证:AB CF AC BE +>+.【解法1】将改写A B C F A C B E +>+为AB AC BE CF ->-,可形成下面的思路:BAC ∠的平分线记为l ,作点C 关于l 的对称点'C ,作点F 关于l 的对称点'F ,过点'C 作BE 的垂线'CD ,因为'AB AC BC -=,''BE CF BE C F BD -=-=, 而'BC BD >,故AB CF AC BE +>+.【解法2】我们用“分析法”寻求思路:AB CF AC BE +>+22()()AB CF AC BE ⇔+>+222222AB CF AB CF AC BE AC BE ⇔++⋅>++⋅.注意到224ABC AB CF AC BE S ∆⋅=⋅=,222AB AE BE =+,222AC AF CF =+,故22AB CF AC BE AE AF AE AF +>+⇔>⇔>. 而由ABE ACF ∆∆∽、AB AC AE AF >⇒>.【例3】如图所示,在四边形ABCD 中,30AB =,48AD =,14BC =,40CD =,90ABD BDC ∠+∠= ,求四边形ABCD 的面积.48401430A'A B CDl 48401430A B CD EFCBAlDC'F'EFCBA【解析】直接计算四边形ABCD 的面积有困难,注意到90ABD BDC ∠+∠= ,我们以BD 的垂直平分线l 为对称轴,作ABD ∆的关于l 的轴对称图形'A DB ∆,从而可以将角度集中.1ABD A DB S S ∆∆=,'30A D AB ==,'48A B AD ==,'A DB ABD ∠=∠, 所以''A DC A DB BDC ∠=∠+∠90ABD BDC =∠+∠= , 因此,'A DC ∆是直角三角形.由勾股定理求得'50A C . 在'A BC ∆中,'50A C =,'48A B =,14BC =.而2222'1448BC A B +=+1962304=+2500=2250'A C ==. 由勾股定理的逆定理可知'90A BC ∠= . 'ABCD A BCD S S =''A BC A DC S S ∆∆=+11''22A B BC A D CD =⋅+⋅ 114814304022=⨯⨯+⨯⨯ 336600936=+=.【变式】在凸四边形ABCD 中,105ADB ABC ∠=∠= ,75CBD ∠= .如果15AB CD ==厘米,求四边形ABCD 的面积.【解析】如图所示,以BD 边上的中垂线为对称轴作DBC ∆的轴对称图形1BDC ∆,则1DBC BDC S S ∆∆=,175C DB CBD ∠=∠=︒,110575180ADB C DB ∠+∠=︒+︒=︒, 故A 、D 、1C 共线.A BCDA B C D C 1又因为1057530ABD ABC CBD ∠=∠-∠=︒-︒=︒, 由ABD ∆可知1801053045A ∠=︒-︒-︒=︒, 而115C B CD AB ===, 故145C A ∠=∠=︒.因此190ABC ∠=︒,1ABC ∆是等腰直角三角形.故111515112.52ABCD ABC S S ∆==⨯⨯=.【例4】(1993年圣彼得堡数学奥林匹克竞赛试题) 已知点M 是四边形ABCD 的BC 边的中点,且120AMD ∠= ,证明:12AB BC CD AD ++≥.【解析】显然,要证题设的不等式,应当把AB ,12BC ,CD 三条线段首尾连接成一条折线,然后再与线段AD 比较.要实现这一构想,折线之首端应与A 点重合,尾端应与D 点重合,这可由轴对称来实现.以AM 为对称轴,作点B 关于AM 的对称点1B ,连接1AB 、1MB , 则1AB AB =,1MB MB =,即1AB M ∆≌ABM ∆,由此1B MA BMA ∠=∠.B 1AB CDM C 1AB CDM再以DM 为对称轴,作点C 关于DM 的对称点1C ,连接1DC 、1MC , 则1DC DC =,1MC MC =,即1DC M ∆≌DCM ∆,由此1C MD CMD ∠=∠. 而120AMD ∠= ,所以180********BMA CMD AMD ∠+∠=-∠=-= . 注意到1160B MA C MD BMA CMD ∠+∠=∠+∠= ,因此1111120()B MC B MA C MD ∠=-∠+∠ 1206060=-= , 而1112MB MC BC ==,所以11B MC ∆是等边三角形,1112B C BC =. 由于两点之间以直线段为最短,所以1111AB B C C D AD ++≥,即12AB BC CD AD ++≥.【变式】(2001年波罗的海地区数学奥林匹克竞赛试题) 设M 是凸四边形ABCD 的边BC 的中点,135AMD ∠=︒,求证:AB CD AD ++≥.【解析】作点B 关于AM 的对称点'B ,作点C 关于DM 的对称点'C ,连接'AB 、''B C 、'C D , 则''MB MB MC MC ===, 且'AB AB =,'C D CD =. 而''90C MB ∠=︒,则'''B C ==,故''''AB CD AB B C C D AD ++=++≥.M D C B A C'B'M DCB A【例5】(2001年波罗的海地区数学奥林匹克竞赛试题) 如图所示,在ABC ∆中,A ∠的平分线交BC 于点D ,已知2BD DC AD ⋅=,且45ADB ∠=︒,求ABC ∆的各个内角.【解析】AD 是角平分线提示我们可以进行“翻折”.将点C 翻折到'C 的位置,且'C 在AB 的延长线上,且'AC AC =,'DC DC ⊥,'DC DC =.延长CB 至点E ,使ED DC =,则2BD ED AD ⋅=,故E BAD DAC ∠=∠=∠, 从而222AC ED DC DC =⋅=,则'AC CC ==,故'AC C ∆为等边三角形.故60BAC ∠=︒,15ACB ∠=︒.【变式】如图所示,已知在ABC ∆中,6AB =,3AC =,120BAC ∠= ,BAC ∠的平分线交BC 于D ,求AD 之长.【解法1】由于AD 平分BAC ∠,因此这就提供了以AD 为轴进行对称变换的可能性.取AB 的中点C ',连接CC ',交AD 于O ,易知AOC ∆与AOC '∆关于AD 对称,且AO CC '⊥.由于30ACO ∠= ,3AC =,所以32AO =. 延长AC 至B ',使6AB '=,连接BB '交AD 的延长线于点E . C B A D C'C B AO E D B'EC'45︒DCBA 45︒D CB A显然ABE ∆和AB E '∆关于AE 对称,且AE BB '⊥. 由于OC 是AEB '∆的中位线, 所以32AO OE ==,1122OC EB BE '==. 因为OC OD BE DE =, 所以12OD DE =. 所以332OD =,12OD =. 于是31222AD AO OD =+=+=. 【解法2】回顾一下我们学过的第9讲例3之“变式2”:如图所示,在ABC ∆中,120BAC ∠=︒,AD 平分BAC ∠且交BC 于点D ,求证:111AD AB AC=+. 直接应用此结论可得11163AD =+, 即2AD =.下面的题目作为备用题:【备选1】如图所示,在ABC ∆中,2ACB ABC ∠=∠,P 为三角形内一点,AP AC =,PB PC =,求证:3BAC BAP ∠=∠.PC BAPCBAMA'DB A【解析】由已知条件PB PC =,考虑作直线PM BC ⊥于M ,并以PM 为对称轴将APC ∆翻折至A PB '∆的位置,连接AA '.由轴对称的性质有//AA BC ',2A BC ACB ABC '∠=∠=∠. 因为A AB ABC A BA ''∠=∠=∠, 于是AA A B AC AP A P '''====, 即A AP '∆是正三角形,从而可得60ABC A AB BAP '∠=∠=-∠ ,21202ACB ABC BAP ∠=∠=-∠ .再由ABC ∆三内角之和为180 ,即(60)(1202)180BAP BAP BAC -∠+-∠+∠= , 整理后得3BAC BAP ∠=∠.【备选2】如图所示,在ABC ∆中,60B ∠= ,100A ∠= ,E 为AC 的中点,80DEC ∠= ,D是BC 边上的点,1BC =,求ABC ∆的面积与CDE ∆的面积的两倍的和.【解析】将ABC ∆补成一个等边三角形,并作ABC ∆的对称三角形,可以发现等边三角形的面积等于24ABC CDE S S ∆∆+.作60BCF ∠= ,其中点F 在BA 的延长线上,则BFC ∆为等边三角形.作CH BF ⊥于点H ,并取点A 关于点H 的对称点G , 则有18080CGH CAH BAC ∠=∠=-∠= .而80DEC ∠= ,18080EDC DEC ACB ∠=-∠-∠= , 故CGA CED ∆∆∽,且相似比为2. 则4CAG CDE S S ∆∆=.ED C B A GHFE D C B A而ABC GFC S S ∆∆=(ABC GFC ∆∆≌), 故2ABC CDE S S ∆∆+12FBC S ∆==【复习巩固】练习1. 如图所示,在ABC ∆中,AB AC =,AD 是BC 边上的高,点P 在ABD ∆内部,求证:APB APC ∠>∠.【解析】作点P 关于AD 的对称点'P ,连接'AP 并延长交PC 于点Q ,连接'P C .因为AB AC =,AD 是BC 边上的高, 易得'AP C APB ∠=∠.因为''AP C P QC ∠>∠,'P QC APC ∠>∠, 故APB APC ∠>∠.练习2.(1997年罗马尼亚数学奥林匹克竞赛试题) 如图所示,在四边形ABCD 中,AB CD ∥,AC BD ⊥,求证:(1) AD BC AB CD +≥+; (2) AD BC AB CD ⋅≥⋅.DCBA C'D'DCB A D QP'P CB AP D CB A【解析】(1) 以AC 为对称轴将ADC ∆翻折到'AD C ∆的位置,则由AC BD ⊥可知'D 在BD 上,且'AD AD =,'CD CD =.将DC 平移到'BC 的位置,则由AB CD ∥可知'C 在AB 的延长线上, 且''C B CD CD ==,'CC BD ∥,因此''BC CD 是一个等腰梯形,所以''BC D C =,于是'''''AD BC AD D C AC AB BC AB CD +=+≥=+=+.(2) 由(1)可得22()()AD BC AB CD +≥+,即222222AD BC AD BC AB CD AB CD ++⋅≥++⋅, 而由AC BD ⊥及勾股定理可得2222AD BC AB CD +=+, 故AD BC AB CD ⋅≥⋅.练习3. 在ABC ∆中,AB AC =,60120A ︒<∠<︒,P 为ABC ∆内部一点,PC AC =,120PCA A ∠=︒-∠,求CBP ∠的度数.【解析】容易求得1302PAC A ∠=∠+︒,1302BAP BCP A ∠=∠=∠-︒. ABC ∆的对称轴为AD ,作点P 关于AD 的对称点'P , 则'60PAP ∠=︒,故'APP ∆为等边三角形,则'P C 平分ACP ∠,1'602PCP A ∠=︒-∠. 故11'(30)(60)3022CBP BCP A A ∠=∠=∠-︒+︒-∠=︒.练习4. 如图所示,P 为ABC ∆边BC 上的一点,且2PC PB =,已知45ABC ∠= ,60APC ∠= ,试求ACB ∠的度数.P C B A D P'P CB AC P B ACP BA C 1M【解析】作出点C 关于直线AP 的对称点1C ,连接1BC 、1PC 、1AC ,则12C P CP BP ==,如图所示.11180C PB APC APC ∠=-∠-∠ 180606060=--= . 取1C P 的中点M ,连接BM ,则BM P ∆为等边三角形,1BM MP MC ==, 故111302C BM BC M BMP ∠=∠=∠= ,190C BC ∠= . 又因为45ABC ∠= ,故1ABC ABC ∠=∠,故AB 平分1C BC ∠, 故A 点到直线CP 、1PC 、1BC 等距, 从而1AC 是1BC P ∠的外角平分线, 所以11(18030)752ACB AC P ∠=∠=-= .‘’。
