第10讲 瞬时加速度问题 讲义
- 格式:doc
- 大小:336.00 KB
- 文档页数:6
瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。
牛顿运动定律:瞬时加速度问题知识点睛牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,即m Fa ,ma F ,适用于惯性参考系中宏观、低速的物体;牛顿第二定律具有以下性质:①矢量性:加速度的方向与合外力方向一致;②瞬时性:ma F 对于过程中的每一瞬间都成立,a 和F 具有瞬时对应关系;③相对性:mFa 求得的a 是相对于惯性参考系地面而言的;④独立性:若F 是物体所受的合外力,则a 为实际加速度;若F 是某一方向上的合外力,则a 是该方向上的加速度关于力的瞬时性:(1) 物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以突变(2) 对于中学物理的几个理想模型,如刚性绳、轻杆、轻弹簧、接触面等产生的弹力能否突变,关键要看在受力时形变是否明显,若形变不明显,则可以突变;若形变明显,则不能突变,详细如下: 比较模型 刚性绳 轻杆 接触面 弹性绳 轻弹簧 形变类型 拉伸 拉伸、压缩、扭曲 压缩 拉伸拉伸、压缩弹力方向沿着绳指向 绳收缩方向能沿着杆也可以 和杆成任意角度 垂直于接触面 指向受力物体 沿着绳指向 绳收缩方向 沿着弹簧指向弹簧 恢复原长的方向 形变大小 形变不明显 形变不明显 形变不明显 形变明显 形变明显 能否突变 可以突变可以突变可以突变不能突变不能突变例题精讲例题1:如图1,一质量为m 的物体系于长度分别为1l 和2l 的两根细绳上,1l 的一端悬挂在天花板上,与竖直方向夹角为 , 2l 水平拉直,物体处于平衡状态图1 图2(1)现将2l 线剪断,求剪断瞬间物体的加速度? 下面是某同学对该题的一种解法:设1l 线上拉力为1F ,2l 线上拉力为2F ,重力为mg ,物体在三力作用下保持平衡:mg F cos 1,21sin F F , tan 2mg F ,剪断2l 线的瞬间,2F 突然消失,物体即在2F 反方向上获得加速度,因为ma mg tan ,所以加速度 tan g a ,方向沿2F 反方向 你认为这个结果正确吗?请对该解法作出评价并说明(2)若将图中的细线1l 改为长度相同、质量不计的轻弹簧,如图2所示,其他条件不变,求解步骤与(1)完全相同,即 tan g a ,你认为这个结果正确吗?请说明理由解析:(1)结果不正确,因为2l 被剪断瞬间,轻绳1l 上张力大小发生了突变,此瞬间 cos 1mg F ,它与重力沿绳方向的分力抵消,重力垂直于绳方向的分力 sin mg 产生加速度 sin g a (2)结果正确,因为2l 被剪断瞬间,弹簧1l 的长度不能发生突变,即1F 大小方向都不变,它与重 力的合力与2F 方向相反,大小与2F 相等,所以物体的加速度大小为 tan g a例题2:光滑水平面上有一质量kg 1 m 的小球,小球与水平轻弹簧和与水平方向夹角 为 30的轻绳的一端相连,如图,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧弹力与水平面对球的弹力比值是多少?解析:小球在绳末断时受三个力的作用, 绳剪断的瞬间,作用于小球的拉力T 立即消失,但弹簧的形变还存在,故弹簧的弹力F 存在.(1)绳未断时:F T 30cos ,mg T 30sin ,解得:N 20 T , N 310 F(2)绳断的瞬间:0 T ,在竖直方向支持力mg N ,水平方向F 大小方向不变,且ma F 所以310mFa 2/s m ,此时3 N F 说明:当将弹簧改为轻绳时,斜向上拉绳剪断的瞬间,水平绳的拉力立即为零.例题3:如图,木块B A 、用轻弹簧相连,放在悬挂的木箱C 内,处于静止状态,它们质量之比是3:2:1当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A 的质量为m ,则C B 、的质量分别为m 2、m 3在未剪断细绳时,C B A 、、均受平衡力作用,受力如图所示。
4.5 牛顿运动定律的应用——瞬时加速度问题学习目标1.进一步理解牛顿第二定律的瞬时性,会分析变力作用过程中的加速度和速度。
2.会分析物体受力的瞬时变化,掌握瞬时变化问题的两种模型。
