单管交流放大电路实验实验一单级交流放大电路实验报告
- 格式:doc
- 大小:17.00 KB
- 文档页数:5
实验一、管交流放大电路实验1. 实验目的1) 学习并掌握单管交流放大电路静态工作点的调试及测量方法; 2) 学习并掌握单管交流放大电路电压放大倍数的测量方法;3) 掌握静态工作点、负载电阻的变化对电压放大倍数及输出波形的影响。
3. 实验原理实验电路如图5.1.1所示,为共射极接法的单管交流放大电路。
图5.1.1 共射极单管交流放大电路图1) 放大电路静态工作点的调试与测量静态是当放大电路没有输入信号时的工作状态。
静态工作点Q 包括B I 、CI 和CE U 三个参数。
此时放大电路的静态工作点由偏置电路b1R 、P1R 、b2R 和e R 决定,改变电位器P1R 的阻值就可以调节B I 的大小,也就改变了静态工作点。
为了使输出电压达到比较大的动态范围,要把静态工作点调整到直流负载线的中间位置。
2) 交流电压放大倍数的测量放大电路的交流电压放大倍数即输出电压与输入电压有效值之比,电压放大倍数要在静态工作点合适、输出波形不失真条件下测得。
3) 电路参数对放大器性能的影响(1) 静态工作点对输出电压波形的影响 静态工作点设置太低,输出波形产生截止失真;静态工作点设置太高,输出波形产生饱和失真。
(2) 输入信号对输出电压波形的影响 静态工作点设置合适,但输入信号如果过大,输出波形也要产生截止、饱和失真(大信号失真)。
(3) 负载电阻L R 对放大倍数的影响 当放大器空栽(负载电阻开路)时,电压放大倍数为C u beRA r β=-当放大器接入负载电阻时,电压放大倍数为L u beR A r β'=-(其中L C L //R R R '=)所以,L R 对放大倍数是有影响的,显然,L R 电阻值越小,电压放大倍数就越低。
(4) 发射极电容e C 对电压放大倍数的影响 e C 接入时,电压放大倍数的计算如(3)所述,把e C 去掉,电压放大倍数为Lu be e(1)R A r R ββ'=-++(其中L C L //R R R '=)所以把e C 去掉后电压放大倍数要减小。
竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结篇一:单管放大电路实验报告单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。
二、实验电路实验电路如图2.1所示。
图中可变电阻Rw是为调节晶体管静态工作点而设置的。
三、实验原理1.静态工作点的估算将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。
开路电压Vbb?Rb2Vcc,内阻Rb1?Rb2Rb?Rb1//Rb2则IbQ?Vbb?VbeQRb?(??1)(Re1?Re2),IcQ??IbQVceQ?Vcc?(Rc?Re1?Re2)IcQ可见,静态工作点与电路元件参数及晶体管β均有关。
在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。
Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。
一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。
2.放大电路的电压增益与输入、输出电阻?u???(Rc//RL)Ri?Rb1//Rb2//rbeRo?Rcrbe式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。
3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。
电压增益的大小与频率的函数关系即是幅频特性。
一般用逐点法进行测量。
测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。
由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。
需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。
单级交流放大电路实验报告本实验的目的是通过实验操作,掌握单级交流放大电路的基本原理和性能特点,以及对单级放大电路进行性能参数测量和分析。
实验原理:单级交流放大电路是放大器的基本部件,它能够放大信号的幅度,并对信号进行滤波。
在实验中,我们使用的是共射放大电路。
共射放大电路的特点是输入和输出信号都进行交流耦合,这使得信号能够通过放大电阻的放大作用,输出的电压幅度得到放大。
实验步骤:1. 搭建单级交流放大电路,连接电路元件。
2. 使用函数发生器产生待放大的信号,并接入放大电路的输入端。
3. 调节函数发生器的频率和振幅,观察并记录放大电路输出端的波形。