北师大版八年级数学上册 轴对称解答题(培优篇)(Word 版 含解析)一、八年级数学 轴对称解答题压轴题(难)1.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;(3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP时,△APQ为等边三角形∴2t=20-2t,解得t=5②当P于B重合,Q与C重合,则所用时间为:4÷2=20综上,当△APQ为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.2.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键. 3.再读教材:宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(15(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB22AC BC+2212+55(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE ,矩形MNDE .∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1.∵BC =2,∴CD BC =51-,∴矩形BCDE 是黄金矩形. ∵MN DN =15+=512-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.长GH 51,宽HE =35点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.4.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.【答案】(1)见解析,(2)BFC ∠=60(3)8=CF .【解析】【分析】(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;(2)在图2中,连接CE ,可证得BCE ∆是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1'2ABE A BE ABF ∠=∠=∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N ,可证得Rt BEM Rt CEN ∆≅∆,BM CN =,BF FM CF CN -=+,可得线段CF 的长.【详解】解:(1)证明:如图1,AD BC ⊥,BD CD =AB AC ∴=BAD CAD ∴∠=∠;图1(2)解:在图2中,连接CEED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴∆是等边三角形60BEC ∴∠= 30BED ∴∠=由折叠性质可知1'2ABE A BE ABF ∠=∠=∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠ BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=⨯=图2(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=在Rt EFM ∆中,906030FEM ∠=-= 2EF FM ∴=令FM m =,则2EF m = 62FG EG EF m ∴=-=-同理12FN EF m ==,2124CF FG m ==-在Rt BEM ∆和Rt CEN ∆中,EM EN =,BE CE = Rt BEM Rt CEN ∴∆≅∆ BM CN ∴=BF FM CF FN ∴-=+ 10124m m m ∴-=-+解得1m = 8CF ∴=图3故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =.【点睛】本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.5.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC 中,AB =AC ,点D 在AC 边上,且AD =BD =BC ,求∠A 的大小; (2)在图1中过点C 作一条线段CE ,使BD ,CE 是△ABC 的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC 中,∠B =30°,AD 和DE 是△ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD =BD ,DE =CE ,请直接写出∠C 所有可能的值.【答案】(1)∠A =36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C 为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.6.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA ≌△QBD ,根据全等三角形的性质得到∠BDQ =∠BAC =60°,求出 CD ,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.7.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示:(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.8.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.=. 9.已知ABC为等边三角形,E为射线AC上一点,D为射线CB上一点,AD DE=时,AD是ABC的中线吗?请说明(1)如图1,当点E在AC的延长线上且CD CE理由;AB BD AE之间的数量关系,请说明理(2)如图2,当点E在AC的延长线上时,写出,,由;(3)如图3,当点D在线段CB的延长线上,点E在线段AC上时,请直接写出,,AB BD AE的数量关系.+=,理由详见【答案】(1)AD是ABC的中线,理由详见解析;(2)AB BD AE=+.解析;(3)AB AE BD【解析】【分析】(1)利用△ABC是等边三角形及CD=CE可得∠CDE=∠E=30°,利用AD=DE,证明∠CAD=∠E =30°,即可解决问题.(2)在AB上取BH=BD,连接DH,证明AHD≌△DCE得出DH=CE,得出AE=AB+BD,(3)在AB上取AF=AE,连接DF,利用△AFD≌△EFD得出角的关系,得出△BDF是等腰三角形,根据边的关系得出结论AB=BD+AE.【详解】(1)解:如图1,结论:AD是△ABC的中线.理由如下:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠B=∠ACB=60°,∵CD=CE,∴∠CDE=∠E,∵∠ACD=∠CDE+∠E=60°,∴∠E=30°,∵DA=DE,∴∠DAC=∠E=30°,∵∠BAC=60°,∴∠DAB=∠CAD,∵AB=AC,∴BD=DC,∴AD是△ABC的中线.(2)结论:AB+BD=AE,理由如下:如图2,在AB上取BH=BD,连接DH,∵BH=BD,∠B=60°,∴△BDH为等边三角形,AB-BH=BC-BD,∴∠BHD=60°,BD=DH,AH=DC,∵AD=DE,∴∠E=∠CAD,∴∠BAC-∠CAD=∠ACB-∠E∴∠BAD=∠CDE,∵∠BHD=60°,∠ACB=60°,∴180°-∠BHD=180°-∠ACB,∴∠AHD=∠DCE,∴在△AHD和△DCE,BAD CDEAHD DCEAD DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHD≌△DCE(AAS),∴DH=CE,∴BD=CE,∴AE=AC+CE=AB+BD.(3)结论:AB=BD+AE,理由如下:如图3,在AB上取AF=AE,连接DF,∵△ABC为等边三角形,∴∠BAC=∠ABC=60°,∴△AFE是等边三角形,∴∠FAE=∠FEA=∠AFE=60°,∴EF∥BC,∴∠EDB=∠DEF,∵AD=DE,∴∠DEA=∠DAE,∴∠DEF=∠DAF,∵DF=DF,AF=EF,在△AFD和△EFD中,AD DEDF DFAF EF=⎧⎪=⎨⎪=⎩,∴△AFD≌△EFD(SSS)∴∠ADF=∠EDF,∠DAF=∠DEF,∴∠FDB=∠EDF+∠EDB,∠DFB=∠DAF+∠ADF,∵∠EDB=∠DEF,∴∠FDB=∠DFB,∴DB=BF,∵AB=AF+FB,∴AB=BD+AE.【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质及等边三角形的判定与性质,解题的关键是正确作出辅助线,运用三角形全等找出对应的线段.10.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【答案】(1)见解析(2) ∠AEB=15°(3) 见解析【解析】试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.试题解析:(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC,∴∠AEB=∠ACD,∵∠ACD=15°,∴∠AEB=15°;(3)同上可证:△ABE≌△ADC,∴∠AEB=∠ACD,又∵∠ACD=60°,∴∠AEB=60°,∵∠EAC=60°,∴∠AEB=∠EAC,∴AC∥BE.点睛:本题主要考查了等边三角形的性质、全等三角形的判定及性质,证得△ABE≌△ADC 是解决本题的关键.。
《轴对称图形》培优专题训练1运用线段的垂直平分线性质解题我们知道,线段的垂直平分线上的点,到线段两端的距离相等;反过来,到线段两端的距离相等的点,在线段的垂直平分线上•运用线段的垂直平分线的性质,我们可以解决一些计算题和证明题.经典例题如图,P为ZAOB的平分线OC上任意一点,PE丄Q4于£,PF丄OB于F ,求证:OP是的垂直平分线.解题策略因为OP为ZAO3的平分线,PE丄OA, PF丄OB,所以P£ = PF (角平分线上的点,到角两边的距离相等),因此P在EF的垂直平分线上(到线段两端距离相等的点,在线段的垂直平分线上).・在Rt'OEP和RfbOFP中,PE = PF.OP = OP,所以OEP兰2FP且OE = OF, 所以0在EF 的垂直平分线上(到线段两端距离相等的点,在线段的垂直平分线上).所以OP 是EF的垂直平分线.画龙点睛因为线段是轴对称图形,而且线段的垂直平分线是线段的对称轴.我们常利用线段的轴对称性质来证明线段的相等,也利用线段轴对称的判左方法来确左线段的垂直平分线.举一反三1.如图,等腰AABC中,AB = AC,ZA = 20°.^段AB的垂直平分线交AB于D ,交AC于E,连结BE,则ZCBE等于』 ).(A) 80°(B)70°(C)60°(D)50°A3.如图,在AABC中,DE是AC的垂直平分线,AE = 6cm. AABD的周长为20cm. 求△△A3C的周长.4.如图,在AABC中,ZABC = 45° , AD是ABAC的平分线,EF垂直平分AD, 交BC的延长线于F,试求ZCAF的大小.融会贯通5・如图,RtMBC中,ZACB = 90°. ZA<ZZ?, CM是斜边43的中线,将AACM 沿直线CM 折叠,点A落在点D处,如果CD恰好与A3垂直,求ZA的大小.2与轴对称有关的作图本节包含两种类型的问题:一类是作出一个图形的关于一条直线的轴对称图形,此类问 题比较简单;另外一类问题是用作轴对称图形的方法来解题,这类问题就比较复杂了. ¥ 经典例题如图1.有一张矩形纸片ABCD.上而画有一个角的两边加.,但是这个角的顶点P 在纸片的外部,试在纸片上作出ZP 的平分线来.图1解题策略作法:⑴在纸片上作直线h 丄m ;作关于h 的对称直线n ■,川与m 交于P;⑶作,关于的对称直线〃・则0所在的直线也是ZP 的平分线所在的直线.画龙点睛图2我们将例题这种类型的题称为不可及点作图问题•这个利用轴对称变换来解答的作法是 解决不可及点作图问题的一般方法. 举1反三1. 如图,已知ZAOB 与线段CQ,求作一点P,使点P 到CD 的两端点距离相等, 且到ZAOB 两边的距离也相等.① ② ③融会贯通4.如图,已知三点A.B.C 不在同一直线上,求作: (1) 直线人,使A 、B 两点关于直线厶对称; (2) 直线「使A 、C 两点关于直线厶对称;2. 如图①,在网格中有两个全等的图形(阴影部分), 试分别在图②、③中画出两种不同的拼法.用这两个图形拼成轴对称图形,(3) 直线「使3、C两点关于直线厶对称.