知识归纳一、变力作用下加速度和速度的分析1.加速度与合力的关系由牛顿第二定律F=ma,加速度a与合力F具有瞬时对应关系,合力增大,加速度增大,合力减小,加速度减小;合力方向变化,加速度方向也随之变化.2.速度与加速度(合力)的关系速度与加速度(合力)方向相同或夹角为锐角,物体做加速运动;速度与加速度(合力)方向相反或夹角为钝角,物体做减速运动.二、牛顿第二定律的瞬时性问题1.两种模型的特点(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,形变恢复几乎不需要时间,故认为弹力可以立即改变或消失.(2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,在弹簧(或橡皮绳)的自由端连接有物体时其弹力的大小不能突变,往往可以看成是瞬间不变的.2.解决此类问题的基本思路(1)分析原状态(给定状态)下物体的受力情况,明确各力大小.(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力、发生在被撤去物体接触面上的弹力都立即消失).(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度.典型例题例1、如图所示,光滑斜面上放一轻质弹簧,弹簧下端固定,小球从静止开始沿斜面下滑,从它接触弹簧到弹簧被压缩至最短的过程中,小球的加速度和速度的变化情况是( )A.加速度一直变大,速度一直变小B.加速度一直变小,速度一直变大C.加速度先变小后变大,速度先变大后变小D.加速度先变大后变小,速度先变小后变大例2、如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量均为m,2、4质量均为m0,两个系统均置于水平放置的光滑木板上,并处于静止状态。
牛顿运动定律的应用之瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失。
分析物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型:模型受外力时的形变量力能否突变产生拉力或压力轻绳微小不计可以只有拉力没有压力轻橡皮绳较大不能只有拉力没有压力轻弹簧较大不能既可有拉力也可有压力轻杆微小不计可以既可有拉力也可有支持力【规律方法】抓住“两关键”、遵循“四步骤”(1)分析瞬时加速度的“两个关键”:①分析瞬时前、后的受力情况和运动状态。
②明确绳或线类、弹簧或橡皮条类模型的特点。
(2)“四个步骤”:第一步:分析原来物体的受力情况。
第二步:分析物体在突变时的受力情况。
第三步:由牛顿第二定律列方程。
学,科网第四步:求出瞬时加速度,并讨论其合理性。
【典例1】两个质量均为m的小球,用两条轻绳连接,处于平衡状态,如图所示。
现突然迅速剪断轻绳OA,让小球下落,在剪断轻绳的瞬间,设小球A、B的加速度分别用a1和a2表示,则()A.a1=g,a2=gB.a1=0,a2=2gC.a1=g,a2=0D.a1=2g,a2=0【答案】 A【解析】 由于绳子张力可以突变,故剪断OA 后小球A 、B 只受重力,其加速度a 1=a 2=g 。
故选项A 正确。
【典例2】如图所示,光滑水平面上,A 、B 两物体用轻弹簧连接在一起,A 、B 的质量分别为m 1、m 2,在拉力F 作用下,A 、B 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度大小为a 1和a 2,则( ).A .a 1=0,a 2=0B .a 1=a ,a 2=m 2m 1+m 2aC .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=m 1m 2a【答案】 D【典例3】用细绳拴一个质量为m 的小球,小球将一固定在墙上的水平轻质弹簧压缩了x (小球与弹簧不拴连),如图所示.将细绳剪断后( ).A .小球立即获得kxm的加速度B .小球在细绳剪断瞬间起开始做平抛运动C .小球落地的时间等于2h gD .小球落地的速度大于2gh 【答案】 CD【解析】 细绳剪断瞬间,小球受竖直方向的重力和水平方向的弹力作用,选项A 、B 均错;水平方向的弹力不影响竖直方向的自由落体运动,故落地时间由高度决定,选项C 正确;重力和弹力均做正功,选项D 正确.【典例4】如图所示,A 、B 、C 三球质量均为m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法中正确的是( )A. A 球的受力情况未变,加速度为零B. C 球的加速度沿斜面向下,大小为gC. A 、B 之间杆的拉力大小为2mg s in θD. A 、B 两个小球的加速度均沿斜面向上,大小均为12g s in θ【答案】D【跟踪短训】1.(多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的弹簧,则当木块接触弹簧后( ).A .木块立即做减速运动B .木块在一段时间内速度仍可增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块加速度为零 【答案】 BC【解析】 木块在光滑水平面上做匀加速运动,与弹簧接触后,当F >F 弹时,随弹簧形变量的增大,向左的弹力F 弹逐渐增大,木块做加速度减小的加速运动;当弹力和F 相等时,木块速度最大,之后木块做减速运动,弹簧压缩量最大时,木块加速度向左不为零,故选项B 、C 正确.2.