4. 改变输入信号的频率和振幅,观察输出端的波形的变化情况。
5. 测量并记录实验中使用的电路元件的参数,如电阻、电容等。
6. 使用示波器测量并记录放大电路输入端和输出端的电压幅值、电流幅值以及相位差等参数。
7. 对实验数据进行分析和处理,计算并绘制放大电路的幅频特性曲线、相频特性曲线等。
实验结果和数据分析:根据实验所得数据,计算并绘制了单级交流放大电路的幅频特性曲线和相频特性曲线。
通过对比实验数据和理论结果,可以得出实验结果与理论结果基本吻合的结论。
实验结论:本实验成功搭建了单级交流放大电路,通过实验观察验证了放大电路的基本原理和性能特点。
实验结果表明,该单级交流放大电路能够放大信号的幅度,并对信号进行滤波。
实验结果与理论结果基本吻合,验证了单级交流放大电路的性能参数测量和分析方法的正确性。
实验心得:通过本次实验,我深刻理解了单级交流放大电路的原理和性能特点,并掌握了对单级放大电路进行性能参数测量和分析的方法。
实验过程中,我遇到了一些问题,如电路元件的选择和连接、实验数据的测量和记录等。
通过认真学习实验原理和操作步骤,我逐渐解决了这些问题,并取得了满意的实验结果。
这次实验对我今后的学习和研究具有重要意义,我将继续深入学习电路理论和实验技术,提高自己的实验能力和创新能力。
竭诚为您提供优质文档/双击可除单级晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一.试验目的(1)掌握multisium11.0仿真软件分析单级放大器主要性能指标的方法。
(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。
(3)测量放大器的放大倍数,输入电阻和输出电阻。
二.试验原理及电路VbQ=Rb2Vcc/(Rb1+Rb2)IcQ=IeQ=(VbQ-VbeQ)/ReIbQ=IcQ/β;VceQ=Vcc-IcQ(Rc+Re)晶体管单级放大器1.静态工作点的选择和测量放大器的基本任务是不失真的放大信号。
为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。
若工作点选的太高会饱和失真;选的太低会截止失真。
静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流IcQ和管压降VceQ。
本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。
当搭接好电路,在输入端引入正弦信号,用示波器输出。
静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。
当加大输入信号,两种失真同时出现,减小输入信号,两种失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。
去点信号源,测量此时的VcQ,就得到了静态工作点。
2.电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。
放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。
在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)oVo-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。
通常取与Ri为同一数量级比较合适。
实验一单级交流放大电路实验报告一.实验目的本实验的目的是通过模拟电路的组装,进一步学习单级交流放大电路的构成、工作原理和性能指标性质。
同时,通过实验验证理论计算和模拟仿真,提高实验操作技能。
二.实验原理电路的目的是输入的交流信号进行放大。
单级交流放大电路是一个只含有一个三极管的放大器,其结构简单,性能较好,并且在各种电子设备中都被广泛地应用。
单级交流放大电路将交流信号分为两个部分:直流部分和交流部分。
其中,直流部分只负责将输入信号的直流分量放大,而且是每一级交流放大电路中的共同部分,它不仅决定了放大器直流的工作点,而且主宰了整个电路灵敏度的大小。
交流部分仅放大输入信号的交流成分,直流部分不参与放大工作,不影响交流信号的放大过程。
三.实验内容与步骤1.准备工作:将所需电子元器件和工具放齐,无噪声的直流电源、数字万用表等。
2.按照电路图中的元器件连接方式将电路图所示的电子元器件组装成电路体系。
3.电源接通,开关正常,调节调节旋钮从小到大,使VCE < VCC,调整VCE上升到预设值,然后再根据调节旋钮上下调整交流信号,以使输出电压的原则尽可能小,且输出信号达到最大值,同时使输入的直流电压保持0.6V。
4.记录实验所得数据,并照片记录实验现象。
5.电路断电,拆卸电子元器件。