厶,你从中可以发现什么规律3运用轴对称方法求最值有一类几何极值问题,可以运用轴对称的方法来解决,本肖我们就来介绍这种方法.I经典例题如图1,已知线段AB和直线EF(线段AB和直线EF不相交),在直线上求一点C, 使A43C 周长最短.解題策略如图2,作点A关于EF的对称点/T,连结交EF于点C,则点C为所求的点, 此时,AABC的周长最短.事实上,如C'是EF上异于C的另外一点,如图3,连结AC\由轴对称的性质有AC = AC l , AC' = AC\于是AC+CB = A'C+CB = A1 B < A'C'+C l B = AC'+BC\显然有AABC的周长< AABC*的周长.也就是说AABC的周长最短.画龙点睛1. 利用轴对称的方法,常可以化折线段为直线段,再结合“两点之间线段最短”的性质,就可以解决一类几何最值问题了.2・%3.我们容易证得,当AC+BC最短时,ZACE = ZBCF.这是一种最短线的等角性质,有一类台球问题也可以仿此解答.举一反三1.如图,已知直线MV和在MN异侧的两点A. B,在A/N上求作一点P,使线段\PA-PB\最大.M A•B2. 如图,已知ZAO3内一泄点P.试在04、OB上各找一点M、N.使WMN周长最短.3. 如图是一台球桌而示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是________ .④ ③ ②融会贯通4. 在一平直河岸/同侧有3两个村庄,A、B到/的距离分别是3km和2km, AB = a km(a > 1).现汁划在河岸/上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为且d} = PB + BA[K中3P丄/于点P);图2是方案二的示意图,设该方案中管道长度为心,且d2 = PA + PB (其中点?T与点A关于/对称,与/交于点P).图1图2图3观察计算(1)在方案一中,4 =km(用含"的式子表示);(2)在方案二中,组长小宇为了il•算妁的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,如=______ km(用含"的式子表示).探索归纳(1)________________________ ®当“ =4时,比较大小血(填“>”、或“<”);②当a=6时,比较<大小:心__________ 妁(填”或);(2)请你参考下面方框中的方法指导,就"(当“>1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二方法指导当不易直接比较两个正数川与"的大小时可以对它们的平方进行比较:因为,m2-n2 = (m + h)(m一n), m+n>0所以(m2-n2)与(m-n)的符号相同.当m2一“‘ >0时,m-n>0,即m > n :1当nr -n2 = 0 时,m-n = O9即,in - n :当m2 -n2 <0时,m-n<09即m<n4等腰三角形的性质与判定经典例题如图所示,若AB = AC、BG = BH、AK = KG,则ABAC的度数为( )(A)30°(B)32°(C)36°(D)40°解题策略1 QAO _、.o设 ZA4C = x°.KiJ 由 = 可得 ZABC = ZACB ,所以 ZABC = --------------------- •由21 SO 0 — r°BG = BH 可得 ZG = AH,又 ZABC = ZG + ZH = 2ZG > 所以 ZG = ------------------------------ •由4 180°—r°AK = KG 得ZA = ZG,即屮= —— •解得x = 36,即ZBAC = 36°,应选C ・4 画龙点睛图中的几个与等腰三角形相关的角都可以用ABAC 的代数式来表示,因此可以建立关 于ABAC 的方程,来解决此类问题.举一反三1・如图,AABC'中,AB = AC, ZA = 36°> BD 、CE 分别是角平分线,且相交于 F,则图中的等腰三角形有()个・如图,在AABC 中,点E 在A3上,点D (£BC 上,BD = BE, ZBAD = ZBCE. AD 与C£相交于点F,试判断AAFC 的形状,并说明理由.(A)6(B)7(D)92.BCIIEF3. 如图钢架中.焊上等长的13根钢条来加固钢架,若/!/> = />/> />=••• == P]4A,求ZA的度数.融会贯通4. 如图,AABC中,AB = AC, ZA = 36。
专题29 几何变换阅读与思考几何变换是指把一个几何图形1F 变换成另一个几何图形2F 的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、对称、旋转是常见的合同变换.l图3图2图1F 1F 21.平移变换如图1,如果把图形1F 上的各点都按一定方向移动一定距离得到图形2F 后,则由1F 到2F 的变换叫平移变换.平移变换前后的对应线段相等且平行,对应角的两边分别平行且方向一致. 2.对称变换如图2,将平面图形1F 变换到与它成轴对称的图形2F ,这样的几何变换就叫做关于直线l (对称轴)的对称变换.对称变换前后的对应线段相等,对应角相等,其对称轴是连结各对应点线段的垂直平分线. 3.旋转变换如图3,将平面图形1F 绕这一平面内一定点M 旋转一个定角α,得到图形2F ,这样的变换叫旋转变换,M 叫旋转中心,α叫旋转角.旋转变换前后的图形是全等的,对应点到旋转中心的距离相等,对应线段的夹角等于旋转角.例题与求解【例l 】如图,∠AOB =045,角内有点P ,PO =10,在角的两边上有两点Q ,R (均不同于O ),则△PQR 的周长的最小值为_______________. (黄冈市竞赛试题)解题思路:作P 点关于OA ,OB 的对称点,确定Q ,R 的位置,化折线为直线,求△PQR 的最小值.O【例2】如图,P是等边△ABC的内部一点,∠APB,∠BPC,∠CP A的大小之比是5:6:7,则以P A,PB,PC为边的三角形的三个角的大小之比(从小到大)是()A. 2:3:4B. 3:4:5C. 4:5:6D.不能确定(全国通讯赛试题)B C解题思路:解本例的关键是如何构造以P A,PB,PC为边的三角形,若把△P AB,△PBC,△PCA中的60,就可以把P A,PB,PC有效地集中在一起.任一个,绕一个顶点旋转0【例3】如图,在△ABC中,AD⊥BC于D,∠B=2∠C,求证:AB+BD=CD.(天津市竞赛试题)解题思路:用截长法或补短法证明,实质都利用AD翻折造全等.C【例4】如图,六边形ABCDEF中,AB∥DE,BC∥FE,CD∥AF,对边之差BC-FE=ED-AB=AF-CD >0,求证:该六边形的各角都相等.(全俄数学奥林匹克竞赛试题)解题思路:设法能将复杂的条件BC-FE=ED-AB=AF-CD>0,用一个基本图形表示,题设条件有平行条件,考虑实施平移变换.【例5】已知Rt △ABC 中,AC=BC ,∠ACB =090,∠MCN =045 (1) 如图1,当M 、N 在AB 上时,求证:222MN AM BN =+(2) 如图2,将∠MCN 绕C 点旋转,当M 在BA 的延长线时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.(天津市中考试题)解题思路:222MN AM BN =+符合勾股定理的形式,需转化为直角三角形可将△ACM 沿直线CM 对折,得△DCM . 连DN ,只需证DN=BN ,∠MDN =090;或将△ACM (或△BCM )旋转.【例6】如图,∠DAC=012,∠DBC=024,∠CAB=036,∠ABD=048,求∠DCA 的度数.(日本算术奥林匹克试题)解题思路:已知角的度数都是12的倍数,0362460+=,这使我们想到构作正三角形.A图2图1MA B B能力训练1.在如图所示的单位正方形网格中,将△ABC 向右平移3个单位后得到△A B C ''',则BA A '∠的度数是_______.(泰安市中考试题)B(第1题) (第2题) (第3题)2.如图,P 是等边△ABC 内一点,P A =6,PB =8,PC =10,则∠APB =_________.3.如图,直线143y x =与双曲线2(0)k y k x =>交于点A ,将直线143y x =向右平移92个单位后,与双曲线2k y x =交于点B ,与x 轴交于点C . 若2AOBC=,则k =______________. (武汉市中考试题) 4.如图,△ABC 中,∠BAC =045,AD ⊥BC ,DB =3,DC =2,则△ABC 的面积是___________. 5.如图,P 为正方形内一点,若::1:2:3PA PB PC =,则∠APB 的度数是( ). A. 0120 B. 0135 C. 0145 D. 0150(第6题)(第5题)(第4题)ACB ABDABDA'6.如图,边长为2的正方形ABCD 的对角线交于点O ,把边BA 、CD 分别绕点B 、C 同时逆时针旋转060,得四边形A BCD '',下列结论:①四边形A BCD ''为菱形;②12ABCD A BCD S S ''=正方形四边形;③线段OD '的1. 其中正确的结论有( ).A. 0个B. 1个C. 2个D. 3个7. 如图,A ,B 两个电话机离电话线l 的距离分别是3米,5米,CD =6米,若由L 上一点分别向A ,B 连电话线,最短为( ).A. 11米B. 10米C. 9米D. 8米8. 如图,在△ABC 中,∠BAC =0120,P 是△ABC 内一点,若记x PA PB PC =++,y AB AC =+,则( ).A. x y <B. x y =C. x y >D. x 与y 的大小关系不确定l第8题图第7题图CB9. 如图,已知D 是△ABC 中BC 边的中点,过D 作DE ⊥DF ,分别交AB 于E ,交AC 于F ,求证:BE CF EF +>.(天津市竞赛试题)DB10.如图,△ABC ,△A B C '''其各边交成六边形DEFGHK ,且EF ∥KH ,GH ∥DE ,FG ∥KD ,0KH EF FG KD DE GH -=-=->. 求证:△ABC ,△A B C '''均为为正三角形.(“缙云杯”邀请赛试题)A B C A'11.如图,已知△ABC 中,AB=AC ,P ,Q 分别为AC ,AB 上的点,且AP=PQ=QB=BC ,求∠PCQ .(北京市竞赛试题)B12.如图,已知在平面直角坐标系中,A ,B 两点的坐标分别为(2,3)A -,(4,1)B -. (1) 若(,0)P x 是x 轴上的一个动点,当△P AB 的周长最短时,求x 的值;(2)若(,0),(3,0)C a D a +是x 轴上的两个动点,当四边形ABCD 的周长最短时,求a 的值; (3)设M ,N 分别为x 轴,y 轴上的动点,问:是否存在这样的点(,0)M m 和(0,)N n ,使四边形ABMN 的周长最短?若存在,求出,m n 的值;若不存在,请说明理由.(浙江省湖州市中考试题)13.如图,梯形ABCD 中,AD ∥BC ,分别以两腰AB ,CD 为边向两边作正方形ABGE 和正方形DCHF ,设线段AD 的垂直平分线l 交线段EF 于点M ,EP ⊥l 于P ,FQ ⊥l 于Q ,求证:EP=FQ.(全国初中数学联赛试题)14.如图所示,已知Rt △ABC 中,AB=BC ,在Rt △ADE 中,AD=DE ,连结EC ,取EC 中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,求证:BM=DM ,且BM ⊥DM ; (2)如图2中的△ADE 绕点A 逆时针旋转小于045的角,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.(广州市中考试题)图2图1ACBBCA15.如图,在△ABC 中,∠BAC =045,AD ⊥BC 于D ,若BD =3,CD =2,求△ABC 的面积.(山东省竞赛试题)B专题29 几何变换例1 210例2 A 提示:将ABP ∆绕B 点顺时针旋转︒60得CBD ∆,则ABP ∆≌CBD ∆,BPD ∆为等边三角形. 例3 提示:延长BD 至E ,使AB BE =,连接AE ,E ABC ∠=∠2.例4 提示:过E 作ER ∥,CD 过C 作CP ∥AB ,过A 作AQ ∥EF ,则PQR ∆为等边三角形.例5 (1)如图a ,由DCM ∆≌ACM ∆则AM DM AC DC ==,,,ACM DCM ∠=∠A CDM ∠=∠.