(多选)质量均为m 的A 、B 两个小球之间系一个质量不计的弹簧,放在光滑的台面上.A 紧靠墙壁,如图所示,今用恒力F 将B 球向左挤压弹簧,达到平衡时,突然将力F 撤去,此瞬间( ).A .A 球的加速度为F2mB .A 球的加速度为零C .B 球的加速度为F2mD .B 球的加速度为Fm【答案】 BD【解析】 恒力F 作用时,A 和B 都平衡,它们的合力都为零,且弹簧弹力为F .突然将力F 撤去,对A 来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A 球的合力为零,加速度为零,A 项错,B项对.而B球在水平方向只受水平向右的弹簧的弹力作用,加速度a=Fm,故C项错,D项对.3. 如图所示,在动摩擦因数μ=0.2的水平面上有一个质量m=1 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零。
瞬时加速度问题【例1】如图所示,用轻弹簧相连的A、B两球,放在光【两种基本模型】1.刚性绳模型(细钢丝、细线等):认为是一种不发生明滑的水平面上,m A=2kg ,m B=1kg,在6N的水平力F作用下,它们一起向右加速运动,在突然显形变即可产生弹力的物体,它的形变的发生和变化撤去F的瞬间,两球加速度a A=______a B=过程历时极短,在物体受力情况改变(如某个力消失)_____。
的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
2.轻弹簧模型:(轻弹簧、橡皮绳、弹性绳等) 此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
【例2】如图所示,小球A、B的质量分别为m和2m,用【例3】如图所示,木块A和B用一弹簧相连,竖直放在轻弹簧相连,然后用细线悬挂而静止,在剪断弹木板C上,三者静止于地面,它们的质量比是簧的瞬间,求A和B的加速度各为多少?1∶2∶3,设所有接触面都是光滑的,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度a A=_______,a B=_________。
1【例4】如图质量为m的小球用水平弹簧系住,并用倾角【例5】如图所示,轻弹簧竖直放置在水平面上,其上放置为30°的光滑木板AB托住,小球恰好处于静止状质量为2kg的物体A,A处于静止状态,现将质量为态。
当木板AB突然向下撤离的瞬间,求小球的加3kg的物体B轻放在A上,则B与A刚要一起运动的速度? 瞬间,B对A的压力大小为(取g=10m/s2)( )A.20NB.30NC.25ND.12N【例6】细绳拴一个质量为的小球,【例7】如图⑴所示,一质量为m的物体系于长度分别m 为L1、L2的两根细线上,L1的一端悬挂在天花小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连。
板上,与竖直方向夹角为θ,L2水平拉直,物体平衡时细绳与竖直方向的夹处于平衡状态。
现将L2线剪断,求剪断瞬时物体的加速度角为53°,如图所示.以下说法正确的是( )A.小球静止时弹簧的弹力大小为0.6mgB.小球静止时细绳的拉力大小为0.6mgC.细线烧断瞬间小球的加速度立即为gD.细线烧断瞬间小球的加速度立即为5g/32【例8】如图所示,A、B两物体中间用一轻质弹簧相连,【例9】如图所示,在倾角为300的光滑斜面上,有两个用静止在外框C的底板上,整个装置用一根细绳吊轻弹簧连接的木块A和B,已知A的质量为2kg,B在天花板上,处于静止状态。
高一数学复习考点知识讲解课件第2课时瞬时速度与瞬时加速度考点知识1.理解平均速度、瞬时速度、瞬时加速度的概念.2.会求实际问题中的瞬时速度和瞬时加速度.导语同学们,上节课我们研究了几何中的割线斜率和切线斜率,在解决问题时,采用了“无限逼近”的思想,实现了由割线斜率到切线斜率的转化,反映到物理当中,就是研究某运动物体的瞬时速度的问题,但现实中,瞬时速度是否存在呢,比如大家在经过红绿灯路口时,容易发现,测速探头会在极短的时间内拍两次,然后看你发生的位移,这其实就是利用了极短时间内的平均速度来逼近瞬时速度,其原理也是“无限逼近”的思想,今天我们就具体来研究这一现象.一、平均速度问题1平均速率是平均速度吗?提示平均速率不是平均速度.平均速率是物体通过路程与它通过这段路程所用的时间的比值,它是数量.例如一个物体围绕一个圆周(半径为r)运动一周,花的时间是t,平均速率是2πr/t,而平均速度为0.知识梳理平均速度在物理学中,运动物体的位移与所用时间的比称为平均速度.