压轴大题突破练05(解析几何+函数与导数)(第02期)-2018版题型突破唯我独尊之高考数学 Word版含解析
- 格式:doc
- 大小:440.00 KB
- 文档页数:4
1.3 导数与函数的零点及参数范围1.(2017天津六校联考,文21)设函数f(x)=ln x-ax2-bx.(1)当a=b=时,求函数f(x)的单调区间;(2)当a=0,b=-1时,方程f(x)=mx在区间[1,e2]上有唯一实数解,求实数m的取值范围.2.(2017湖北荆州质检一,文21)已知函数f(x)=+a(x-ln x),e为自然对数的底数.(1)当a>0时,试求f(x)的单调区间;(2)若函数f(x)在x∈上有三个不同的极值点,求实数a的取值范围.3.(2017北京东城一模,文20)设函数f(x)=x3-x2+ax,a∈R.(1)若x=2是f(x)的极值点,求a的值,并讨论f(x)的单调性;(2)已知函数g(x)=f(x)-ax2+,若g(x)在区间(0,1)内有零点,求a的取值范围.4.(2017湖南长郡中学临考冲刺,文21)已知函数f(x)=(2-a)(x-1)-2ln x(a∈R).(1)若曲线g(x)=f(x)+x在点(1,g(1))处得切线过点(0,2),求函数g(x)的单调减区间;(2)若函数y=f(x)在上无零点,求a的最小值.5.(2017河南豫南九校质量考评八,文21)已知函数f(x)=ln x+(a>0).(1)若函数f(x)有零点,求实数a的取值范围;(2)证明:当a≥,b>1时,f(ln b)>.〚导学号24190963〛6.(2017福建宁德一模,文21)已知函数f(x)=ln x-ax+(a∈R).(1)当a=-时,求函数f(x)的单调区间和极值;(2)若g(x)=f(x)+a(x-1)有两个零点x1,x2,且x1<x2,求证:x1+x2>1.〚导学号24190964〛1.3导数与函数的零点及参数范围1.解 (1)依题意,知f(x)的定义域为(0,+∞),当a=b=时,f(x)=ln x-x2-x,f'(x)=x-,令f'(x)=0,解得x=1或x=-2(舍去),当0<x<1时,f'(x)>0;当x>1时,f'(x)<0,所以f(x)的单调增区间为(0,1),减区间为(1,+∞).(2)当a=0,b=-1时,f(x)=ln x+x,由f(x)=mx,得ln x+x=mx,又x>0,所以m=1+.要使方程f(x)=mx在区间[1,e2]上有唯一实数解,只需m=1+有唯一实数解,令g(x)=1+(x>0),∴g'(x)=,由g'(x)>0得0<x<e;g'(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数.g(1)=1,g(e2)=1+,g(e)=1+,故1≤m<1+或m=1+.2.解 (1)函数的定义域为x∈(0,+∞),f'(x)=+a,当a>0时,对于∀x∈(0,+∞),e x+ax>0恒成立,所以,若x>1,f'(x)>0,若0<x<1,f'(x)<0, 所以f(x)的单调增区间为(1,+∞),单调减区间为(0,1).(2)由条件可知f'(x)=0,在x∈上有三个不同的根,即e x+ax=0在x∈上有两个不同的根,且两根都不能为1,即a≠-e,a=-,令g(x)=-,g'(x)=-,当x∈时单调递增,x∈(1,2)时单调递减,∴g(x)max=g(1)=-e,g=-2,g(2)=-e2,而-2e2-2>0,∴-2<a<-e.3.解 (1)f(x)=x3-x2+ax,f'(x)=x2-x+a,∵x=2是f(x)的极值点,∴f'(2)=4-2+a=0,解得a=-2.代入f'(x)=x2-x-2=(x+1)(x-2),令f'(x)=0,解得x=-1或x=2.令f'(x)>0,解得x>2或x<-1,∴f(x)在x∈(-∞,-1),(2,+∞)时单调递增;令f'(x)<0,解得-1<x<2,∴f(x)在x∈(-1,2)时单调递减.(2)g(x)=f(x)-ax2+x3-(1+a)x2+ax+,g'(x)=x2-(1+a)x+a=(x-1)(x-a).①当a≥1时,x∈(0,1),g'(x)>0恒成立,g(x)单调递增,又g(0)=>0,因此此时函数g(x)在区间(0,1)内没有零点.②当0<a<1时,x∈(0,a),g'(x)>0,g(x)单调递增,x∈(a,1)时,g'(x)<0,g(x)单调递减,又g(0)=>0,因此要使函数g(x)在区间(0,1)内有零点,必有g(1)<0,∴(1+a)+a+<0,解得a<-1.舍去.③当a≤0时,x∈(0,1),g'(x)<0,g(x)单调递减,又g(0)=>0,因此要使函数g(x)在区间(0,1)内有零点,必有g(1)<0,解得a<-1.满足条件.综上可得a的取值范围是(-∞,-1).4.