又由CB CA =,得CB CD =.由DCM DCN ∠-︒=∠45,得BCN DCN ∠=∠,又CN CN =,则DCN ∆≌BCN ∆,有BN DN =,B CDN ∠=∠, ∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN ∴222DN MD MN +=即222BN AM MN +=(2)关系式: 222BN AM MN +=仍成立,方法同上,如图b 例6 如图,作ACD ∆关于AD 所在直线的轴对称图形,APD 则,12,60,APD ACD PAD CAD PAB AP AB AC ∠=∠∠=∠=∠===,连接PB ,则PAB 为正三角,得12PBD ∠=.123648,,,DAB DBA AD BD PAD PBD ∠=+==∠∴=∴≅故30.30APD BPD ACD APD ∠=∠=∴∠=∠=能力训练1. 452. 1503. 12 提示: 如图, 设4(,)3A a a 过A 作AD x ⊥轴, 交于点D , 过B 作BE x ⊥轴, 交于点E由,2AO AD OD AOD BCE BC BE CE ∴===, 则2912,,(,)23223a CE BE a B a a ==+ ,A B 都在双曲线上, 4291()3322a a a a ∴=+, 解得 123,0a a ==(舍去) 3412k ∴=⨯=4. 15 提示: 分别以,AB AC 为对称轴作D 点的对称点,E F , 连接,FC EB 相交于G , 证明四边形AFGE 为正方形5. B6. C7. B8. D9. 提示: 延长FD 至G , 使DG FD =, 连接EG10. 提示: 作//,//,//EQ FG PG KH KR DE ,交成等边三角形PQR11. 提示: 作//CD BQ , 连,PD CD ,∴四边形QBCD 为菱形, DQ QB = , 由,AP QB CD AQ PC === ,A PCD ∠=∠ 得,,DCP PAQ PD PQ QB QD ≅=== QPD ∴为等边三角形,又,CDP A PQA ∠=∠=∠2,QPC A ∠=∠360QPD A ∠=∠=20,A ∴∠=80B ACB ∠=∠=又,QB BC = 50QCB ∴∠= 30PCQ ∠=12. 提示: (1) 作(4,1)B -关于x 轴对称点'(4,1)B ,连','AB AB 交x 轴于P ,PAB 周长最短, (3.5,0)P ∴ (2) 将点(4,1)B -向左平移3个单位得1(1,1)B -,再作1B 关于x 的对称点2(1,1)B ,连2AB 交x 轴于C , 再将C 向右平移3个单位得点D ,(1.25,0), 1.25C a ∴= (3) 作点A 关于y 轴对称点'(2,3)A --,作点B 关于x 轴的对称点'(4,1)B ,连''A B 交x 轴于M , 交y 轴于N 5(2.5,0),(0,)3M N ∴-13. 提示: 过N 作'//NQ DF ,作'//,NP AE 作//,//.NS DC NR AB 由','PP N LNR RN AB AE P N ∠=∠=== 则''Rt PP N Rt LNR PP LN ≅∴= 同理可证: ''PP QQ =又 '//,'//EP AN FQ ND , 又''AN ND EP FP =∴= 从而'',''PE PP P E FQ FQ QQ =+=+则 PE FQ =(1) 11,,22BM EC DM EC BM DM ==∴= 由2BME BCM ∠=∠ 2,DME DCM ∠=∠ 2()90BMD BME DME BCM DCM ∴∠=∠+∠=∠+∠= BM DM ∴⊥(2) 延长DM 至点F ,使DM FM =,连,,BD BF FC . 可证:EMD CMF ≅,ED AD CF DEM FCN ∴==∠=∠ //ED CF延长AD ,交BC 于T ,交CF 延长线于S 90EDS CST ∠=∠= 又BTA CTS ∠=∠BAD BCF ∠=∠,,,AB CB ABD CBF BD BF ABD CBF =∴≅∴=∠=∠,又90ABD DBC CBF DBC ∠+∠=∠+∠=, BDF ∴为等腰三角形, ,BM DM BM DM ∴=⊥15. 如图, 以AB 为对称轴作ADB 的对称AGB ,以AC 为对称轴作ADC 的对称AFC ,并延长,GB FC 交于点E ,则易知四边形AGEF 是正方形, 不妨设AD h =,则2,3,BE h CE h =-=-由2222222(2)(3)5560BC BE CE h h h h =+⇒-+-=⇒--=116561522ABCh S BC AD ⇒=⇒==⨯⨯=。
保密★启用前【一线培优专用卷】第一单元《平移旋转轴对称》典型题B2021-2022学年苏教版数学四年级下册一、填空题1.你学过的图形变换的方式有:________、________、________。
2.寓意深远的汉字中蕴含着数学美.在“昌、日、比、台、正、全”这些汉字中,是轴对称图形的有( ).3.看图填一填.(1)蘑菇图可以先向________平移________格,再向________平移________格;也可以先向________平移________格,再向________平移________格.(2)火箭图可以先向________平移________格,再向________平移________格;也可以先向________平移________格,再向________平移________格.4.汽车沿着直线行驶时,车轮做________运动,车身做________运动。
5.电风扇扇叶的运动是________现象;拉抽屉现象是________现象。
(填“旋转”或者“平移”)6.一个三角形先向上平移了8格,再向下平移了10格,这个三角形相对于原来的位置是向________平移了________格.7.在字母A、B、C、D、E、F、G、H、I、J、K中可以看作轴对称图形的是( ).8.这些现象哪些是“平移”现象,哪些是“旋转”现象:(1)张叔叔在笔直的公路上开车,方向盘的运动是( )现象.(2)升国旗时,国旗的升降运动是( )现象.(3)妈妈用拖布擦地,是( )现象.(4)自行车的车轮转了一圈又一圈是( )现象.9.升国旗时,国旗的升降运动是________现象。
(在横线上填上“旋转”或者“平移”)10.下面图形绕O点顺时针旋转90°后的图形是________,顺时针旋转180°的图形是________11.正方形有________条对称轴;等腰三角形有________条对称轴.12.要使得一个图形在原地调转方向,需要用到________原理13.如果一个图形沿着一条________对折,两侧的图形能够完全重合,这个图形就是________图形。
专题2 全等三角形判定方法的选择知识解读三角形全等判定方法的选择已知条件可供选择的判定方法一边和这边邻角对应相等选边:只能选角的另一边(SAS )选角:可选另外两对角中任意一对角(AAS ,ASA )一边及它的对角对应相等只能再选一角:可选另外两对角中任意一对角(AAS )两边对应相等选边;只能选剩下的一边(SSS )选角:只能选两边的夹角(SAS )两角对应相等只能选边:可选三条边的任意一对对应边(AAS .ASA )典例示范一、从变换的角度理解“全等”1.轴对称变换例1如图1-2-1,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,且AB =AC ,∠B =∠C ,求证:BD =CE .【提示】从结论“BD =CE ”来看,有两种思路,思路一:通过证明△BOD ≌△COE 得到对应边相等;思路二:通过证明“△ACD ≌△ABE ”得到AD =AE ,然后运用等式性质证得.从题设看,由“AB =AC ,∠B =∠C ”加上公共角∠A ,可得△ACD ≌△ABE ,所以我们考虑使用思路二给出证明过程.图1-2-1B【技巧点评】哪些情况下,可考虑利用全等的性质来证明线段相等和角相等呢?本题中,这个图形很显然是轴对称图形,而BD 和CE 也是轴对称的,这时候就可以考虑把BD 和CE 置于一对轴对称的三角形中,且BD 和CE 恰好是一对对应边.跟踪训练1.如图1-2-2,已知AB =DC ,AE =DF ,CE =F B .求证:AF =DE .图1-2-22.旋转变换例2如图1-2-3,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE ,BF ,试判断△BDF 与△CDE 全等吗?BF 与CE 有何位置关系?【提示】若△BDF 与△CDE 全等,需要寻找三个相等的要素,题中已知一对对顶角相等,由中线可得到BD =CD ,加上DE =DF ,即可根据“SAS ”得到两个三角形全等.图1-2-3B【技巧点评】本题是一个简单的全等证明题,本题意在说明图中△BDF 与△CDE 是中心对称的图形.,其中一个三角形可以看作另一个三角形绕点D 旋转180°得到.从中心对称的角度寻找相等的线段和相等的角,可以为证明全等提供方便.跟踪训练2.如图1-2-4,AB =AE ,∠1=∠2,∠B =∠E ,求证:BC =E D .图1-2-4二、线段和角度相等,常考虑证全等例3如图1-2-5,AC 交BD 于点O ,AC =BD ,AB =CD ,求证:∠C =∠B .【提示】要证明∠C =∠B ,可考虑将∠C 和∠B 置于一对三角形中,证明两个三角形全等,由于本题图中△AOB 和ACOD 全等不容易证明,可考虑连接AD ,证明△ACD 与△DBA 全等.图1-2-5跟踪训练3.已知,如图1-2-6,AD ⊥DB ,BC ⊥CA ,AC ,BD 相交于点O ,且AC =BD ,求证:AD =B C .图1-2-6B【技巧点评】由于全等三角形的对应角相等,对应边相等,因此证明两个三角形全等是证明两个角相等和两条线段相等常用的方法.利用全等三角形证明线段相等和角相等的思路:对应边(角)相等→两个三角形全等→线段相等或者角相等,可以看出全等三角形类似于一个桥梁,建立起角度相等与线段相等、线段相等与另两条相等的线段、角相等与另一对相等的角之间的联系.跟踪训练4.如图1-2-7,A ,D ,B 三点在同一条直线上,△ADC ,△BDO 均为等腰三角形,AO ,BC 的大小关系和位置关系分别如何?证明你的结论.图1-2-7三、借助“同角的余角相等”寻找相等的角例4如图1-2-8,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,F 是BD 上一点,BF =AC ,G 是CE 延长线一点,CG =AB ,连接AG ,AF .(1)求证:∠ABD =∠ACE ;(2)探求线段AF ,AG 有什么关系,并证明.【提示】(1)∠ABD ,∠ACE 都和∠BAC 互余,根据“同角的余角相等”可证明∠ABD =∠ACE ;(2)由已知条件“BF =AC ”“CG =AB ” “∠ABD =∠ACE ”可证明△ABF ≌△GCA ,AF ,AG 恰好是这对全等三角形的对应边,所以这两条线段的大小关系是相等.又由于∠G =∠BAF ,∠G +∠GAE =90°,因此∠GAF =90°,所以AF 和AG 的位置关系是垂直.图1-2-8B 【技巧点评】(1)当已知两条边相等,要证明两个三角形全等时,“同角的余角相等”是常用的证明夹角相等的手段.(2)要证明两直线垂直,证明夹角等于90°也是常用思路,当夹角是由两个角的和组成的时候,常考虑证明这两个角的和等于90°.跟踪训练5.如图1-2-9,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =F C .图1-2-9A四、从等腰、等边、正方形中获取全等所需的元素例5如图1-2-10,在Rt △ABC 中,∠ACB =90°,AC =BC ,D 为BC 的中点,CE ⊥AD ,垂足为E ,BF ∥AC 交CE 的延长线于点F .求证:DB =BF .【提示】要证明DB =BF ,由于D 为BC 的中点,所以CD =BD ,因此本题可转证CD =BF ,将这两条线段放置到三角形中,可证明△ACD ≌△CBF .图1-2-10A【技巧点评】本题证明△ACD ≌△CBF 需要的三个要素AC =BC ,∠CAD =∠BCF ,∠ACD =∠CBF 都和△ABC 是等腰直角三角形相关.当题目中出现等边三角形、等腰三角形、正方形、菱形等条件时,往往图形中隐含着一对全等三角形,这对全等三角形的一对对应边往往和等边三角形、等腰三角形、正方形、菱形的边长相等有关.跟踪训练6.