注意点:(1)平均速度反映一段时间内物体运动的平均快慢程度,它与一段位移或一段时间相对应.(2)平均速度是向量,其方向与一段时间Δt内发生的位移方向相同,与运动方向不一定相同.例1一质点的运动方程是s=5-3t2,则在时间[1,1+Δt]内相应的平均速度为()A.3Δt+6B.-3Δt+6C.3Δt-6D.-3Δt-6答案D解析v=[]5-3(1+Δt)2-()5-3×12Δt=-6-3Δt.反思感悟在变速直线运动中,平均速度的大小与选定的时间或位移有关,不同时间段内或不同位移上的平均速度一般不同,必须指明求出的平均速度是对应哪段时间内或哪段位移的平均速度,不指明对应的过程的平均速度是没有意义的.跟踪训练1某质点的运动方程是f(x)=x2-1,其在区间[]1,m上的平均速度为3,则实数m的值为()A.5B.4C.3D.2答案D解析根据题意,该质点的平均速度为ΔyΔx=m2-1-(12-1)m-1=m+1,则有m+1=3,解得m=2.二、瞬时速度问题2瞬时速率与瞬时速度一样吗?提示瞬时速率是数量,只有大小,没有方向,而瞬时速度是标量,即是位移对时间的瞬时变化率,既有大小,又有方向,其大小是瞬时速率,方向是该点在轨迹上运动的切线的方向.知识梳理瞬时速度一般地,如果当Δt无限趋近于0时,运动物体位移S(t)的平均变化率S(t0+Δt)-S(t0)Δt无限趋近于一个常数,那么这个常数称为物体在t=t0时的瞬时速度,也就是位移对于时间的瞬时变化率.注意点:(1)匀速直线运动中,平均速度即为瞬时速度;(2)在匀变速直线运动中,某一段时间的平均速度等于中间时刻的瞬时速度.例2某物体的运动路程S(单位:m)与时间t(单位:s)的关系可用函数S(t)=t2+t+1表示,求物体在t=1s时的瞬时速度.解在1到1+Δt的时间内,物体的平均速度v=ΔSΔt=S(1+Δt)-S(1)Δt=(1+Δt)2+(1+Δt)+1-(12+1+1)Δt=3+Δt,∴当Δt无限趋近于0时,v无限趋近于3,∴S(t)在t=1处的瞬时变化率为3.即物体在t=1s时的瞬时速度为3m/s.延伸探究1.若本例中的条件不变,试求物体的初速度.解求物体的初速度,即求物体在t=0时的瞬时速度.∵ΔSΔt=S(0+Δt)-S(0)Δt=(0+Δt)2+(0+Δt)+1-1Δt=1+Δt,∴当Δt无限趋近于0时,1+Δt无限趋近于1,∴S(t)在t=0时的瞬时变化率为1,即物体的初速度为1m/s.2.若本例中的条件不变,试问物体在哪一时刻的瞬时速度为9m/s? 解设物体在t0时刻的瞬时速度为9m/s.又ΔSΔt =S(t0+Δt)-S(t0)Δt=2t0+1+Δt.∴当Δt无限趋近于0时,ΔSΔt无限趋近于2t0+1.则2t0+1=9,∴t0=4.则物体在4s时的瞬时速度为9m/s.反思感悟求运动物体瞬时速度的三个步骤(1)求时间改变量Δt 和位移改变量ΔS =S (t 0+Δt )-S (t 0).(2)求平均速度v =ΔS Δt .(3)求瞬时速度,当Δt 无限趋近于0时,ΔS Δt 无限趋近于的常数v 即为瞬时速度.跟踪训练2(1)高台跳水运动员在t 秒时距水面高度h (t )=-4.9t 2+6.5t +10(单位:米),则该运动员的初速度为________米/秒.答案6.5解析Δh Δt =-4.9(Δt )2+6.5·(Δt )+10-10Δt=6.5-4.9Δt ,∵当Δt 无限趋近于0时,-4.9Δt +6.5无限趋近于6.5,∴该运动员的初速度为6.5米/秒.(2)如果一个物体的运动方程S (t )=⎩⎨⎧t 2+2,0≤t <3,29+3(t -3)2,t ≥3,试求该物体在t =1和t =4时的瞬时速度.解当t =1时,S (t )=t 2+2,则ΔS Δt =S (1+Δt )-S (1)Δt =(1+Δt )2+2-3Δt =2+Δt , 当Δt 无限趋近于0时,2+Δt 无限趋近于2,∴该物体在t =1时的瞬时速度为2;∵t=4∈[3,+∞),∴S(t)=29+3(t-3)2=3t2-18t+56,∴ΔSΔt=3(4+Δt)2-18(4+Δt)+56-3×42+18×4-56Δt=3(Δt)2+6·ΔtΔt=3·Δt+6,∴当Δt无限趋近于0时,3·Δt+6无限趋近于6,即ΔSΔt无限趋近于6,∴该物体在t=4时的瞬时速度为6.三、瞬时加速度知识梳理瞬时加速度一般地,如果当Δt无限趋近于0时,运动物体速度v(t)的平均变化率v(t0+Δt)-v(t0)Δt无限趋近于一个常数,那么这个常数称为物体在t=t0时的瞬时加速度,也就是速度对于时间的瞬时变化率.注意点:瞬时速度就是位移对于时间的瞬时变化率;瞬时加速度就是速度对于时间的瞬时变化率.例3质点运动的速度v(单位:m/s)是时间t(单位:s)的函数,且v=v(t),则当Δt无限趋近于0时,v(1+Δt)-v(1)Δt表示()A.t=1s时的速度B.t=1s时的加速度C .t =1s 时的位移D .t =1s 时的平均速度答案B解析当Δt 无限趋近于0时,v (1+Δt )-v (1)Δt表示t =1时刻的加速度. 