空间向量的数量积运算
知识点一 空间向量的夹角 如图所示,已知平面向量a,b.
问题1:试作出向量a,b的夹角. 答案:如图,∠AOB为a和b的夹角.
问题2:若a,b为空间非零向量,两向量还有夹角吗?若有试作出.
<a,b>
∠AOB
(2)夹角的范围 空间任意两个向量的夹角 θ 的取值范围是 [0,π]
ABB1A1,▱BB1C1C的对角线都分别相互垂直且相等,若AB=a,求异面直线BA1与 AC所成的角.
方法技巧 (1)求几何体中两个向量的夹角可以把其中一个向量平移使 其起点与另一个向量的起点重合,通过解三角形得出夹角的大小,此法就 是求两个向量夹角的平移法.
(2)由两个向量的数量积定义得cos<a,b>=
,求<a,b>的大小,转化
为求两个向量的数量积及两个向量的模的大小,求出<a,b>的余弦值,进而
求<a,b>的大小.
(3)利用向量的数量积求出两向量的夹角,则这个夹角就是两异面直线所 成的角或补角(注意异面直线所成角的范围).
题型三 利用空间向量解决垂直问题
【例3】 如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且 ∠∠CC1C1CDB==∠BCD.求证:CA1 ⊥B1D1.
题型四 利用数量积求距离
方法技巧 用空间向量求两点间距离 , 首先用其他已知夹角和模的向量 表示此向量,再利用a·a= |a|2,通过向量运算求|a|.
(2)若∠BAC=90°,∠BAA1=∠CAA1=60°,AB=AC=AA1=1,求MN的长.
,
.特别地,当 θ=0时
两向量同向共线;当 θ=π时,两向量反向共线,所以若a∥b,则<a,b>=0或