如图1-2-11,在Rt △ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A ,D 重合,连接BE ,E C .试猜想线段BE 和EC 的数量关系和位置关系,并证明你的猜想.图1-2-11B拓展延伸五、AAS 华丽变全等例6 如图1-2-12,在△ABC 中,∠DBC =∠ECB =∠A ,求证:BE =CD .21ABCD E F【提示】要证明BE =CD ,一般考虑证明两个三角形全等,而△DCF 和△EBF 显然不全等,本题有三种构造全等的方法,如图1-2-13①②③.图1-2-12GFE D CBAHFE D CBAFE D CBAH G 【技巧点评】本题△BEF 和△CDF 虽然不全等,但是∠BFE =∠CFD ,加之可证FB =FC 以及待证的BE =CD ,可见这两个三角形虽然不全等,但也有3对相等的要素.构造全等三角形可将小三角形补上一部分,或者将大三角形截去一部分.跟踪训练7.如图1-2-14,OC 平分∠AOB ,点D 、E 分别在OA 、OB 上,点P 在OC 上,且有PD =PE ,求证:∠PDO =∠PEB .(有三种解法)P OD C BA E竞赛链接图1-2-13图1-2-14②③①例7 (全国初中数学竞赛浙江赛区题)如图1-2-15,在四边形ABCD 中,∠A =∠BCD =90°,BC =CD ,E 是AD 延长线上一点,若DE =AB =3cm ,CE =4cm ,则AD 的长是.2【提示】如图1-2-16,连接CA ,构造△BAC ≌△DEC ,利用勾股定理求出AE 的长.EDCB AAB CDE【技巧点评】勾股定理——如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2.跟踪训练8.(希望杯竞赛题)如图1-2-17,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC 与BD 相交于O ,AE ⊥BD 于E ,CF ⊥BD 于F ,那么图中的全等三角形共有()A .5对B .6对C .7对D .8对F OABCDE 培优训练1.如图1-2-18,AC ,BD 交于点E ,且∠1=∠2,∠3=∠4,求证:AC =BD .4321ABCED2.如图1-2-19,已知AD =AE ,AB =AC .求证:BF =FC .图1-2-17图1-2-15图1-2-16图1-2-18ABCDEF3.如图1-2-20,已知△ABD 、△AEC 都是等边三角形,AF ⊥CD 于F ,AH ⊥BE 于H ,问:(1)BE 与CD 有何数量关系?为什么?(2)AF 、AH 有何数量关系?O HFEDCBA 4.如图1-2-21,△ACD 和△BCE 都是等腰直角三角形,∠ACD =∠BCE =90°,AE 交DC 于点F ,BD分别交CE ,AE 于点G ,H 试猜测线段AE 和BD 的位置关系和数量关系,并说明理由.DBCFH AE G 5.将两个全等的直角三角形ABC 和DBE 按图1-2-22①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF +EF =DE ;(2)若将图1-2-22①中的△DBE 绕点B 按顺时针方向旋转角,且0°<<60°,其他条件不变,请在αα图1-2-22②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.AC BABCE FD①图1-2-19图1-2-20图1-2-21②图1-2-226.如图1-2-23,AD 是△ABC 的高,作∠DCE =∠ACD ,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .(1)求证:CE =AF(2)在线段AB 上取一点N ,使∠ENA =∠ACE ,EN 交BC 于点M ,连接AM 请你判断∠B 与∠MAF 21的数量关系,并说明理由.DBEAF CN M直击中考7.★★(2017江苏常州)如图1-2-24,在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.ECDBA 8.(凉山州中考题)如图1-2-25,△ABO 与△CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF =CE .求证:FD =BE .FBECDAO9.(内江中考题)如图1-2-26,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为AB 边上一点.求证:AE =BD .图1-2-23图1-2-24图1-2-25CDEBA10.(重庆中考题)如图1-2-27,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D .CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG .求证:(1)AF =CG ;(2)CF =2DE .GCDFEBA挑战竟赛11.(希望杯竞赛题)如图1-2-28,在△ABC 中,∠ACB =60°,∠BAC =75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD =.HBCE ADBGF E ADC12.(希望杯竞赛题)如图1-2-29,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠BCA 的平分线交AD 于F ,交AB 于E ,FG ∥BC 交AB 于G .AE =4,AB =14,则BG =.图1-2-26图1-2-27图1-2-28图1-2-29。
模块一对轴对称的初步认识轴对称图形和两个图形成轴对称的区别和联系轴对称图形两个图形成轴对称直观认识:直观认识:定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这时我们也说这个图形关于这条直线(成轴)对称.定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,那么就说这两个图形关于这条直线(成轴)对称。
注意:轴对称图形指的是一个图形是轴对称图形,而两个图形成轴对称指的是两个图形。
因此,轴对称图形的对称轴可能只有一条,也可能有多条,但是两个图形成轴对称只有一条对称轴。
模块二“将军饮马”问题“将军饮马”问题比较经典,在考试中出现的频率特别的高,但是在考试中往往不是单一出现,而是“将军饮马”问题和一次函数、勾股定理、特殊的四边形结合在一起考试或者是考查比较难得“将军饮马”问题,考试的方法通常都是“将军饮马”的做法,综合考察。
模型I:最小问题ABP'P•••ABP••••ABP••••ADPB2P•••OC1POA'C CEDF 'D BOABCPD'P模型II :最大问题P'P B AlPB'B Al模块三 常见轴对称的模型角平分线模型:角平分线的中心思想应该是对称,关于角平分线对称,因此常见做辅助线的方法有以下三种。
但是在这三种中,同学们在运用的过程中,往往第二种辅助线方式同学们最容易出错,因为在出现第二种情况时,同学们往往看不出来;第三种做法最能体现轴对称的本质。
翻折模型:其实可以这样说,翻折就是轴对称,轴对称就是翻折,而涉及到翻折往往不是单一考察,会和特殊四边形、一次函数中的图形结合考察,考察比较全面。
通常情况下,和四边形结合,会考察求边倒角,而和一次函数结合,让你求点坐标,考察比较综合。
【教师备课提示】模块三是为了让孩子们复习回忆以前学过的知识,所以老师可以略讲,重点是让孩子们练习。
(1)如图1-1,直线l 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:①AB CD ∥;②AC BD ⊥;③AO OC =;④AB BC ⊥,其中正确的结论有_______.(2)(成外)如图1-2,ABE △和ACD △是ABC △分别沿着AB ,AC 边翻折180︒形成的,若130BAC ∠=︒,则EFC ∠的度数是________.ODCB AlF EDC BA图1-1 图1-2在正ABC △内取一点D ,使DA DB =,在ABC △外取一点E ,使BDE DBC ∠=∠,且BE BA =,求BED ∠.A BC E DABC ED如图,已知60ABD ACD ∠=∠=︒,且1902ADB BDC ∠=︒-∠.求证:ABC △是等腰三角形.模块一 对轴对称的初步认识ABCDABCED(1)如图4-1,在ABC △中,90ACB ∠=︒,以AC 为一边在ABC △外侧作等边ACD △,过点D 作DE AC ⊥,垂足为F ,DE 与AB 相交于点E ,连接CE ,15cm AB =,9cm BC =,P 是射线DE 上的一点.连接PC 、PB ,若PBC △的周长最小,则最小值为( ). A .21cm B .22cm C .24cm D .27cm(2)已知如图4-2,正方形ABCD 的边长为3,E 在BC 边上,且1EC =,P 是BD 上一动点,则PE PC +的最小值( ). A .5 B .11 C .13 D .15PFEDCBAPEDCBA模块二 “将军饮马”问题(1)(四川竞赛改编)如图5-1所示,在等腰Rt ABC △中,3CA CB ==,E 是BC 上一点,满足2BE =,点P 是斜边AB 上任意一点,PC PE +的最大值和最小值分别记作s 和t ,求22s t -的值.(2)(全国初中联赛)如图5-2,设正ABC △的边长为2,M 是AB 边上的中点,P 是BC 边上的任意一点,PA PM +的最大值和最小值分别记为s 和t .求22s t -的值.AB CE PABC MP图5-1 图5-2(1)(2013-2014武侯区统考)在锐角三角形ABC 中,32BC =,45ABC ∠=︒,BD 平分ABC ∠,M 、N 分别是BD 、BC 上的动点,则CM MN +最小值是______________.(2)如图,30AOB ∠=︒,2OC =,在OA 上找一点M ,在OB 上找一点N ,使得CM MN +最小,求出此最小值.CB AMN OC'ON MAB C(1)如图7-1,30AOB =︒∠,点P 位于AOB ∠内,3OP =,点M 、N 分别是射线OA 、OB 上的动点,求PMN △的最小周长.A BOPNMABO''P P'P NM(2)若60AOB =︒∠,其它条件不变,则PMN △的最小周长是多少.在ABC △中,45A =︒∠,7AB =,42AC =,点D 、E 、F 分别为BC 、AB 、AC 上的动点,求DEF △的最小周长.BA E FDCD''D'FE DCBA285442543NMA BC如图,I 是ABC △的内心(三角形三条角平分线的交点),且CA AI BC +=.若80BAC ∠=︒,求ABC ∠和AIB ∠的大小.BA C IB AC ID40︒40︒20︒如图,在矩形ABCD 中,E 是BC 边上的点,连接DE 、AE ,将DEC △沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处. (1)求证:BE AF =;模块三 常见轴对称的模型FECB D A(2)如果9AB =,:1:4EC BE =,求线段DE 的长. ,已知:三点(3,1)A 、(4,1)B 、(6,0)C ,点P 为x 轴上一动点. (1)当OAP △与CBP △周长的和取得最小值时,求点P 的坐标; (2)求证:45AOC BCO ∠+∠=︒;(3)当35APB ∠=︒时,求OAP PBC ∠+∠度数.P yxO 1234561232121ABC(1)下列图案中,有且只有三条对称轴的是( )•A .B .C .D .(2)一个汽车车牌在水中的倒影如图,该车的车牌照号码是( ) A .WJ0103922 B .2593010WJ C .WJ0103625 D .WJ0103925如图2-1,矩形MNPQ 中,点E ,F ,G ,H 分别在NP ,PQ ,QM ,MN 上,若1234∠=∠=∠=∠,则称四边形EFGH 为矩形MNPQ 的反射四边形.图2-2,图2-3,图2-4中,四边形ABCD 为矩形,且4AB =,8BC =.模块一 对轴对称的初步认识(1)在图2-2、图2-3中,点E ,F 分别在BC ,CD 边上,试利用正方形网格在图上作出矩形ABCD 的反射四边形EFGH .(2)求图2-2,图2-3中反射四边形EFGH 的周长.(3)如图2-4,请你猜想矩形ABCD 的反射四边形的周长是否为定值?并给出证明.图1A BEGHHGFED C B A 4321F PEN H Q GM A BE 图图2FE D C BA图2-1 图2-2A BC DEF图3 图42431H GFE D CB A图2-3 图2-4(1)如图3-1,已知A 、B 两村分别距公路l 的距离'10km AA =,'40km BB =,且''50km A B =.在公路l 上建一中转站P 使AP BP +的最小,则AP BP +的最小值为( ) A .100km B .80km C .60km D .502km(2)如图3-2,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN +的最小值与最大值.B lA P'B 'A A D NMBC图3-1 图3-2(1)如图,正方形ABCD 的边长是4,DAC ∠的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ PQ +的最小值是________.(2)已知30AOB ∠=°,点P 在AOB ∠内部,1P 与P 关于OB 对称,2P 与P 关于OA 对称,则1P 、O 、2P 三点确定的三角形是( ). A .直角三角形 B .等腰直角三角形 C .腰底不等的等腰三角形D .等边三角形模块二 “将军饮马”问题A DEB CQP如图所示,已知Rt ABC △中,90B ∠=︒,3AB =,4BC =,D ,E ,F 分别是三边AB ,BC ,CA 上的点,则DE EF FD ++的最小值为( ).A .125B .245C .5D .6FEDCBAF"F'C'A'FEDCB A如图,在ABC △中,90BAC ∠=°,AB AC =,BE 平分ABC ∠,CE BE ⊥.求证:12CE BD =. 321EBADC321FE BADC模块三 常见轴对称的模型。