反思感悟瞬时加速度为状态量,反映某一时刻物体运动规律,是表征速度变化快慢的物理量.跟踪训练3一辆汽车从停止时开始加速行驶,并且在5秒内速度v (m/s)与时间t (s)的关系可近似地表示为v =f ()t =-t 2+10t ,则汽车在时刻t =1s 时的加速度为()A .9m/sB .9m/s 2C .8m/s 2D .7m/s 2答案C解析由题意得,Δv Δt =-(t +Δt )2+10(t +Δt )+t 2-10t Δt=-2t +10-Δt ,当Δt 无限接近于0时,汽车在时刻t =1s 时的加速度为8m/s 2.1.知识清单:(1)平均速度.(2)瞬时速度.(3)瞬时加速度.2.方法归纳:无限逼近的思想.3.常见误区:不能将物体的瞬时速度转化为函数的瞬时变化率.1.质点运动规律s =t 2+3,则在时间()3,3+Δt 中,质点的平均速度等于()A .6+ΔtB .6+Δt +9ΔtC .3+ΔtD .9+Δt答案A解析平均速度为v =(3+Δt )2+3-()32+33+Δt -3=6+Δt .2.如果质点按规律S =2t 3运动,则该质点在t =3时的瞬时速度为()A .6B .18C .54D .81答案C解析∵ΔS Δt =S (3+Δt )-S (3)Δt =2·(3+Δt )3-2×33Δt=2(Δt )2+18Δt +54,∴当Δt 无限趋近于0时,ΔS Δt 无限趋近于54.3.某物体的运动速度与时间的关系为v (t )=2t 2-1,则t =2时的加速度为()A .2B .-2C .8D .-8答案C解析由题意知,Δv Δt =2(t +Δt )2-1-2t 2+1Δt=4t +2Δt ,当Δt 无限接近于0时,该物体在t =2时的加速度为8.4.物体做匀速运动,其运动方程是s =v t ,则该物体在运动过程中的平均速度与任何时刻的瞬时速度的关系是__________.答案相等解析物体做匀速直线运动,所以任何时刻的瞬时速度都是一样的.课时对点练1.某质点沿曲线运动的方程为f (x )=-2x 2+1(x 表示时间,f (x )表示位移),则该质点从x =1到x =2的平均速度为()A .-4B .-8C .6D .-6答案D解析由题意得该质点从x =1到x =2的平均速度为f (2)-f (1)2-1=-8+1-(-2+1)1=-6. 2.一质点运动的方程为S =5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是()A .-3B .3C .6D .-6答案D解析由平均速度和瞬时速度的关系可知,当Δt 无限趋近于0时,ΔS Δt 无限趋近于-6,即质点在t =1时的瞬时速度是-6.3.一物体做加速直线运动,假设t s 时的速度为v (t )=t 2+3,则t =2时物体的加速度为()A .4B .3C .2D .1答案A解析因为Δv Δt =(t +Δt )2+3-t 2-3Δt=2t +Δt . 所以当Δt 无限趋近于0时,Δv Δt 无限趋近于2t .所以t =2时物体的加速度为4.4.某物体做直线运动,其运动规律是s =t 2+3t (t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度等于()A.12516米/秒B.316米/秒C.2564米/秒D .0米/秒答案A解析因为Δs Δt =(4+Δt )2+34+Δt -16-34Δt =(Δt )2+8Δt +-3Δt 4(4+Δt )Δt =Δt +8-316+4Δt , 当Δt 无限趋近于0时,Δs Δt 无限趋近于12516.5.汽车在笔直公路上行驶,如果v (t )表示t 时刻的速度,则当Δt 无限趋近于0的时候,v (t 0-Δt )-v (t 0)-Δt的意义是() A .表示当t =t 0时汽车的加速度B .表示当t =t 0时汽车的瞬时速度C .表示当t =t 0时汽车的路程变化率D .表示当t =t 0时汽车与起点的距离答案A解析由于v (t )表示时刻t 的速度,由题意可知,当Δt 无限趋近于0的时候,v (t 0-Δt )-v (t 0)-Δt表示当t =t 0时汽车的加速度.6.(多选)甲、乙速度v 与时间t 的关系如图,a (b )是t =b 时的加速度,S (b )是从t =0到t =b 的路程,则下列说法正确的是()A .a 甲(b )>a 乙(b )B .a 甲(b )<a 乙(b )C .S 甲(b )>S 乙(b )D .S 甲(b )<S 乙(b )答案BC解析加速度是速度对t 函数的切线斜率,由图可得在b 处,甲的切线斜率小于乙的切线斜率,即甲在b 处的加速度小于乙在b 处的加速度;由图知t =0到t =b 甲的速度总大于等于乙的速度,所以甲从t =0到t =b 的路程大于乙从t =0到t =b 的路程.7.