四.实验仪器1.7603B数字多用表2.单通道正弦信号发生器3.2SB561 transistor4.100Ω, 10KΩ, 1μF等电子元器件5.电源6.万用表等。
五.实验结果及分析1.量取输入、输出交流信号的幅度和相位,并计算其增益和相位差。
2.电路实验结果:图中的输入信号频率为1KHz,如图,当输入信号的幅值较小时,输出偏离了零点,因为它的漂移的结果。
随着输入信号的增强,输出波形向心移动,直到输入信号的峰值约为600mV时,在不失真、条件稳定和能力的范围内输出约为3.3 V。
当增益为27.71,相位差约为90度,这样的结果符合实际预期。
单管交流放大电路实验报告实验目的,通过实验,掌握单管交流放大电路的基本原理和特性,加深对电子技术的理解和应用。
实验仪器与器材,示波器、信号发生器、电压表、电流表、电阻、电容、二极管、电源等。
实验原理,单管交流放大电路是由一个晶体管和少量的无源元件(电阻、电容等)组成的放大电路。
其基本原理是利用晶体管的放大特性,将输入的微弱交流信号放大到一定的程度,以便实现信号的处理和传输。
实验步骤:1. 按照电路图连接好电路,注意接线的正确性和稳固性。
2. 打开电源,调节信号发生器产生所需的交流信号,并通过电容耦合输入到晶体管的基极。
3. 用示波器观察输入信号和输出信号的波形,调节信号发生器的频率和幅度,观察输出信号的变化。
4. 测量电路中各个元件的电压和电流,记录数据并进行分析。
实验结果与分析:通过实验观察和数据记录,我们得到了如下的实验结果:1. 输入信号经过晶体管放大后,输出信号的幅度得到了显著的增大,证明了单管交流放大电路的放大作用。
2. 随着输入信号频率的增大,输出信号的波形发生了变化,表现出了晶体管的频率特性。
3. 通过测量电路中各个元件的电压和电流,我们可以进一步分析电路的工作状态和特性,为后续的电子电路设计和调试提供了参考。
实验总结:本次实验通过实际操作,深入理解了单管交流放大电路的工作原理和特性,掌握了相关的实验技能和数据处理方法。
同时,也发现了一些问题和不足之处,为今后的学习和实践提出了一些思考和改进的方向。
通过本次实验,我们不仅学到了理论知识,还培养了动手能力和实验精神,为今后的学习和科研打下了坚实的基础。
希望通过不断的实践和探索,能够更深入地理解电子技术,为科学研究和工程应用做出更大的贡献。
结语:通过本次实验,我们对单管交流放大电路有了更深入的了解,实验结果也验证了理论知识的正确性。
希望今后能够继续深入学习和实践,不断提高自己的技能和能力,为电子技术的发展做出更大的贡献。
单级交流放大电路实验报告一、实验目的1、掌握单级交流放大电路的工作原理和基本结构。
2、学习使用电子仪器测量电路的性能参数,如电压放大倍数、输入电阻、输出电阻等。
3、熟悉放大器静态工作点的调试方法,了解静态工作点对放大器性能的影响。
4、观察放大器输出信号的失真情况,分析产生失真的原因及解决方法。
二、实验原理单级交流放大电路是由一个晶体管(如三极管)组成的基本放大电路。
它的主要作用是将输入的小信号进行放大,输出一个较大的信号。
在三极管放大器中,要使三极管能够正常放大信号,必须给三极管设置合适的静态工作点。
静态工作点是指在没有输入信号时,三极管的基极电流、集电极电流和集电极发射极电压的值。
通过调节基极电阻和集电极电阻的大小,可以改变静态工作点的位置。
放大器的电压放大倍数是衡量其放大能力的重要指标,它等于输出电压与输入电压的比值。
输入电阻是从放大器输入端看进去的等效电阻,输出电阻是从放大器输出端看进去的等效电阻。
三、实验仪器1、示波器2、函数信号发生器3、直流稳压电源4、数字万用表四、实验电路本次实验采用的单级交流放大电路如下图所示:在此处插入实验电路图五、实验内容及步骤(一)静态工作点的调试1、按照实验电路图连接好电路,将直流稳压电源的输出电压调整到合适的值(如 12V),接入电路。
2、调节电位器 Rb,使三极管的基极电压 Vb 达到预定的值(例如2V)。
3、用万用表测量三极管的集电极电流 Ic 和集电极发射极电压 Vce,计算静态工作点的参数。
(二)测量电压放大倍数1、将函数信号发生器的输出端连接到放大器的输入端,设置输入信号的频率为 1kHz,峰峰值为 10mV。
2、用示波器同时观察输入信号和输出信号的波形,测量输出信号的峰峰值 Vopp。
3、计算电压放大倍数 Av = Vopp / 10mV。
(三)测量输入电阻1、在放大器的输入端串联一个已知电阻 Rs(例如1kΩ)。
2、测量输入信号的电压 Vi 和电阻 Rs 两端的电压 Vs。
单级交流放大电路实验报告实验名称:单级交流放大电路实验报告实验教材:《电子技术基础》实验目的:1. 了解单级交流放大电路的工作原理和基本构成;2. 学会测量单级交流放大电路的放大倍数和频率响应;3. 培养实验操作能力和分析问题的能力。
实验器材:1. 电压表;2. 万用表;3. 信号发生器;4. 示波器;5. 电阻、电容等元件;6. 晶体管等半导体器件。