解 (1)∵g(x)=(3-a)x-(2-a)-2ln x,∴g'(x)=3-a-,∴g'(1)=1-a.又g(1)=1,∴1-a==-1,得a=2.由g'(x)=3-2-<0,得0<x<2,∴函数g(x)的单调减区间为(0,2).(2)∵f(x)<0在区间上恒成立不可能,∴要使函数f(x)在上无零点,只要对任意的x∈,f(x)>0恒成立,即对x∈,a>2-恒成立,令I(x)=2-,x∈,则I'(x)=-,再令m(x)=2ln x+-2,x∈,则m'(x)=<0,故m(x)在内为减函数,于是m(x)>m=2-2ln 2>0,即I'(x)>0,于是I(x)在上为增函数,∴I(x)<I=2-4ln 2,故要使a>2-恒成立,只要a∈[2-4ln 2,+∞).综上,若函数f(x)在上无零点,则a的最小值为2-4ln 2.5.(1)解函数f(x)=ln x+的定义域为(0,+∞),由f(x)=ln x+,得f'(x)=,因为a>0,则x∈(0,a)时,f'(x)<0,x∈(a,+∞)时,f'(x)>0.所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,当x=a时,f(x)min=ln a+1,当ln a+1≤0,即0<a≤时,又f(1)=ln 1+a=a>0,则函数f(x)有零点.所以实数a的取值范围为.(2)证明要证明f(ln b)>,即证ln(ln b)+,令t=ln b>0(b>1),则b=e t,所以只需证ln t+>e-t,整理得t ln t+a>t e-t.令h(x)=x ln x+a,则h'(x)=ln x+1.当0<x<时,h'(x)<0;当x>时,h'(x)>0.所以函数h(x)在上单调递减,在上单调递增,当x=时,h(x)min=-+a.于是,当a≥时,h(x)≥-+a≥.①令φ(x)=x e-x,则φ'(x)=e-x-x e-x=e-x(1-x).当0<x<1时,φ'(x)>0;当x>1时,φ'(x)<0.所以函数φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 当x=1时,φ(x)max=,于是,当x>0时,φ(x)≤.②显然,不等式①,②中的等号不能同时成立,故当x>0,a≥时,x ln x+a>x e-x.因为b>1,所以ln b>0.所以ln b·ln(ln b)+a>ln b·e-ln b.所以ln(ln b)+,即f(ln b)>.6.(1)解当a=-时,f(x)=ln x+x+(x>0),求导,f'(x)=.令f'(x)=0,解得x=或x=-1(舍去),当f'(x)>0,解得x>,当f'(x)<0,解得0<x<,∴函数的单调递增区间为,单调递减区间为,∴当x=时,函数取极小值,极小值为2-ln 3.(2)证明根据题意,g(x)=f(x)+a(x-1)=ln x+-a(x>0).∵x1,x2是函数g(x)的两个零点,∴ln x1+-a=0,ln x2+-a=0,两式相减,可得ln,即ln,故x1x2=.∴x1=,x2=,令t=,其中0<t<1,则x1+x2=.构造函数h(t)=t--2ln t(0<t<1),则h'(t)=,∵0<t<1,h'(t)>0恒成立,故h(t)<h(1),即t--2ln t<0,则>1,故x1+x2>1.。
2018年高考理科数学全国卷二导数压轴题解析已知函数2()x f x e ax =-.(1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析:本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。
第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。
官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。
这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。
但是,这种变形对大多数高考考生而言很难想到。
因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。