中考培优——二次函数图象的对称例1:画出二次函数y=x2-2x+3以下5种对称的抛物线草图,并写出其表达式。
1.关于x轴对称2.关于y轴对称3.关于原点对称4.关于顶点对称5.关于点(),对称(关于y轴交点对称)m n二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2.关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3.关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4.关于顶点对称2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5.关于点()m n ,对称 ( 关于y 轴交点对称)()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.练习1.y=-2x 2+12x-202.y=3x 2+12x-11。
第3讲轴对称及轴对称变换考点·方法·破译1.轴对称及其性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫对称轴.轴对称的两个图形有如下性质:①关于某直线对称的两个图形是全等形;②对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.线段垂直平分线线段垂直平分线也叫线段中垂线,它反映了与线段的两种关系:①位置关系——垂直;②数量关系——平分.性质定理:线段垂直平分线上的点与这条线段两个端点的距离相等.判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.当已知条件中出现了等腰三角形、角平分线、高(或垂线)、或求几条折线段的最小值等情况时,通常考虑作轴对称变换,以“补齐”图形,集中条件.经典·考题·赏析【例1】(兰州)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()【解法指导】对折问题即是轴对称问题,折痕就是对称轴.故选D.【变式题组】01.将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是()02.(荆州)如图,将矩形纸片ABCD沿虚线EF折叠,使点A落在点G上,点D落在点H 上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上,叠完后,剪一个直径在BC上的半圆,再展开,则展开后的图形为()【例2】(襄樊)如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A’B’C’,则与点B’关于x轴对称的点的坐标是()A.(0,-1)B.(1,1)C.(2,-1)D.(1,-1)【解法指导】在△ABC中,点B的坐标为(-1,1),将△ABC向右平移两个单位长度得到△A’B’C’,由点的坐标平移规律可得B’(-1+2,1),即B’(1,1).由关于x轴对称的点的坐标的规律可得点B’关于x轴对称的点的坐标是(1,-1),故应选D.【变式题组】01.若点P(-2,3)与点Q(a,b)关于x轴对称,则a、b的值分别是()A.-2,3 B.2,3 C.-2,-3 D.2,-302.在直角坐标系中,已知点P(-3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是___________.03.(荆州)已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的取值范围为___________.【例3】如图,将一个直角三角形纸片ABC(∠ACB=90°),沿线段CD折叠,使点B落在B1处,若∠ACB1=70°,则∠ACD=()A.30°B.20°C.15°D.10°【解法指导】由折叠知∠BCD=∠B1CD.设∠ACD=x,则∠BCD=∠B1CD=∠ACB1+∠ACD =70°+x.又∠ACD+∠BCD=∠ACB,即x+(70°+x)=90°,故x=10°.故选D.【变式题组】01.(东营)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在点D’、C’的位置.若∠EFB=65°,则∠AED’等于()A.70°B.65°C.50°D.25°02.如图,△ABC中,∠A=30°,以BE为边,将此三角形对折,其次,又以BA为边,再一次对折,C点落在BE上,此时∠CDB=82°,则原三角形中∠B=___________.03.(江苏)⑴观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片(如图①);再次折叠该三角形纸片,使点A 和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.⑵实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE (如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.【例4】如图,在△ABC中,AD为∠BAC的平分线,EF是AD的垂直平分线,E为垂足,EF交BC的延长线于点F,求证:∠B=∠CAF.【解法指导】∵EF是AD的中垂线,则可得△AEF≌△DEF,∴∠EAF=∠EDF.从而利用角平分线的定义与三角形的外角转化即可.证明:∵EF是AD的中垂线,∴AE=DE,∠AEF=∠DEF,EF=EF,∴△AEF≌△DEF,∴∠2+∠4=∠3,∴∠3=∠B+∠1,∴∠2+∠4=∠B+∠1,∵∠1=∠2,∴∠B=∠4【变式题组】01.如图,点D在△ABC的BC边上,且BC=BD+AD,则点D在__________的垂直平分线上.02.如图,△ABC中,∠ABC=90°,∠C=15°,DE⊥AC于E,且AE=EC,若AB=3cm,则DC=___________cm.03.如图,△ABC中,∠BAC=126°,DE、FG分别为AB、AC的垂直平分线,则∠EAG=___________.04.△ABC中,AB=AC,AB边的垂直平分线交AC于F,若AB=12cm,△BCF的周长为20cm,则△ABC的周长是___________cm.【例5】(眉山)如图,在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC 和△DEF关于某直线成轴对称,请在下面的备用图中画出所有这样的△DEF.【解法指导】在正方形格点图中,如果已知条件中没有给对称轴,在找对称轴时,通常找图案居中的水平直线、居中的竖直直线或者斜线作为对称轴.若以图案居中的水平直线为对称轴,所作的△DEF如图①②③所示;若以图案居中的竖直直线为对称轴,所作的△DEF 如图④所示;若以图案居中的斜线为对称轴,所作的△DEF如图⑤⑥所示.【变式题组】01.(泰州)如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有___________个.02.(绍兴)如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:⑴涂黑部分的面积是原正方形面积的一半;⑵涂黑部分成轴对称图形.如图乙是一种涂法,请在图1-3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种不同涂法,如图乙与图丙)【例6】如图,牧童在A处放牛,其家在B处,若牧童从A处出发牵牛到河岸CD处饮水后回家,试问在何处饮水,所求路程最短?【解法指导】⑴所求问题可转化为CD上取一点M,使其AM+BM为最小;⑵本题利用轴对称知识进行解答.解:先作点A关于直线CD的对称点A’,连接A’B交CD于点M,则点M为所求,下面证明此时的AM+BM最小.证明:在CD上任取与M不重合的点M’,∵AA’关于CD对称,∴CD为线段AA’的中垂线,∴AM=A’M,M’=A’M’,在△A’M’B中,有A’B<A’M’+BM’,∴A’M+BM<A’M’+BM’,∴AM+BM<AM’+BM’,即AM+BM最小.【变式题组】01.(山西)设直线l是一条河,P、Q两地相距8千米,P、Q两地到l地距离分别为2千米、5千米,欲在l上的某点M处修建一个水泵站向P、Q两地供水.现在如下四种铺设管道方案,图中的实线表示辅设的管道,则铺设的管道最短的是()02.若点A、B是锐角∠MON内两点,请在OM、ON上确定点C、点D,使四边形ABCD周长最小,写出你作图的主要步骤并标明你确定的点.演练巩固·反馈提高01.(黄冈)如图,△ABC与△A’B’C’关于直线l对称,且∠A=78°,∠C’=48°,则∠B的度数是().A.48°B.54°C.74°D.78°02.(泰州)如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形03.图1是四边形纸片ABCD,其中∠B=120°,∠D=50°,若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图2所示,则∠C=()A.80°B.85°C.95°D.110°04.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于y轴成轴对称的图形,若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,-3),N(-1,-3)B.M(-1,-3),N(-1,3)C.M(-1,-3),N(1,-3)D.M(-1,3),N(1,-3)05.点P关于x轴对称的对称点P’的坐标是(-3,5),则点P关于y轴对称的对称点的坐标是()A.(3,-5)B.(-5,3)C.(3,5)D.(5,3)06.已知M(1-a,2a+2)关于y轴对称的点在第二象限,则a的取值范围是()A.-1<a<1 B.-1≤a≤1 C.a>1 D.a>-107.(杭州)如图,镜子中号码的实际号码是___________.08.(贵阳)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为___________cm2. 09.已知点A(2a+3b,-2)和B(8,3a+2b)关于x轴对称,则a+b=___________. 10.如图,在△ABC中,OE、OF分别是AB、AC中垂线,且∠ABO=20°,∠ABC=45°,求∠BAC和∠ACB的度数.11.如图,C、D、E、F是一个长方形台球桌的4个顶点,A、B是桌面上的两个球,怎样击打A球,才能使A球撞击桌面边缘CF后反弹能够撞击B球?