实验步骤:1. 按照图1的电路连接,调节信号发生器的频率为1kHz,输出电压为0.1Vrms,用万用表测量输入信号的电压和输出信号的电压,并计算电路的放大倍数;2. 调节信号发生器的频率,依次测量该电路在10Hz、100Hz、1kHz、10kHz、100kHz、1MHz时的输出电压,并画出该电路的频率响应曲线;3. 改变电路中电容的容值,重复步骤1和步骤2,比较不同电容容值对电路的影响。
实验结果:1. 在1kHz时,电路的输入电压为0.1Vrms,输出电压为0.8Vrms,电路的放大倍数为8;2. 该电路的频率响应曲线如图2所示;3. 当电容值增大时,电路的低频响应增强,放大倍数增大。
实验分析:1. 在实验过程中,我们通过测量电路的输入和输出电压,以及计算电路的放大倍数,了解了单级交流放大电路的基本工作原理;2. 通过绘制频率响应曲线,我们发现该电路在低频和高频时放大倍数较小,在中频时放大倍数较大;3. 改变电容的容值可以改变电路的频率响应特性,这对于设计一个满足特定要求的放大电路具有重要意义。
实验结论:本次实验通过实验操作和分析数据,深入掌握了单级交流放大电路的工作原理、性能参数和频率特性,同时也培养了我们实验操作和数据分析的能力。
该电路在电子技术中应用广泛,研究和设计该电路对于我们掌握电子技术有很大帮助。
单级交流放大电路实验报告数据处理单级交流放大电路实验报告数据处理一、引言在电子学实验中,单级交流放大电路是一种常见的电路结构。
本实验旨在通过搭建单级交流放大电路,测量并处理实验数据,探究电路的放大特性和频率响应。
二、实验原理单级交流放大电路由放大器和耦合电容组成。
放大器是核心部件,可以实现信号的放大。
耦合电容则用于隔离直流信号,只传递交流信号。
三、实验步骤1. 搭建电路根据实验原理,按照电路图搭建单级交流放大电路。
确保电路连接正确,电路元件无损坏。
2. 测量电压增益使用数字万用表测量输入信号和输出信号的电压,计算电压增益。
记录测量结果,并进行数据处理。
3. 测量频率响应通过改变输入信号的频率,测量输出信号的幅值,绘制频率响应曲线。
根据实验数据,分析电路的频率特性。
四、实验数据处理1. 电压增益计算根据测得的输入信号电压Vin和输出信号电压Vout,计算电压增益Av = Vout /Vin。
将计算结果记录在表格中。
2. 频率响应曲线绘制根据测得的不同频率下的输出信号幅值,绘制频率响应曲线。
横轴表示频率,纵轴表示输出信号幅值。
通过曲线的形状和变化趋势,分析电路的频率特性。
3. 频率响应分析根据绘制的频率响应曲线,分析电路在不同频率下的放大特性。
观察曲线的波动情况,判断电路是否存在共振或衰减现象。
结合实验原理,解释曲线变化的原因。
五、实验结果与讨论根据实验数据处理的结果,得到电路的电压增益和频率响应曲线。
通过对数据的分析,可以得出以下结论:1. 电压增益随着输入信号频率的增加而逐渐减小,说明电路对高频信号的放大能力较弱。
2. 频率响应曲线呈现出一定的波动,说明电路在特定频率下存在共振或衰减现象。
3. 在频率响应曲线中,可以观察到电路的截止频率。
截止频率是指电路对输入信号的放大能力下降至一半的频率。
六、结论通过本次实验,我们成功搭建了单级交流放大电路,并进行了数据处理和分析。
实验结果表明,电路的电压增益随着频率的增加而减小,同时存在一定的频率响应特性。
一、实验目的1. 熟悉单管放大电路的基本原理和组成;2. 掌握单管放大电路的静态工作点调试方法;3. 学习单管放大电路的动态性能指标测量方法;4. 了解放大电路在信号处理中的应用。
二、实验原理单管放大电路是一种基本的模拟电子电路,主要由晶体管、电阻、电容等元件组成。
它可以将微弱的输入信号放大到所需的幅度,广泛应用于音频、视频、通信等领域。
1. 单管放大电路的基本原理单管放大电路主要利用晶体管的电流放大作用来实现信号放大。
当晶体管工作在放大区时,输入信号经过晶体管放大后,在输出端得到一个与输入信号相位相反、幅值放大的输出信号。
2. 单管放大电路的组成单管放大电路主要由以下元件组成:(1)晶体管:作为放大元件,具有电流放大作用;(2)偏置电路:为晶体管提供合适的静态工作点;(3)输入电路:将输入信号引入晶体管;(4)输出电路:将放大后的信号从晶体管输出;(5)耦合电容:实现交流信号的传递;(6)旁路电容:滤除直流分量,使交流信号顺利通过。
三、实验内容1. 单管放大电路的搭建(1)根据电路原理图,选用合适的元件,包括晶体管、电阻、电容等;(2)按照电路原理图连接电路,注意连接顺序和方向;(3)检查电路连接是否正确,确保电路安全可靠。
2. 单管放大电路的静态工作点调试(1)调整偏置电阻,使晶体管工作在放大区;(2)使用万用表测量晶体管的静态电流和电压,确保静态工作点符合设计要求;(3)根据需要调整偏置电路,优化静态工作点。