题目解答:(1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-.当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意.当0a >时,()2x f x e ax '=-,()2x f x e a ''=-.当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-.当02ea <≤时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.当2ea >时,易证2ln 2a a >. (0)10f '=>,(ln 2)0f a '<,由(1)可知,22(2)=(2)10a f a e a '->>.由零点存在性定理可知必然存在一点1(0,ln 2)x a ∈使得1()0f x '=,2(ln 22)x a a ∈,使得2()0f x '=;所以当1(0,)x x ∈时,()0f x '>,()f x 单调递增,12(,)x x x ∈,()0f x '<,()f x 单调递减,2(,)x x ∈+∞,()0f x '>,()f x 单调递增,即当2x x =时()f x 取得极小值2222()x f x e ax =-由2()0f x '=得222x e a x = 从而222222()(2)2x x e f x e ax x =-=-当22x =时,即24e a =时,极小值2()0f x =恰好成立,此时在()f x 在(0,)+∞只有一个零点2x =,满足题意.当224e e a <<时,即212x <<时(易证2xe x在(1,)+∞单调递增),极小值2()0f x >,此时在(0,)+∞无零点,不合题意.x当24e a >时,即22x >时,(0)10f =>,2()0f x <, 32(3)(3)0a f a e a a =-> (易证313x e x >恒成立),由零点存在性定理可知()f x 在区间2(0,)x 和2(,3)x a 各有一根,不合题意.综上所述,24e a =.。
解(1)当 a =1 时,f (x )=e x -x 2-2x -1,f (-1)= ,所以切点坐标为⎝-1,e ⎭,f ′(x )=e x -2x -2,所以 f ′(-1)= ,故曲线 y =f (x )在点(-1,f (-1))处的切线方程为 y - = [x -(-1)],即 y = x + .①当 2a ≤1,即 a ≤ 时,g ′(x )=e x -2a >1-2a ≥0,所以 f (x )>f (0)=1-0-0-1=0,故 a ≤ 时符合题意.②当 2a >1,即 a > 时,令 g ′(x )=e x -2a =0,得 x =ln 2a >0,综上,a 的取值范围是⎝-∞,2⎦.压轴大题突破练1.导 数1.(2017· 安徽“皖南八校”联考)已知函数 f (x )=e x -ax 2-2ax -1.(1)当 a =1 时,求曲线 y =f (x )在点(-1,f (-1))处的切线方程; (2)当 x >0 时,f (x )>0 恒成立,求实数 a 的取值范围.1 e⎛ 1⎫1e1 1 1 2e e e e(2)f (x )=e x -ax 2-2ax -1 求导得 f ′(x )=e x -2ax -2a ,令 g (x )=f ′(x )=e x -2ax -2a ,则 g ′(x )=e x -2a (x >0).12所以 g (x )=f ′(x )=e x -2ax -2a 在(0,+∞)上为增函数,g (x )>g (0)=1-2a ≥0,即 g (x )=f ′(x )≥0,所以 f (x )=e x -ax 2-2ax -1 在(0,+∞)上为增函数,1212xg ′(x )g (x )(0,ln 2a )-减函数 ln 2a极小值 (ln 2a ,+∞)+增函数当 x ∈(0,ln 2a )时,g (x )<g (0)=1-2a <0,即 f ′(x )<0,所以 f (x )在(0,ln 2a )上为减函数,所以 f (x )<f (0)=0,与条件矛盾,故舍去.⎛ 1⎤2.(2017· 广东惠州调研)已知函数 f (x )=x 2-(a -2)x -a ln x (a ∈R ).(1)求函数 y =f (x )的单调区间;f ′(x )=2x -(a -2)- = = .当 a >0 时,由 f ′(x )>0,得 x > ,由 f ′(x )<0,得 0<x < ,所以函数 f (x )在区间⎝2,+∞⎭上单调递增,在区间⎝0,2⎭上单调递减.令 g ′(x )=e x - =0,得 e x = ,容易知道该方程有唯一解,不妨设为 x 0,则 x 0 满足 e x 0 = ,g (x )min =g (x 0)= e x 0 -ln x 0-2= +x 0-2, f ′(x )= -1= =0 x =1,(2)当 a =1 时,证明:对任意的 x >0,f (x )+e x >x 2+x +2.