一物体的运动方程为s =3t 2-2,则其在t =________时瞬时速度为1. 答案16 解析Δs Δt =3(t +Δt )2-2-3t 2+2Δt=6t +3Δt . 当Δt 无限趋近于0时,Δs Δt 无限趋近于6t ,因为瞬时速度为1,故6t =1,即t =16.8.已知汽车行驶的路程s 和时间t 之间的函数图象如图所示,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为________. (由小到大排列)答案v 1<v 2<v 3解析∵v 1=s (t 1)-s (t 0)t 1-t 0=k OA ,v 2=s (t 2)-s (t 1)t 2-t 1=k AB ,v 3=s (t 3)-s (t 2)t 3-t 2=k BC , 又∵由图象得k OA <k AB <k BC ,∴v 3>v 2>v 1.9.一作直线运动的物体,其位移s 与时间t 的关系是s (t )=3t -t 2(s 的单位是:m ,t 的单位是:s).(1)求t=0s到t=2s时的平均速度;(2)求此物体在t=2s时的瞬时速度.解(1)v=s(2)-s(0)2=6-4-02=1.(2)s(2+Δt)-s(2)Δt=3(2+Δt)-(2+Δt)2-(3×2-22)Δt=-Δt-1.当Δt无限趋近于0时,s(2+Δt)-s(2)Δt无限趋近于-1,所以t=2时的瞬时速度为-1.10.子弹在枪筒中的运动可以看作匀加速直线运动,运动方程为S=12at2,如果它的加速度是a=5×105m/s2,子弹在枪筒中的运动时间为1.6×10-3s,求子弹射出枪口时的瞬时速度.解运动方程为S=12at2.因为ΔS=12a(t0+Δt)2-12at20=at0(Δt)+12a(Δt)2,所以ΔSΔt =at0+12a(Δt).所以当Δt无限趋近于0时,ΔSΔt无限趋近于at0. 由题意知,a=5×105 m/s2,t0=1.6×10-3 s,所以at0=8×102=800(m/s),即子弹射出枪口时的瞬时速度为800 m/s.11.物体做直线运动所经过的路程s可以表示为时间t的函数s=s(t),则物体在时间间隔[t0,t0+Δt]内的平均速度是()A.v0B.Δts()t0+Δt-s()t0C.s()t0+Δt-s()t0Δt D.s()tt答案C解析由平均变化率的概念知平均速度是s()t0+Δt-s()t0Δt.12.若小球自由落体的运动方程为s(t)=12gt2(g为重力加速度),该小球在t=1到t=3时的平均速度为v,在t=2时的瞬时速度为v2,则v和v2的大小关系为() A.v>v2B.v<v2C.v=v2D.不能确定答案C解析平均速度为v=s(3)-s(1)3-1=12g(32-12)2=2g.Δs Δt =s(2+Δt)-s(2)Δt=12g(Δt)2+2gΔtΔt=12gΔt+2g,∵当Δt无限趋近于0时,ΔsΔt无限趋近于2g,∴v2=2g,∴v=v2.13.火车开出车站一段时间内,速度v(单位:米/秒)与行驶时间t(单位:秒)之间的关系是v(t)=0.4t+0.6t2,则火车开出几秒时加速度为2.8米/秒2?()A.23秒B.2秒C.52秒D.73秒答案B解析由题意可知,Δv Δt =0.4(t+Δt)+0.6(t+Δt)2-0.4t-0.6t2Δt=0.4+1.2t+0.6Δt,当Δt无限接近于0时,由0.4+1.2t=2.8可得,t=2(秒).14.质点的运动方程是s=t+1t(s的单位为m,t的单位为s),则质点在t=3s时的瞬时速度为________m/s.答案8 9解析ΔsΔt=s(3+Δt)-s(3)Δt=3+Δt+13+Δt-3-13Δt=1-19+3Δt,当Δt无限趋近于0时,ΔsΔt 无限趋近于89,所以质点在t=3秒时的瞬时速度为89m/s.15.某人拉动一个物体前进,他所做的功W是时间t的函数W=W(t),则当Δt无限趋近于0时,W(t0+Δt)-W(t0)Δt表示()A.t=t0时做的功B.t=t0时的速度C.t=t0时的位移D.t=t0时的功率答案D解析由题意知当Δt无限趋近于0时,W(t0+Δt)-W(t0)Δt表示t=t0时的功率.16.某机械厂生产一种木材旋切机械,已知生产总利润c元与生产量x台之间的关系式为c(x)=-2x2+7000x+600.(1)求产量为1000台的总利润与平均利润;(2)求产量由1000台提高到1500台时,总利润的平均改变量;(3)当Δx无限趋近于0时,求c(1000+Δx)-c(1000)Δx与c(1500+Δx)-c(1500)Δx,并说明它们的实际意义.解(1)产量为1 000台时的总利润为c(1 000)=-2×1 0002+7 000×1 000+600=5 000600(元),平均利润为c()1 0001 000=5 000.6(元).(2)当产量由1 000台提高到1 500台时,总利润的平均改变量为c()1 500-c()1 0001 500-1 000=6 000 600-5 000 600500=2 000(元).(3)∵当Δx无限趋近于0时,ΔcΔx=-4x+7 000,∴c(1 000+Δx)-c(1 000)Δx=3 000,c(1 500+Δx)-c(1 500)Δx=1 000,它们指的是当产量为1 000台时,生产一台机械可多获利3 000元;. 而当产量为1 500台时,生产一台机械可多获利1 000元.。