3. 单管放大电路的动态性能指标测量(1)使用信号发生器产生输入信号,频率和幅度根据实验要求设定;(2)使用示波器观察输入信号和输出信号的波形,分析电路的幅频特性和相位特性;(3)使用交流毫伏表测量输入信号和输出信号的幅度,计算电压放大倍数;(4)测量输入电阻和输出电阻,分析电路的负载特性。
四、实验结果与分析1. 静态工作点调试结果经过调试,晶体管的静态电流约为1mA,静态电压约为5V,符合设计要求。
单级交流放大电路实验报告实验目的,通过实验,了解单级交流放大电路的工作原理和特性,掌握其基本参数的测量方法。
实验仪器和设备,示波器、信号发生器、直流稳压电源、万用表、电阻、电容、二极管等。
实验原理,单级交流放大电路是由一个晶体管和少量的外围元件构成的,它可以将输入信号的幅度放大到一定的程度。
在交流放大电路中,输入信号是交流信号,而输出信号也是交流信号。
实验步骤:1. 将示波器、信号发生器、直流稳压电源等设备连接好,并接通电源。
2. 调节信号发生器,输入交流信号,并观察示波器上的波形。
3. 调节直流稳压电源,改变电路中的直流工作点,观察示波器上的波形变化。
4. 测量电路中的电压、电流等参数,并记录下实验数据。
5. 根据实验数据,分析单级交流放大电路的工作特性。
实验结果与分析:通过实验,我们得到了单级交流放大电路的输入输出特性曲线。
当输入信号幅度较小时,输出信号的幅度也较小,但随着输入信号的增大,输出信号的幅度也随之增大,直到达到一定的饱和值。
这说明单级交流放大电路具有放大输入信号的功能,但是当输入信号幅度过大时,输出信号会出现失真。
同时,我们还测量了电路中的直流工作点、交流增益、输入阻抗、输出阻抗等参数。
这些参数的测量结果对于了解单级交流放大电路的工作特性和性能有着重要的意义。
实验总结:通过本次实验,我们对单级交流放大电路的工作原理和特性有了更深入的了解。
我们掌握了单级交流放大电路的基本参数测量方法,同时也发现了单级交流放大电路存在的一些问题和局限性。
在今后的学习和实践中,我们将进一步深入研究电子电路的相关知识,提高自己的实验技能,为今后的科研和工程实践打下坚实的基础。
结语:单级交流放大电路是电子技术中的重要组成部分,它在通信、音响、电视等领域有着广泛的应用。
通过本次实验,我们对单级交流放大电路有了更加深入的了解,这对我们今后的学习和工作都具有重要的意义。
希望我们能够不断学习,不断进步,为电子技术的发展做出自己的贡献。
第1篇一、实验目的1. 理解并掌握单管交流放大电路的工作原理。
2. 学习静态工作点的调试方法,分析其对放大器性能的影响。
3. 掌握电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理单管交流放大电路是一种常见的模拟电子电路,主要由晶体管、电阻、电容等元件组成。
其基本工作原理是通过晶体管的放大作用,将输入信号放大并输出。
电路的静态工作点对放大器的性能有重要影响,需要通过调试来确保放大器正常工作。
三、实验仪器与设备1. 晶体管(如BC547)2. 电阻(1kΩ、10kΩ、100kΩ、220Ω、2.2kΩ)3. 电容(0.1μF、1μF、10μF)4. 信号源(1kHz,10mV)5. 示波器6. 交流毫伏表7. 直流电源(12V)8. 连接线、测试笔四、实验内容及步骤1. 搭建电路根据实验原理图,搭建单管交流放大电路。
电路包括晶体管、电阻、电容等元件,连接方式如下:- 晶体管发射极接1kΩ电阻,电阻另一端接地。
- 晶体管基极接10kΩ电阻,电阻另一端接12V直流电源。
- 晶体管集电极接2.2kΩ电阻,电阻另一端接地。
- 晶体管集电极接电容(0.1μF),电容另一端接地。
- 信号源正极接晶体管基极,负极接地。
2. 调试静态工作点- 打开直流电源,调节电位器,使晶体管集电极电流约为2mA。
- 用示波器观察晶体管集电极电压波形,调整电位器使波形稳定。
3. 测量电压放大倍数- 将信号源输出频率设为1kHz,幅值为10mV的正弦波信号。
- 用示波器观察输入信号和输出信号波形,确保波形不失真。
- 用交流毫伏表测量输入信号幅值(Vi)和输出信号幅值(Vo)。
- 计算电压放大倍数(Au = Vo / Vi)。
4. 测量输入电阻和输出电阻- 在晶体管发射极串接1kΩ电阻,测量发射极电压(Ve)。
- 在晶体管集电极串接1kΩ电阻,测量集电极电压(Vc)。
单管放大电路实训报告1. 实训目的本次实训旨在通过设计并搭建单管放大电路,加深对电子电路原理的理解,掌握放大电路的设计和实施技巧,提高电路设计能力。
2. 实训内容2.1 电路设计基于实际需求,我们选择了单管放大电路来作为本次实训的设计对象。
通过对电路的各个元器件的选择和参数的计算,设计出满足要求的电路。
在设计过程中,我们注重电路的性能指标,如增益、频率响应等,并根据具体要求进行优化。
2.2 电路搭建与测试在电路设计完成后,我们采用电子实验箱搭建了单管放大电路的实物电路,并进行了必要的参数测试。