(1)解 函数 f (x )的定义域是(0,+∞),a 2x 2-(a -2)x -a (x +1)(2x -a )x xx当 a ≤0 时,f ′(x )>0 对任意 x ∈(0,+∞)恒成立,所以函数 f (x )在区间(0,+∞)上单调递增.a2a2⎛a ⎫ ⎛ a ⎫(2)证明 当 a =1 时,f (x )=x 2+x -ln x ,要证明 f (x )+e x >x 2+x +2,只需证明 e x -ln x -2>0,设 g (x )=e x -ln x -2,则问题转化为证明对任意的 x >0,g (x )>0,11xx1 x 0当 x 变化时,g ′(x )和 g (x )的变化情况如下表:xg ′(x )g (x )(0,x 0)-单调递减 x 0(x 0,+∞)+单调递增1 x 0 因为 x 0>0,且 x 0≠1,所以 g (x )min >2 1-2=0,因此不等式得证. 3.(2017· 荆、荆、襄、宜四地七校联考)已知函数 f (x )=ln x -x .(1)求函数 f (x )的单调区间;(2)若方程 f (x )=m (m <-2)有两个相异实根 x 1,x 2,且 x 1<x 2,证明:x 1· x 22<2. (1)解 f (x )=ln x -x 的定义域为(0,+∞),1 1-xxx当 x ∈(0,1)时,f ′(x )>0,所以 y =f (x )在(0,1)上单调递增,当 x ∈(1,+∞)时,f ′(x )<0,所以 y =f (x )在(1,+∞)上单调递减.(2)证明 由(1)可知,f (x )=m 的两个相异实根 x 1,x 2 满足 ln x -x -m =0, 且 0<x 1<1,x 2>1,ln x 1-x 1-m =ln x 2-x 2-m =0,所以 0<x 1<1,0< 2<1.2=(lnx 1-x 1)-ln 2-2则 g (x 1)-g ⎝x ⎭ ⎝ x x ⎭- 2)=-x 2+ 2+3ln x 2-ln 2,当 t >2 时,h ′(t )<0,h (t )在(2,+∞)上单调递减,所以 h (t )<h (2)=2ln 2- <0.2<0,即g (x 1)<g2,所以当 x 2>2 时,g (x 1)-g ⎝x ⎭ ⎝x ⎭因为 0<x 1<1,0< 2<1,g (x )在(0,1)上单调递增, 所以 x 1< 2,故 x 1· x 22<2. (2)若函数 y =f (x )的图象在点 (2,f (2))处的切线的倾斜角为 45°,且函数 g (x )= x 2+nx +2- ,所以 g (x )= x 2+nx +m ⎝ x ⎭=(ln x 2-x 2)-(ln 2 解 (1)f ′(x )=(x >0),= t 3 =- t 3由题意可知 ln x 2-x 2=m <-2<ln 2-2,又由(1)可知 f (x )=ln x -x 在(1,+∞)上单调递减,故 x 2>2,2 x2令 g (x )=ln x -x -m ,⎛ 2 ⎫ ⎛ 2 2 ⎫ 22 2 2 2 x 2 x 2 x 22令 h (t )=-t +t 2+3ln t -ln 2(t >2),4 3 -t 3+3t 2-4 (t -2)2(t +1)则 h ′(t )=-1-t 3+ t .32⎛ 2 ⎫ ⎛ 2 ⎫ 2 2 2 x22 x2综上所述,x 1· x 2<2.4.(2017 届重庆市一中月考)已知函数 f (x )=a ln x -ax -3(a ∈R ).(1)当 a >0 时,求函数 f (x )的单调区间;12mf ′(x )(m ,n ∈R ),当且仅当在 x =1 处取得极值,其中 f ′(x )为 f (x )的导函数,求 m 的取值范围.a (1-x )x当 a >0 时,令 f ′(x )>0,得 0<x <1,令 f ′(x )<0,得 x >1,故函数 f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)因为函数 y =f (x )的图象在点(2,f (2))处的切线的倾斜角为 45°, 则 f ′(2)=1,即 a =-2,1 ⎛ 2⎫2-ln x +2k 则 g ′(x )= = ,-(2)设 g (x )= ,对任意 x >0,证明:(x +1)· g (x )<e x +e x 2. (1)解 因为 f ′(x )= (x >0), 由已知得 f ′(1)= =0,所以 k =- .x 1 1 1(2)证明 因为 x >0,要证原式成立即证 x < 成立.