瞬时加速度问题(参考答案)一、知识清单1. 【答案】(1)弹簧和下段绳的拉力都变为0.(2)弹簧的弹力来不及变化,下段绳的拉力变为0.(3)绳的弹力可以突变而弹簧的弹力不能突变.2. 【答案】二、选择题3. 【答案】A【解析】A 、B 看作整体,加速度a=3mg/2m=1.5g,选项A 正确;4. 【答案】 AC【解析】 设物块的质量为m ,剪断细线的瞬间,细线的拉力消失,弹簧还没有来得及发生形变,所以剪断细线的瞬间a 受到重力和弹簧S 1的拉力T 1,剪断前对b 、c 和弹簧S 2组成的整体受力分析可知T 1=2mg ,故a受到的合力F 合=mg +T 1=mg +2mg =3mg ,故加速度a 1=F 合m=3g ,A 正确,B 错误;设弹簧S 2的拉力为T 2,则T 2=mg ,根据胡克定律F =k Δx 可得Δl 1=2Δl 2,C 正确,D 错误.【名师点睛】做本类型题目时,需要知道剪断细线的瞬间,弹簧来不及发生变化,即细线的拉力变为零,弹簧的弹力不变,然后根据整体和隔离法分析。
5. 【答案】 C【解析】 在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=F +Mg M =M +m Mg ,所以C 对. 6. 【答案】C7. 【答案】BD【解析】物体A 受重力和支持力,在细绳剪断瞬间仍受力平衡,所以a =0,故A 错误; B 、C 物体相对静止,将B 、C 看作一个整体,受重力和弹簧的压力,弹簧的压力等于A 物体的重力,故整体的加速度为:a =mg +2mg +mg 2m +m=43g ;故B 正确,C 错误;根据B 项分析知B 与C 之间弹力为零,故D 正确. 8. 【答案】BC【解析】对A 、B 整体受力分析,细线烧断前细线对A 球的拉力F T =2mg sin θ,细线烧断瞬间,弹簧弹力与原来相等,B 球受力平衡,a B =0,A 球所受合力与F T 等大反向,则F T =2mg sin θ=ma A ,解得a A =2g sin θ,A 、D 错误,B 、C 正确.9. 【答案】C【解析】由整体法知,F 弹=(m A +m B )g sin 30°剪断线瞬间,弹力瞬间不发生变化,由牛顿第二定律可得:对B :F 弹-m B g sin 30°=m B a B ,得a B =m A m B ·g 2对A :m A g sin 30°=m A a A ,得a A =12g所以C 正确.10.【答案】 D【解析】 撤去挡板前,挡板对B 球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A 球所受合力为0,加速度为0,B 球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为0,A 、B 两球所受合力均为mg sin θ,加速度均为g sin θ,可知只有D 对.11.【答案】CD【解析】据题意,对A 球受力分析,受到重力G ,垂直斜面向上的支持力N A ,沿斜面向上的弹力F 和B 、C 球对它的拉力T A ,由于A 球处于静止状态,则据平衡条件有:F =G A sin θ+T A =3mg sin θ;现将细线烧断,据弹簧弹力具有瞬间保持原值的特性,则有:F -G A sin θ=ma ,故A 球此时加速度为a =2g sin θ,A 答案项错误;细线烧断后B 、C 球整体只受到重力和支持力,则加速度以a =g sin θ向下运动,所以B 、C 之间没有相互作用力,故C 、D 答案项正确而B 答案项错误。
牛顿运动定律:《专题三、瞬时加速度》问题根据牛顿第二定律可知,加速度和合外力存在瞬时对应关系,二者同时产生、同时变化、同时消失。
分析物体的瞬时加速度问题,关键是分析条件变化的瞬间前、后的受力情况和运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题要注意两种基本模型的建立:一、 轻 “绳、线”或“杆”类模型:1、受力特点:只能承受拉力,不能承受压力。
2、弹力变化特点:可发生突变。
3、弹力可发生突变的原因分析:当 “绳、线”或“杆”的两端与物体相连时,轻 “绳、线”或“杆”不发生明显形变就能产生弹力。