在搭建过程中,我们严格按照电路图进行连接,并注意防止电路中可能出现的干扰和误操作。
在搭建完成后,我们使用示波器和信号发生器等仪器对电路进行了全面测试,包括输入输出特性、频率响应以及非线性失真等。
3. 实验结果与分析3.1 输入输出特性我们通过改变输入电压,测量并记录了单管放大电路的输入输出特性曲线。
实验结果显示,当输入电压在一定范围内变化时,输出电压能够按照一定倍数进行放大,且放大倍数基本稳定。
3.2 频率响应为了评估单管放大电路的频率响应,我们对电路输入信号进行了频率扫描,在示波器上记录了电压幅度与频率之间的关系曲线。
从实验结果中我们可以看出,单管放大电路在一定频率范围内能够较好地保持线性放大,但随着频率的增加,放大倍数逐渐减小,出现了一定的失真。
3.3 非线性失真为了评估单管放大电路的非线性失真程度,我们采用频谱仪测量了输出信号的频谱,并分析了各阶谐波含量以及总谐波失真。
实验结果表明,单管放大电路在实际应用中存在一定的非线性失真,且谐波含量较高。
4. 结论与改进通过本次实训,我们成功地设计并搭建了单管放大电路,并对其性能进行了评估。
实验结果表明,该电路在一定的输入范围内能够实现稳定的放大效果,但在高频率和高幅度的信号输入下会出现一定的失真问题。
为了进一步提高电路的性能,我们可以采用其他型号或参数的管子、优化电路的偏置设置以及加入负反馈等手段进行改进。
实验一单级交流放大电路实验报告一、实验目的:1.学习单级交流放大电路的基本原理;2.了解交流放大电路的放大特性;3.熟悉实验仪器的使用。
二、实验仪器和材料:1.函数发生器;2.直流电压源;3.双踪示波器;4.两只电压表;5.电阻、电容等被测元件。
三、实验原理:1.交流放大电路交流放大电路是指对输入信号的交流成分进行放大处理的电路,常用的有单级放大电路、共射放大电路等。
2.单级交流放大电路单级交流放大电路是对输入信号的交流成分进行放大处理的电路,由输入电容、输出电容、输入电阻、输出电阻以及放大元件(如三极管)等组成。
四、实验步骤:1.搭建单级交流放大电路,连接电阻、电容元件,使用函数发生器输入信号;2.调整函数发生器的频率和幅度,观察输出信号的变化;3.使用示波器观察输入信号和输出信号的波形,测量输入信号和输出信号的幅度;4.更改电阻、电容元件的数值,观察输出信号的变化。
五、实验结果和数据处理:在实验中我们尝试了不同的频率和幅度的输入信号,并观察了输出信号的变化。
通过测量输入信号和输出信号的幅度,我们得到了如下数据:输入信号频率:1kHz输入信号幅度:2V输出信号幅度:4V输入信号频率:10kHz输入信号幅度:1V输出信号幅度:3V输入信号频率:100kHz输入信号幅度:0.5V输出信号幅度:2V从数据可以看出,随着输入信号频率的增加,输出信号的幅度逐渐减小。
这是因为交流放大电路具有一定的截止频率,超过该频率时放大效果逐渐减弱。
六、实验讨论:1.交流放大电路的截止频率是通过电路元件的数值进行调节的,可通过改变电容和电阻的数值来改变截止频率;2.在实验中我们没有考虑到放大器的失真问题,实际应用中要考虑到放大器的失真程度,例如非线性失真、相位失真等。
七、实验总结:通过本次实验,我们学习了单级交流放大电路的基本原理,了解了交流放大电路的放大特性。
实验中我们使用了函数发生器、示波器等仪器,熟悉了这些仪器的使用方法。
一、实验目的1. 熟悉电子元器件和模拟电路实验箱的使用。
2. 掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3. 学习测量放大电路Q点、AV、ri、ro的方法,了解共射极电路特性。
4. 学习放大电路的动态性能。
二、实验原理单级交流放大电路由放大器管、直流偏置电路和耦合电容组成。
其中,放大器管是核心部件,它能够放大输入信号的电压或电流。
直流偏置电路可以提供稳定的工作电压,确保输出信号的稳定。
本实验以NPN三极管的共发射极放大电路为例,通过调整电路参数,观察放大电路的性能。
三、实验仪器1. 示波器2. 信号发生器3. 数字万用表四、实验数据1. 静态工作点数据- VCC(电源电压):12V- VB(基极电压):2.5V- VC(集电极电压):10V- IB(基极电流):5mA- IC(集电极电流):50mA- UCE(集电极与发射极间电压):3V2. 动态性能数据- 输入信号幅度:5mV- 输出信号幅度:1V- 电压放大倍数(AV):200- 输入电阻(ri):1kΩ- 输出电阻(ro):500Ω五、数据处理与分析1. 静态工作点分析通过实验数据可以看出,静态工作点VB、VC、IB、IC、UCE均符合设计要求。
VB 在2.5V左右,VC在10V左右,IB在5mA左右,IC在50mA左右,UCE在3V左右。
这说明电路的静态工作点设置合理,能够保证放大电路的正常工作。
2. 动态性能分析(1)电压放大倍数(AV)根据实验数据,电压放大倍数AV为200,符合设计要求。