请画出A球经过的路线,并写出作法.12.如图,P为∠ABC的平分线与AC的垂直平分线的交点,PM⊥BC于M,PN⊥BA的延长线于N.求证:AN=MC.13.(荆州)有如图“”的8张纸条,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼成的图.(画出的两个图案不能全等)培优升级·奥赛检测01.(浙江竞赛试题)如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1l2上).小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,……如此继续,得到一系列P1、P2、P3……P n与P重合,则n的最小值是()A.5 B.6 C.7 D.802.在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.⑴如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;⑵如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是点P1,点P1关于直线l的对称点是P2,求PP2的长.03.(荆州)某住宅小区拟栽种12棵风景树,若想栽成6行,每行4棵,且6行树所处位置连成线后能组成精美的对称图案,请你仿照举例在下面方框中再设计两种不同的栽树方案.04.(宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF、AF相交于P、M.⑴求证:AB=CD;⑵若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.05.在△ABC中,∠BAC=90°,点A关于BC边的对称点为A’,点B关于AC边的对称点为B’,点C关于AB边的对称点为C’,若S△ABC=1,求S△A’B’C’.06.(湖州市竞赛试题)小王同学在小组数学活动中,给本小组出了这样一道“对称跳棋”题:如图,在作业本上画一条直线l,在直线l两边各放一粒围棋子A、B,使线段AB 长a厘米,并关于直线l对称,在图中P1处有一粒跳棋子,P1距A点b厘米、与直线l 的距离C厘米,按以下程序起跳:第1次,从P1点以A为对称中心跳至P2点;第2次,从P2点以l为对称轴跳至P3点;第3次,从P3点以B为对称中心跳至P4点;第4次,从P4以l为对称轴跳至P1点;⑴画出跳棋子这4次跳过的路径并标注出各点字母;(画图工具不限)⑵棋子按上述程序跳跃2011次后停下,假设a=8,b=6,c=3,计算这时它与A的距离是多少?07.(湖州)如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).⑴若P(p,0)是x轴上的一个动点,则当p=___________时,△PAB的周长最短;⑵若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=___________时,四边形ABCD的周长最短;⑶设M、N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m=___________,n=___________(不必写解答过程);若不存在,请说明理由.。
5.2 探索轴对称的性质一、选择题(共15小题)1. 如图是把一张长方形的纸沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,外面部分展开后的图形是A. B.C. D.2. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是A. B. C. D.3. 下图中序号()()()()对应的四个三角形,都是这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是A. ()B. ()C. ()D. ()4. 下列说法正确的是A. 如果图形甲和图形乙关于直线对称,则图形甲是轴对称图形B. 任何一个图形都有对称轴,有的图形不止一条对称轴C. 平面上两个大小、形状完全一样的图形一定关于某直线对称D. 如果和成轴对称,那么它们的面积一定相等5. 分别以直线为对称轴,所作轴对称图形错误的是A. B.C. D.6. 现有全等的两个三角形、两个四边形和两个圆,其中一定能组成一个轴对称图形的是A. 两个三角形B. 两个四边形C. 两个圆D. 以上都不对7. 下面是四位同学作关于直线对称的,其中正确的是A. B.C. D.8. 钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是A. B.C. D.9. 下列四个图形中,对称轴最多的图形是A. B.C. D.10. 如图,将平行四边形沿对角线折叠,使点落在点处.若,则为A. B. C. D.11. 如图是一个经过改造的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是A. 一号袋B. 二号袋C. 三号袋D. 四号袋12. 我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化.如图2,窗框的一部分所展现的图形是一个轴对称图形,其对称轴有A. 条B. 条C. 条D. 条13. 如图,由四个小正方形组成的田字格中,的顶点都是小正方形的顶点.在田字格上画与成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含本身)共有A. 个B. 个C. 个D. 个14. 下列电视台的台标中,是轴对称图形的是A. B.C. D.15. 下面四个图形分别是节能、绿色食品、节水和低碳标志,在这四个标志中,是轴对称图形的是A. B.C. D.二、填空题(共8小题)16. 下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④若两个图形关于某条直线对称,则其对称点一定在对称轴的两侧.其中正确的是(填序号).17. 在上学的路上,小刚从电瓶车的后视镜里看到一辆汽车,车顶字牌上的字在平面镜中的像是IXAT,则这辆车车顶字牌上的字实际是.18. 如图,把一张长方形纸片沿折叠,点,分别落在点的位置上,交于点,已知,那么.19. 如图,在由四个小正方形组成的田字格中,的顶点都是小正方形的顶点.在田字格上画与成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形共有个.20. 如图,在的正方形网格中,已有个小方格涂成了灰色,现在要从其余白色小方格中选出一个也涂成灰色,使整个灰色部分的图形构成轴对称图形,这样的白色小方格有个.21. 如图,将一张纸条折叠,若,则的度数为.22. 如图,将放在每个小正方形的边长为的网格中,点,点,点均落在格点上.(I)的面积等于;(II)请在如图所示的网格中,用无刻度的直尺,以所在直线为对称轴,作出关于直线对称的图形,并简要说明画图方法(不要求证明).23. 如图,,,与关于直线对称,则.三、解答题(共6小题)24. 画出关于直线的对称图形.25. 我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图所示,将长方形笔记本活页纸片的一角折过去,使角的顶点落在处,为折痕.若,求的度数.(2)在()条件下,如果又将它的另一个角也斜折过去,并使边与重合,折痕为,如图所示,求和的度数.(3)如果在图中改变的大小,则的位置也随之改变,那么()中的大小会不会改变?请说明.26. (1)图(8)是边长为的小正方形组成的网格,观察①④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:;;(2)借助图中⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图①④的图案不能重合).27. 如图所示,与关于直线对称,与的交点在直线上.(1)指出此两个三角形中三个顶点的对称点.(2)在不另加字母和线段的情况下,图中还有成轴对称的三角形吗?28. 把图中的图形补成轴对称图形,其中,为各图形的对称轴.29. 资料:小球沿直线撞击水平格档反弹时(不考虑垂直撞击),撞击路线与水平格档所成的锐角等于反弹路线与水平格档所成的锐角.以图(1)为例,如果黑球沿从到方向在点处撞击边后将沿从到方向反弹,根据反弹原则可知,即.如图(2)和(3),是一个长方形的弹子球台面,有黑白两球和,小球沿直线撞击各边反弹时遵循资料中的反弹原则.(回答以下问题时将黑白两球均看作几何图形中的点,不考虑其半径大小)(1)探究(1):黑球沿直线撞击台边哪一点时,可以使黑球经台边反弹一次后撞击到白球?请在图(2)中画出黑球的路线图,标出撞击点,并简单证明所作路线是否符合反弹原则,(2)探究(2):黑球沿直线撞击台边哪一点时,可以使黑球先撞击台边反弹一次后,再撞击台边反弹一次撞击到白球?请在图(3)中画出黑球的路线图,标出黑球撞击边的撞击点,简单说明作法,不用证明.答案1. D2. D3. A4. D5. C6. C7. B8. A9. B10. C【解析】因为,,由于折叠,,在中,.11. B12. B13. C14. A15. B16. ①③17. TAXI18.19.20.21.22. ,如图,取格点,,连接.取格点,作直线与相交,得点,.则即为所求23.【解析】与关于直线对称,,,,.24. 如图所示,即为所求.25. (1),,;(2)由()的结论可得,由折叠的性质可得,,;(3)不变,由折叠的性质可得,,,所以,不变,永远是平角的一半.26. (1)都是轴对称图形;面积都是(2)(答案不唯一)27. (1)点的对称点是点,点的对称点是点,点的对称点是点.(2)在不另加字母和线段的情况下,与,与也都关于直线成轴对称.28. 如图所示:29. (1)作法:如图以直线为对称轴作点的对称点,连接交于点,连接,则点为撞击点,和为黑球的路线.证明:因为和关于直线对称,点在上,所以和也关于对称,因为和是对应角,所以,又(对顶角相等),所以,即符合反弹原则,(2)以直线为对称轴作点的对称点为对称轴作点的对称点,连接交于点,连接交于点,连接.则点为边的撞击点,,,为球的路线.第11页(共11 页)。
八年级数学上册轴对称解答题(培优篇)(Word版含解析)一、八年级数学轴对称解答题压轴题(难)1.如图1, ZiABC 中,AB=AC・ ZBAC = 905, D、E 分别在BC、AC 边上,连接AD、BE 相交于点F,且ZCAD =丄ZABE.2⑵如图2,连接CF,若EF = EC,求ZCFD的度数:(3)如图3,在⑵的条件下,若AE = 3,求BF的长.【答案】(1)答案见详解:(2)45。
,(3)4.【解析】【分析】(1)设ZCAD二x,则ZABE=2x, ZBAF二90° -x, ZAFB=180° -2x-(90° -x)= 90° -x,进而得到ZBAF二ZAFB,即可得到结论:(2)由ZAEB=90°-2x t进而得到ZEFC= (90°-2x) +2=45。
-x,由BF=AB,可得:ZEFD=ZBFA=90° 根据ZCFD=ZEFD-ZEFC> 即可求解;⑶设EF=EC二x,则AOAE+EC二3+x・可得BE二BF+EF=3+x+x=3+2x,根据勾股左理列出方程,即可求解.【详解】(1)设ZCAD二x,1VZCAD=-ZABE, ZBAC=90S2AZABE=2x, ZBAF=90° -x,V ZABE+ZBAF+ZAFB=180° ,A ZAFB=180° -2x-(90° ・x)= 90° %AZBAF=ZAFB t•••BF = AB;VAB=AC,ABF = AC:(2)由(1)可知:ZCAD二x, ZABE二2x, ZBAC=90^,•••ZAEB=90°-2x,VEF = EC,AZEFC=ZECF,•/ Z EFC+ Z ECF= ZAEB=90°-2x,AZEFC= (90°-2x) -2=45° -x,VBF=AB,AZBFA=ZBAF=(180a -ZABE)-s-2=(180° -2x)-s-2=90° -x,AZEFD=ZBFA=90° ・x,A ZCFD=ZEFD-ZEFC=(90° -x) -(45。
