2015年全国大学生数学建模竞赛B题二等奖论文
- 格式:pdf
- 大小:631.17 KB
- 文档页数:32
“互联网+”时代的出租车资源配置摘要随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。
本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。
对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日市南岗区出租车资源“供求匹配”程度。
通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为0.3062,根据“供求匹配”标准,得出市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。
同理,也得到了市不同区县、不同时间的供求匹配程度,最后作出市出租车“供求匹配”程度图。
对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。
对于问题三,在问题二的模型下,建立了一个寻找最优补贴金额的优化模型,利用lingo软件[1]进行求解算出最佳补贴金额为8元,然后将这个值带入问题二的模型进行验证,经论证合理后将补贴金额按照4种分配方案分配给司机乘客。
关键词:ISM解释结构模型;AHP-模糊综合评价;价格需求理论;线性规划一问题重述交通是社会生活众多产业当中的一项基础产业,不但和社会的经济发展关系紧密,与人们的生活也是息息相关。
关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。
首先,我们基于层次分析法建立了模型一。
模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。
对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。
模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。
我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。
考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。
最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。
模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。
然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。
评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。
修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。
基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。
本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。
基于供求匹配率的出租车资源配置模型摘要本文针对城市出租车资源配置问题,采用定性与定量相结合的研究方法,建立衡量出租车供求匹配程度的指标,分析打车软件各种补贴方案对所建指标的影响,在充分考虑各方利益的前提下,得到打车软件的最优补贴方案,对城市出租车行业资源优化配置、持续良性发展具有一定的参考意义。
为分析不同时空出租车资源的供求匹配程度,引入出租车资源供求匹配率这一指标,指标的定义为城市中实际运行的出租车辆数与居民出行需要的出租车辆数之比,反映城市中实际运行的出租车辆数与居民出行需要的出租车辆数之间的差异。
计算得出2013年出租车供求匹配率为0.7766,表示供不应求。
居民出行需要的出租车辆数与居民人均日出行次数、城市总人口数量、居民出行选择乘坐出租车的比例有关,也与每辆出租车日均载客次数、每单载客人数和车辆满载率有关。
对于居民人均日出行次数,利用十五个国大中城市的数据,将十二个城市经济指标聚类分析选出每类指标中典型的经济指标,建立居民人均日出行次数与这些典型经济指标间的多元线性回归方程,而与居民出行需要的出租车辆数相关的其他指标可查阅文献或年鉴获得。
分析市每天6:00-8:30,11:00-12:30,13:30-14:30,17:00-18:30四个时间段得供求匹配率分别为0.4111,0.5678,0.6062,0.5631,结果显示供不应求。
得到、、、、、、、八座城市的出租车资源供求匹配率分别为1.0936、0.8827、0.9430、0.7040、0.7049、0.7666、0.6583、0.5252,表明只有的出租车资源是供大于求,而其余七座城市为供小于求。
为了分析各公司的出租车补贴方案对缓解打车难是否有帮助,定性分析出租车日均载客次数、出租车满载率随打车软件对出租车司机每单补贴金额的变化趋势,分别建立阻滞增长模型,进而分析打车软件对出租车司机每单补贴金额的变化对所建指标的影响。
得到的结论为:对于使用打车软件的乘客来说,出租车补贴方案能够缓解打车难的问题;而对于不使用打车软件的乘客来说,出租车补贴方案则不能缓解打车难的问题。