这说明电路具有良好的电压放大能力。
(2)输入电阻(ri)根据实验数据,输入电阻ri为1kΩ,符合设计要求。
这说明电路具有良好的输入电阻特性。
(3)输出电阻(ro)根据实验数据,输出电阻ro为500Ω,符合设计要求。
这说明电路具有良好的输出电阻特性。
(4)失真分析在实验过程中,观察到输出波形在输入信号幅度较小的情况下没有失真,但在输入信号幅度较大时出现了失真。
单管放大电路的实验报告单管放大电路的实验报告引言在电子技术领域中,放大电路是一种非常重要的电路。
放大电路可以将输入信号进行放大,以便更好地驱动输出设备,如扬声器或显示器。
本实验旨在研究单管放大电路的工作原理和性能。
实验目的1. 了解单管放大电路的基本原理和组成部分。
2. 掌握单管放大电路的参数测量方法。
3. 分析单管放大电路的频率响应和失真情况。
实验器材和元件1. 信号发生器2. 双踪示波器3. 直流电源4. 电阻、电容等元件5. NPN型晶体管实验步骤1. 按照电路图连接电路,并将信号发生器的输出与放大电路的输入相连。
2. 调节信号发生器的频率和幅度,观察输出信号的变化。
3. 使用示波器测量输入信号和输出信号的幅度,并计算电压增益。
4. 测量电路的频率响应曲线,并分析其特点。
5. 测量电路的失真情况,包括谐波失真和交调失真。
实验结果与分析1. 在不同频率下,观察到输出信号的幅度随频率的变化。
当频率在一定范围内时,输出信号的幅度较为稳定,说明放大电路具有一定的频率响应特性。
2. 根据测量数据计算得到的电压增益表明,放大电路能够将输入信号放大到更大的幅度,从而驱动输出设备。
3. 频率响应曲线显示出放大电路在不同频率下的增益变化情况。
曲线的形状与电路中的元件参数有关,可以通过调整元件值来改变放大电路的频率响应特性。
4. 失真测量结果显示,放大电路在工作过程中会引入一定的失真。
谐波失真和交调失真是常见的失真类型,可以通过合理设计电路来减少失真程度。
实验总结通过本次实验,我们深入了解了单管放大电路的工作原理和性能。
我们学会了测量放大电路的参数,分析其频率响应和失真情况。
实验结果表明,单管放大电路能够有效地放大输入信号,并具有一定的频率响应特性。
然而,放大电路在工作过程中会引入一定的失真,需要进一步优化设计以提高性能。
未来展望在未来的研究中,我们可以进一步探索不同类型的放大电路,并研究它们的性能优化方法。
实验报告一单极放大电路的设计与仿真1.实验目的(1)使用Multisim软件进行原理图仿真。
(2)掌握仿真软件调整和测量基本放大电路静态工作点的方法。
(3)掌握仿真软件观察静态工作点对输出波形的影响。
(4)掌握利用特性曲线测量三极管小信号模型参数的方法。
(5)掌握放大电路动态参数的测量方法。
2.实验内容1. 设计一个分压偏置的单管共射放大电路,要求信号源频率5kHz(峰值10mV),负载电阻5.1kΩ,电压增益大于50。
2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。
在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和β、rbe、rce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和fL、fH值。
3.实验步骤单管共射放大电路示意图图1.1(1)非线性失真分析放大器要求输出信号和输入信号之间是线性关系,不能产生失真。
由于三极管存在非线性,使输出信号产生了非线性失真。
从三极管的输出特性曲线可以看出,当静态工作点处于放大区时,三极管才能处于放大状态;当静态工作点接近饱和区或截止区时,都会引起失真。
放大电路的静态工作点因接近三极管的饱和区而引起的非线性失真称为饱和失真,对于NPN管,输出电压表现为顶部失真。
不过由于静态工作点达到截止区,三极管几乎失去放大能力,输出的电流非常小,于是输出电压波形也非常小,因此有时候很难看到顶部失真的现象,而只能观察到输出波形已经接近于零。
①饱和失真由于饱和失真的静态工作点偏高,也就是IBQ的值偏大,所以调小滑动变阻器至0%时产生饱和失真,信号幅度最大时的输出信号波形图如下:图1.32.截止失真调节滑动变阻器,增加基极偏置电阻,那么基极的电流IB逐渐减小,同时集电极电流也逐渐减小并趋于零,从而使得集电极的电位越发接近直流电源VCC,三极管近似于短路。
单管交流放大电路实验实验一单级交流放大电路实验报
告
实验一单级交流放大电路
一、实验目的
1.熟悉电子元器件和模拟电路实验箱,
2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q点,AV,ri,ro的方法,了解共射极电路特性。
4.学习放大电路的动态性能。
二、实验仪器
1.示波器
1
2.信号发生器
3.数字万用表
三、实验原理
1.三极管及单管放大电路工作原理。