第三节轴对称的综合应用一、课标导航二、核心纲要1.利用轴对称变换解题轴对称变换是作点、线、图形关于某一直线的对称图形,从而使图形中隐藏条件凸显出来,或将分条件集中起来,从而达到解题目的,那么,我们在什么情况下应该想到用或作轴对称呢?下面给出几种见考虑要用或作轴对称的基本图形.(1)线段或角度存在2倍关系的,可考虑对称(2)有互余、互补关系的图形,可考虑对称.(3)角度和或差存在特殊角度的,可考虑对称(4)路径最短问题:运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实最短路径的求解.所以最短路径问题,需考虑轴对称.下表给出几何最值问题的几种中考题型及解题作图方法.2.利用构造等边三角形60 或角度的和、差、倍、分等边三角形有许多重要的性质,在解题中,若已知条件出现某一个角为,60有联系时,一般地构造出等边三角形,汇聚分散的条件,探究解题思路,达到简捷解题目的,与本节重点讲解:两个应用(轴对称和等边三角形的应用)三、全能突破基础演练1.如图13 -3—1所示,直线L是一条河,P,Q是两个村庄,欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).2.如图13-3-2所示,A 、B 两点分别表示两幢大楼所在的位置,直线a 表示输水总管道,直线b 表示输煤气总管道.现要在这两根总管道上分别设一个连接点,安装分管道将水和煤气输送到A 、B 两幢大楼,要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短,图中,点/A 是点A 关于直线b 的对 称点,B A /分别交b 、a 于点C 、D;点/B 是点B 关于直线a 的对称点,A B /分别交b 、a 于点E 、F .则符合要求的输水和输煤气分管道的连接点依次是( ). A.F 和C B .F 和E C .D 和C D .D 和E3.如图13-3-3所示,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP=2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=( ).30.A 45.B 60.C 90.D4.如图13-3-4所示,已知△ABC 为等边三角形,高P cm AH ,10=为AH 上一动点,D 为AB 的中点,则PB PD +的最小值为 cm.5.加油站A 和商店B 在马路MN 的同一侧(如图13-3-5所示),A 到MN 的距离大于B 到MN 的距离,AB=7m ,一个行人P 在马路MN 上行走,问:当P 到A 的距离与P 到B 的距离之差最大时,这个差等于 m.6.如图13-3-6所示,凸六边形ABCDEF 的六个角都是,120边长=AB DE cm CD cm BC cm ,11,8,2==,6cm =你能求出这个六边形的周长吗?7.如图13-3-7所示,在△ABC 中,BD A AC AB ,100,=∠=平分,ABC ∠求证:.AD BD BC +=8.在正△ABC 内取一点D ,使,DB DA =在△ABC 外取一点E ,使,DBC DBE ∠=∠且,BA BF =求BED ∠ 的度数.能 力 提 升9.如图13-3-8所示,点P 为∠AOB 内一点,分别作点P 关于OA 、OB 的对称点、1P ,2P 连接21P P 交OA 于点M ,交OB 于点N ,若,621=P P 则△PMN 周长为( ).4.A5.B6.C7.D10.如图13-3-9所示,在某一地方,有条小河和草地,一天某牧民的计划是从A 处的牧场牵着一只马到草地牧马,再到小河饮马,再回到B 处,你能为他设计一条最短的路线吗?(在N 上任意一点即可牧马,M 上任意一点即可饮马.)(保留作图痕迹,需要证明)11.如图13 -3 -10所示,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作,60oDMN =∠ 射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?12.如图13 -3 -11所示,在△ABC 中,P BAC ,120=∠为△ABC 内一点.求证:.AC AB PC PB PA +>++13.如图13 -3 -12所示,已知线段AB 的同侧有两点C 、D 满足=∠=∠ADB ACB -=∠90,60ABDDBC 21∠求证:.AD AC =14.如图13 -3 -13所示,在△ABC 中,D AC AB ,=是△ABC 外一点,且60,60=∠=∠ACD ABD求证:.AB DC BD =+15.如图13 -3 -14所示,已知P 是△ABC 边BC 上一点,且,2PB PC =若=∠ABC ,60,45=∠APC 求ACB ∠的大小.16.如图13 -3 -15所示,在四边形ABCD 中,,60,=∠-∠=ACD BCA CD BC 求证:.AB CD AD ≥+17.如图13 -3 -16所示,在等腰三角形ABC 中,AB=AC ,顶角,20=∠A 在边AB 上取点D ,使,BC AD = 求∠BDC.18.如图13 -3 -17所示,在△ABC 中,M BCA BAC ,44=∠=∠为△ABC 内一点,使得,30o MCA =∠,16 =∠MAC 求BMC ∠的度数.中 考 链 接19.(2012.兰州)如图13 -3 -18所示,在四边形ABCD 中,=∠=∠B BAD ,120,90=∠D 在BC 、CD上分别找一点M 、N ,使△AMN 周长最小时,则+∠AMN ANM ∠的度数为( ).130.A 120.B 110.C 100.D20.(2012.北京)在△ABC 中,M BAC BC BA ,,α=∠=是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转α2得到线段PQ .(1)若60=α且点P 与点M 重合(如图13-3-19(a)所示),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数.(2)在图13-3-19(b)中,点P 不与点B 、M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明.(3)对于适当大小的,α当点P 在线段BM 上运动到某一位置(不与点B 、M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ=QD ,请直接写出α的范围.巅 峰 突 破21.如图13-3-20所示,已知Rt△ABC 中,F E D BC AB B 、、,4,3,90===∠分别是三边AB 、BC 、CA 上的点,则FD EF DE ++的最小值为( ).521.A 524.B 5.C 6.D22.如图13 -3—21所示,P 为△ABC 内部一点,使得,8,30 =∠=∠PBA PBC 且,22=∠=∠PAC PAB 求APC ∠的度数.。
3.如图2- 2, A ABC 中,AB = AC , AB 的垂直平分线交 AC 于P 点.
(1)若/ A = 35° 求/ BPC ;
( 2)若 AB = 5 cm , BC = 3 cm ,求 A PBC 的周长.
4.如图,AD 为/ BAC 的平分线,DE 丄AB 于E , DF 丄AC 于F ,那么点E 、F 是否 关于AD 对
称?若对称,请说明理由.
【主要知识要点】
1有关概念:轴对称,轴对称图形、对称轴、对称点、线段的垂直平分线、等腰三角形、等边三角形; 2、有关结论和定理:轴对称性质;线段垂直平分线的性质与判定;关于坐标轴对称的点的特征,等腰三
角形的性质和判定;等边三角形的性质和判定。
3、作图要求:会作轴对称图形,会找对称轴;会作线段的垂直平分线,会作等腰三角形、等边三角形。
4、会解决距离最短冋题。
【主要思想方法】1、轴对称变换;2、转化的数学思想;3、分类讨论的思想;4、数形结合的思想; 【典例解析】
1 •将一个正方形纸片依次按左图 a , b 的方式对折,然后沿图 c 中的虚线裁剪,成图 d 样式,将纸展
开铺
平,所得到的图形是右图中的
(
)
2 •如图,将矩形纸片 ABCD (图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使
点B 恰好落在AD 边上,折痕与BC 边交于点E (如图②);(2)以过点E 的直线为折痕折叠纸片,使
点A 落在BC 边上,折痕EF 交AD 边于点F (如图③);(3)将纸片收展平,那么/ AFE 的度数为 ___________
5.如图,从BC中,点A的坐标为(0, 1),点C的坐标为(4, 3), 点B的坐标为
(3, 1),如果要使A ABD与从BC全等,画出从BD , 并求点D的坐标.
6、如图8,在正方形网格上有一个△ ABC.
(1)作厶ABC关于直线MN的对称图形(不写作法);
(2)若网格上的最小正方形的边长为1,求厶
ABC的面积.
7、已知:如图3 —13,点M在锐角/ AOB的内部,在0A边上求作一点
P,在
0B边上求作一点Q,使得A PMQ的周长最小;
&已知△ ABC中,/ C=90 °沿过B的一条直线BE折叠这个三角形,使点C与AB边上的一点D重合,如图9所示.
(1)要使D恰为AB的中点,还应添加一个什么条件?(请写出一个你认为正确的添加条件)
(2)将(1)中的添加条件作为题目的补充条件,试说明其能使D为AB中点的理由.
解:(1)添加条件: ________
(2)说明:
【过关检测】
5 .如图1
,将△ ABC 变换到△ A'B'C 的位置,则你从图中观察发现下列说法正确的是( A .A ABC 与厶ABC 是关于x 轴对称的 B .A ABC 与厶A 'B'C 是关于y 轴对称的
C.A ABC 与厶A B C 是关于点 0对称的D .A ABC 与厶A 'B 'C'既关于x 轴对称,又关于
9.在平面直角坐标系中,点 A , B , C, D 的坐标分别为(1 , 3), ( 2 ,
4), (1 , 3), (2
1.如图,是轴对称图形的是 ( )
2.在图1-2的几何图形中,一定是轴对
3.如图,A ABC 与A A'B'C'关于直线I 对称,则/ B 的度数为
B . 50 °
C . 90 °
100
4.已知/ AOB=30 °,点P 在/ AOB 的内部,与P 关于0B 对称,
P 2与P
关于 0A 对称,则△ POP ?是
(
)A .直角三角形 B .钝角三角形 C.等腰三角形 D
.等边三角形
6•如图
2,
一张长方形纸片沿 AB 对折,
以AB 中点0为顶点将平角五等分,并 沿五等分的折线折叠,再沿 CD 剪开, 使展开后为正五角星(正五边形对角线
所构成的图形),则/ OCD 等于 (
)A . 108°
B . 114°
C . 126
图2
7 .如图4所示,将矩形纸片 ABCD 沿虚线EF 折叠,使点A 落在点G 上,
点D 落在点H 上;然后再沿虚线
GH 折叠,使B 落在点E 上,点C 落在点F 上;
叠完后,剪一个直径在
BC 上的半圆,再展开,则展开
&小明从镜子里看到镜子对面的钟表里的时间是
2点30分,实际时间为
y 轴对称
4),则
A
称图形的有 (
)A . 2个B . 3个
5个
( )
2
D .
O
x
图1
后的图形为(
).
线段AB 与CD 的位置关系是 _____ 10 .在如图5所示的4X4正方形网格中.
/ 1 + Z 2+Z 3+Z 4 +Z 5 +Z 6 +Z 7 = ________ .
11.如图7是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我
们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,
沿着棋子对称跳行,跳行一
次称为一步.己知点 A 为己方一枚棋子,欲将棋子 A 跳进对方区域(阴影部 分的格点),则跳行的最少步数为
步.
A ABC 中,A
B = B
C , A ABC 沿DE 折叠后,点
点D 为AB 边的中点,/ A = 70°求/ BDA'的度数.
13.已知,如图1 — 11,在直角坐标系中,点 A 在y 轴上,BC 丄x 轴于点C ,点A 关于直线0B 的对称点
D 恰好在BC 上,点
E 与点0关于直线 BC 对称,/ OBC = 35 °
14.已知:如图 2 — 4,/ ABC 及两点 M 、N .
求作:点P ,使得PM = PN ,且P 点到/ ABC 两边的距离相等. 作法:
15、如图,点A 、B 、C 在直线I 的同侧,在直线I 上,求作一
点P ,使得四边形 APBC 的周长最小;
12.如图, 图5
8
A 落在BC 边上的A 处,若。