2015数学建模B题;(公选课);后打车时代究竟能走多远;--基于数学分析的打车软件盈利模式的评估体系;1.摘要打车软件作为新兴的交易平台,增加了交易机;其次,改变了支付方式;2.模型的假设;①打车软件开拓的市场基本成熟,大公司的投资也不再;②假设软件公司为用户提高的生活服务质量日趋完善,;覆盖率每年增长,但增长速度每年递减,最后使用打车;定在一定数量(即达后打车时代究竟能走多远--基于数学分析的打车软件盈利模式的评估体系1.摘要打车软件作为新兴的交易平台,增加了交易机会。
且与街头扬招方式相比,打车软件优势也很明显,它可以让出租车司机迅速找到它的客户。
出租车正在寻找客人而“空跑”。
打车软件的出现则改变了这种信息不对称,大大降低了司机的“空载率”,减少了司机和乘客之间的交易成本——司机扫街和乘客扫街的时间成本。
其次,改变了支付方式。
传统现金交易有两个弊病,一是安全性。
另外,大量现金交易增加了司机的交易成本:时不时收到假钞,蒙受经济损失;每周几次到银行存钱也增加了时间成本。
这些优势就使得打车软件极具有盈利的可能,只有软件找到用户并增强对他们的粘性,就有许多渠道来针对他们来盈利。
随着近两年打车软件的兴起,从原先40多款打车软件的百花齐放演变成现在的嘀嘀、快的双雄争霸,市场竞争也趋于白热化。
2014年伊始,嘀嘀打车和快的打车进入史上空前的“烧钱大战”,在高峰期甚至达到2月17日乘客返现10—15元,新司机首单立奖50元,而且每单都有补贴十块。
目前两大打车软件纷纷将针对乘客的补贴降至3元/单,对司机端的补贴,嘀嘀是5元/单,快的4元/单。
部分城市的嘀嘀打车更已取消“立减优惠”,取而代之的是“用嘀嘀添新衣”的广告或改送购物网站现金券。
那么,在后打车时代,滴滴打车这类打车软件还能走多远了我们通过对打车软件盈利模式的研究来探索这个问题。
关键词:空载率,支付方式,交易成本,后打车时代2.模型的假设①打车软件开拓的市场基本成熟,大公司的投资也不再,补贴也不再,利用生活服务来增强对用户的粘性。
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛是具有广泛影响力的学术竞赛活动,旨在培养大学生的创新能力、实践能力和团队协作精神。
本文将针对2016年竞赛中的B题进行详细的解题分析与总结,以期为参赛者提供有益的参考。
二、题目概述B题主要涉及城市空气质量预测问题。
题目要求参赛者根据历史数据,建立数学模型预测未来一段时间内某城市的空气质量指数(AQI)。
此题重点考察参赛者的数据处理能力、模型构建能力以及预测精度。
三、解题分析1. 数据收集与预处理首先,我们需要收集该城市的历史空气质量数据,包括但不限于PM2.5、PM10、SO2、NO2等污染物的浓度数据,以及气象数据(如温度、湿度、风速等)。
对收集到的数据进行清洗,去除异常值和缺失值,并进行归一化处理,以便进行后续分析。
2. 模型构建根据数据的特性,我们选择时间序列分析方法进行建模。
具体而言,可以采用自回归积分滑动平均模型(ARIMA)或其变体如SARIMA等。
这些模型能够较好地捕捉时间序列数据的变化规律,并预测未来趋势。
在建模过程中,我们需要通过交叉验证等方法确定模型的参数。
3. 模型验证与优化建立初步模型后,我们需要用验证集对模型进行验证,计算预测值与实际值之间的误差。
根据误差情况,对模型进行优化,如调整参数、引入其他影响因素等。
同时,我们还可以尝试使用其他模型进行对比,如神经网络、支持向量机等,以找到最优的预测模型。
四、模型应用与结果分析经过优化后的模型可以用于预测未来一段时间内该城市的空气质量指数。
我们可以通过绘制预测曲线、计算预测值的置信区间等方式对预测结果进行分析。
同时,我们还可以根据预测结果提出相应的空气质量改善措施和建议。
五、总结与展望通过对2016年全国大学生数学建模竞赛B题的分析与求解,我们掌握了空气质量预测的基本方法和技巧。
在未来的学习和工作中,我们可以将所学知识应用到更广泛的领域,如气候变化预测、经济预测等。
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,以其独特的实际应用背景和复杂的数学建模需求,吸引了众多参赛者的关注。
本文旨在分析该题目的解题思路、方法及过程,并总结经验教训,以期为后续参赛者提供参考。
二、题目概述B题主要围绕“空气质量预测与治理”展开,要求参赛者建立数学模型,对某城市的空气质量进行预测,并探讨治理措施的效果。
题目既涉及数学建模的理论知识,又具有实际应用价值。
三、解题分析1. 数据收集与预处理在解题过程中,首先需要收集该城市的历史空气质量数据,包括PM2.5、PM10、SO2、NO2等主要污染物的浓度数据,以及气象数据、交通流量等影响因素数据。
对收集到的数据进行清洗、整理和标准化处理,以便进行后续的建模分析。
2. 模型选择与建立根据题目要求和数据特点,可以选择时间序列分析模型、多元线性回归模型、神经网络模型等。
在建立模型时,需要考虑各种影响因素的相互作用,以及模型的预测精度和泛化能力。
同时,还需要对模型进行参数估计和假设检验,以确保模型的可靠性。
3. 模型应用与验证将建立的模型应用于实际数据,进行空气质量预测。
通过对比预测值与实际值的差异,评估模型的预测精度和效果。
此外,还需要探讨治理措施对空气质量的影响,评估治理措施的效果。
四、解题方法与技巧1. 多角度综合分析在建模过程中,需要从多个角度综合分析问题。
既要考虑空气质量的主要影响因素,又要考虑各因素之间的相互作用;既要关注模型的预测精度,又要考虑模型的泛化能力。
只有综合考虑各种因素,才能建立更加准确、可靠的数学模型。
2. 合理选择模型与方法根据问题的特点和数据的特点,选择合适的模型与方法。
不同的模型与方法有不同的适用范围和优缺点,需要根据实际情况进行选择和调整。
同时,还需要对所选模型与方法进行充分的了解和掌握,以确保建模过程的顺利进行。
3. 注意数据的处理与分析数据是建模的基础,数据的处理与分析对建模的结果具有重要影响。