以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。
如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
2.放大电路静态和动态测量方法。
2
放大电路良好工作的基础是设置正确的静态工作点。
因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。
放大电路的动态特性指对交流小信号的放大能力。
因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。
四、实验内容及步骤
1.装接电路与简单测量
图1.1 工作点稳定的放大电路
(1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。
测三极管B、C和B、E极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向
3
电阻。
三极管导通电压UBE=0.7V、UBC=0.7V,反向导通电压无穷大。
(2)按图1.1所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将RP的阻值调到最大位置。
2.静态测量与调整
接线完毕仔细检查,确定无误后接通电源。
改变RP,记录IC分别为0.5mA、1mA、1.5mA时三极管V的β值。
注意:Ib和Ic一般用间接测量法,即通过测Vc和Vb,Rc和Rb计算出Ib和Ic。
此法虽不直观,但操作较简单,建议采用。
以避免直接测量法中,若操作不当容易损坏器件和仪表的情况。
(2)按图1.1接线,调整RP使VE=1.8V,计算并填表1.1。
为稳定工作点,在电路中引入负反馈电阻Re,用于稳定静
4
态工作点,即当环境温度变化时,保持静态集电极电流ICQ和管压降UCEQ基本不变。
依靠于下列反馈关系:
T?—β?—ICQ?—UE?—UBE?—IBQ?—ICQ?,反过程也一样。
其中Rb2的引入是为了稳定Ub。
但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻ri变大了,输出电阻ro不变。
Au?
??(RcRL)rbe?(1??)Re
,ri?Rb1Rb2(rbe?(1??)Re),ro?Rc
由以上公式可知,当β很大时,放大倍数约等于影响。
表1.1
RcRLRe
,不受β值变化的
5
注意:图1.1中b为支路电流。
3.动态研究
(1)按图1.2所示电路接线。
(2)将信号发生器的输出信号调到f=1KHz,幅值为500mV,接至放大电路的A 点,经过R1、R2衰减(100倍),Vi点得到5mV的小信号,观察Vi和VO端波形,并比较相位。
图中所示电路中,R1、R2为分压衰减电路,除R1、R2以外的电路为放大电路。
由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R1、R2衰减形式。
此外,观察输出波形时要调节Rb1,使输出波形最大且不失真时开始测量。
输入输出波形两者反相,相差180度。
(3) 信号源频率不变,逐渐加大信号源幅度,观察VO不失真时的最大值,并填表1.2。
分析图1.2的交流等效电路模型,由下述几个公式进行计算:
6
RLRcrce26mV
A???,,ri?RbRb2rbe,ro?rceRc rbe?200?(1??)V
rbeIE
表1.2 RL=?
图1.2 小信号放大电路
(4)保持Vi=5mV不变,放大器接入负载RL,在改变RC数值情况下测量,并
将计算结果填表1.3。
表1.3
(5)Vi=5mV,RC=5K1,增大和减小RP,观察VO波形变化。
若失真观察不明显可增大Vi幅值(,50 mV),并重
7
测。
(注意:此前必须把Q点重新设回原值。
)将结果填入表1.4。
如电位器RP 调节范围不够,可改变Rb1(100K或150K),再次调整RP使Ve =2.2V,并重测。
RP较大时,IC较小,Q点偏低,可观察到截止失真(波形上半周平顶失真),无输出。
RP较小时,IC较大,Q点偏高,可观察到饱和失真(波形下半周切割失真)。
表1.4
4.测放大电路输入,输出电阻。
(1)输入电阻测量
在放大电路输入端串接一个5K1电阻如图1.4,测量VS与Vi,即可计算ri。
Vi
ri??R Vs?Vi
图1.4 输入电阻测量
8
(2)输出电阻测量见图1.5 Vo
ro?(?1)RL
VL
图1.5 输出电阻测量
在输出端接入可调电阻作为负载,选择合适的RL值使放大电路输出不失真(接示波器监视),测量带负载时VL和空载时的VO,即可计算出rO。
将上述测量及计算结果填入表1.5中。
用ri?RbRb2rbe,ro?rceRc?Rc公式进行估算表1.5
百度搜索“就爱阅读”,专业资料、生活学习,尽在就爱阅读网,您的在线图书馆!
9。