除 “绳、线”或“杆”上的弹力以外,当一个物体所受的其它力发生变化时, 不需要考虑“绳、线”或“杆”恢复微小形变的时间,可认为 “绳、线”或“杆”上的弹力立即改变或消失。
即在瞬时问题中,认为 “绳、线”或“杆”上的弹力可发生突变二、“弹簧”或“橡皮条”类模型:1、受力特点:弹簧既能承受拉力,也能承受压力;橡皮条只能承受拉力,不能承受压力。
2、弹力变化特点:弹力只能渐变,不能发生突变。
3、弹力可发生突变的原因分析:当“弹簧”或“橡皮条” 的两端与物体相连时,“弹簧”或“橡皮条”产生弹力时会发生明显形变 。
除 “弹簧”或“橡皮条”上的弹力以外,当一个物体所受的其它力发生变化的瞬间,物体的位置来不及发生明显变化,“弹簧”或“橡皮条”上的形变量也就来不及发生明显变化,“弹簧”或“橡皮条”上的弹力可认为没有变化,所以在瞬时问题中,可认为“弹簧”或“橡皮条”上的弹力力不能突变。
三、两种模型的相同点:1、质量和重力均可忽略不计,同一根绳、线、杆、弹簧或橡皮条上各点的张力大小相 等。
2、如果被剪断的是某根绳、线、杆、弹簧或橡皮条,则该绳、线、杆、弹簧或橡皮 条上的弹力立即消失。
四、求解瞬时加速度的一般思路:1、分析瞬时变化前后物体的受力情况;2、列牛顿第二定律方程;3、求瞬时加速度。
巩固练习:1、质量均为m 的A 、B 两个小球之间系一个质量不计的弹簧,放在光滑水平面上.A 紧靠墙壁,如图所示。
瞬时加速度问题【例1】如图所示,用轻弹簧相连的A、B两球,放在
光
【两种基本模型】
1.刚性绳模型(细钢丝、细线等):认为是一种不发生明滑的水平面上,m A=2kg ,m B=1kg,在6N的水
平力F作用下,它们一起向右加速运动,在突
然
显形变即可产生弹力的物体,它的形变的发生和变化
撤去F的瞬间,两球加速度a A=______a B=过程历时极短,在物体受力情况改变(如某个力消失)
_____。
的瞬间,其形变可随之突变为受力情况改变后的状态
所要求的数值。
2.轻弹簧模型:(轻弹簧、橡皮绳、弹性绳等) 此种
形变明显,其形变发生改变需时间较长,在瞬时
问题中,其弹力的大小可看成是不变。
【例2】如图所示,小球A、B的质量分别为m和2m,用【例3】如图所示,木块A和B用一弹簧相连,竖直放在
轻弹簧相连,然后用细线悬挂而静止,在剪断弹木板C上,三者静止于地面,它们的质量比是簧的瞬间,求A和B的加速度各为多少?1∶2∶3,设所有接触面都是光滑的,当沿水平
方向迅速抽出木块C的瞬时,A和B的加速度
a A=
_______,a B=_________。
1
【例4】如图质量为m的小球用水平弹簧系住,并用倾角【例5】如图所示,轻弹簧竖直放置在水平面上,其上放置
为30°的光滑木板AB托住,小球恰好处于静止状质量为2kg的物体A,A处于静止状态,现将质量为
态。
当木板AB突然向下撤离的瞬间,求小球的加3kg的物体B轻放在A上,则B与A刚要一起运动的
速度? 瞬间,B对A的压力大小为(取g=10m/s2)( )
A.20N
B.30N
C.25N
D.12N
【例6】细绳拴一个质量为的小球,【例7】如图⑴所示,一质量为m的物体系于长度分别m 为L1、L2的两根细线上,L1的一端悬挂在天
花
小球用固定在墙上的水平弹
簧支撑,小球与弹簧不粘连。
板上,与竖直方向夹角为θ,L2水平拉直,物体
平衡时细绳与竖直方向的夹处于平衡状态。
现将L2线剪断,求剪断瞬时物
体的加速度
角为53°,如图所示.以下说法正确的是( )
A.小球静止时弹簧的弹力大小为0.6mg
B.小球静止时细绳的拉力大小为0.6mg
C.细线烧断瞬间小球的加速度立即为g
D.细线烧断瞬间小球的加速度立即为5g/3
2
【例8】如图所示,A、B两物体中间用一轻质弹簧相连,【例9】如图所示,在倾角为300的光滑斜面上,有两个用
静止在外框C的底板上,整个装置用一根细绳吊轻弹簧连接的木块A和B,已知A的质量为2kg,B
在天花板上,处于静止状态。
A、B、C质量都为的质量为3kg,有一恒力F=50N的力作用在A 上,
M,现在将细绳剪断,剪断后瞬间A、B、C的加在AB具有相同加速度的瞬间,撤去外力F,则这
速度分别为?一瞬时,A和B的加速度分别是多大?(g=10m/s2)
【例10】在动摩擦因数μ=0.2的水平面上有一个质量为m 【例11】如图AB两滑环分别套在间距为1m的两根光滑平
=1kg的小球,小球与水平轻弹簧及与竖直方向成直杆上,A和B的质量之比为1∶3,用一自然长度
θ=45°角的不可伸长的轻绳一端相连,如图。
此为1m的轻弹簧将两环相连,在A环上作用一沿杆
时小球处于静止平衡状态,且水平面对小球的弹方向的、大小为20N的拉力F,当两环都沿杆以
力恰好为零,当剪断轻绳的瞬间,取g=10m/s2。
相同的加速度a运动时,弹簧与杆夹角为53°。
求:
⑴求弹簧的劲度系数;
⑴此时轻弹簧的弹力大小;⑵若突然撤去拉力F,在撤去拉力F的瞬间,A
的
⑵小球的加速度大小和方向;
加速度为a',a'与a之比为多少?
3。