当 0<x <1 时,e x >1,且由(1)知,g (x )>0,所以 g (x )=<1-x ln x -x ,x 2e x -ln x -1,则 k ′(x )=-2m x 3+nx 2+2m所以 g ′(x )=x +n + x 2 = , 因为 g (x )在 x =1 处有极值,故 g ′(1)=0,从而可得 n =-1-2m ,x 3+nx 2+2m (x -1)(x 2-2mx -2m ) x 2 x 2又因为 g (x )仅在 x =1 处有极值,所以 x 2-2mx -2m ≥0 在(0,+∞)上恒成立,当 m >0 时,-2m <0,易知 x 0∈(0,+∞),使得 x 20-2mx 0-2m <0, 所以 m >0 不成立,故 m ≤0,当 m ≤0 且 x ∈(0,+∞)时,x 2-2mx -2m ≥0 恒成立,所以 m ≤0.综上,m 的取值范围是(-∞,0].5.(2017· 湖北沙市联考)已知函数 f (x )=e -x (ln x -2k )(k 为常数,e =2.718 28…是自然对数的底 数),曲线 y =f (x )在点(1,f (1))处的切线与 y 轴垂直. (1)求 f (x )的单调区间;1-x (ln x +1)e x 1xe x1+2k 1e 21-ln x -1所以 f ′(x )= ,设 k (x )=x x 2-x <0 在(0,+∞)上恒成立,即 k (x )在(0,+∞)上单调递减,由 k (1)=0 知,当 0<x <1 时,k (x )>0,从而 f ′(x )>0,当 x >1 时,k (x )<0,从而 f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).g (x ) 1+e -2e x +1当 x ≥1 时,由(1)知 g (x )≤0<1+e -2 成立;1-x ln x -xe x设 F (x )=1-x ln x -x ,x ∈(0,1),则 F ′(x )=-(ln x +2),当 x ∈(0,e -2)时,F ′(x )>0, 当 x ∈(e -2,1)时,F ′(x )<0,所以当 x =e -2 时,F (x )取得最大值 F (e -2)=1+e -2,所以 g (x )<F (x )≤1+e -2,即 0< x < . 当 x ≥1 时,有 x ≤0< ;当 0<x <1 时,由①②式, x < . 综上所述,当 x >0 时, x < 成立,故原不等式成立.6.(2017· 西安模拟)已知函数 f (x )=⎝k +k ⎭ln x + ,其中常数 k >0. 4⎫ 4⎫ ⎛ ⎛ 且 f ′(x )= - =- =- (k >0).①当 0<k <2 时, >k >0,且 >2,②当 k =2 时, =k =2,f ′(x )<0 在区间(0,2)内恒成立,③当 k >2 时,0< <2,k > ,所以当 x ∈⎝0,k ⎭时,f ′(x )<0;x ∈⎝k ,2⎭时,f ′(x )>0,所以函数在⎝0,k ⎭上是减函数,在⎝k ,2⎭上是增函数.k 4 k 4 4⎫ 即-2-1=-2-1,化简得,4(x 1+x 2)=⎝k +k ⎭x 1x 2.由 x 1x 2<⎝ 2 ⎭ ,k x 2+4即当 0<x <1 时,g (x )<1+e -2.①综上所述,对任意 x >0,g (x )<1+e -2 恒成立.令 G (x )=e x -x -1(x >0),则 G ′(x )=e x -1>0 恒成立,所以 G (x )在(0,+∞)上单调递增,G (x )>G (0)=0 恒成立,即 e x >x +1>0,1 1 e x +1g (x ) 1+e -2 e x +1g (x ) 1+e -2e x +1g (x ) 1+e -2e x +1②⎛ 4⎫ 4-x 2x(1)讨论 f (x )在(0,2)上的单调性;(2)当 k ∈[4,+∞)时,若曲线 y =f (x )上总存在相异的两点 M (x 1,y 1),N (x 2,y 2),使曲线 y =f (x )在 M ,N 两点处的切线互相平行,试求 x 1+x 2 的取值范围. 解 (1)由已知得,f (x )的定义域为(0,+∞),4 k + x 2-⎝k +k ⎭x +4 (x -k )⎝x -k ⎭ xx 2x 2 x 24 4kk所以 x ∈(0,k )时,f ′(x )<0;x ∈(k ,2)时,f ′(x )>0.所以函数 f (x )在(0,k )上是减函数,在(k ,2)上是增函数;4k所以 f (x )在(0,2)上是减函数;4 4kk⎛ 4⎫ ⎛4 ⎫⎛ 4⎫ ⎛4 ⎫(2)由题意,可得 f ′(x 1)=f ′(x 2),x 1x 2>0 且 x 1≠x 2, 4 4k + k + ⎛ x 1x 1x 2x 2⎛x 1+x 2⎫21k +得4(x 1+x 2)<⎝k ⎭⎝ k + k + 故 x 1+x 2 的取值范围为⎝ 5 ,+∞⎭.2 ⎭ ,4 54 ,则 g ′(k )=1-⎛4⎫⎛x +x 2⎫216即(x 1+x 2)>对 k ∈[4,+∞)恒成立, k4 4 k 2-4令 g (k )=k +k k 2= k 2 >0 对 k ∈[4,+∞)恒成立.所以 g (k )在[4,+∞)上是增函数,则 g (k )≥g (4)=5,1616所以≤ ,k16所以(x 1+x 2)> 5 ,⎛16⎫。
解析几何2018届高三理科数学压轴解答题突破讲义【简介】圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现. 【必备基础知识融合】一、椭圆1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质1.双曲线的定义平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质曲线的虚轴,它的长1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质3. 的焦点的直线与抛物线交于1122(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p. 四、曲线与方程 1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f (x ,y )=0的实数解满足如下关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,将其转化为x ,y 的方程式,并化简. (5)证明——证明所求方程即为符合条件的动点轨迹方程. 3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解. 若此方程组无解,则两曲线无交点.五、直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2·|y 1-y 2|【解题方法规律技巧】典例1:已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165, 故△POM 的面积为165.【规律方法】求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法,直接根据题目提供的条件列出方程; (2)定义法,根据圆、直线等定义列方程; (3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等. 典例2:已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.(2)证明由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①,②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0). 【规律方法】利用直接法求轨迹方程(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简. (2)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略.典例3:已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.【规律方法】(1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(2)理解解析几何中有关曲线的定义是解题关键.(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.典例4:如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D四点.点A 1,A 2分别为C 2的左,右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程.【规律方法】“相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 0,y 0);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y );(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程. 典例5:已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.【规律方法】(1)求椭圆方程的基本方法是待定系数法,先定形,再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组,如果焦点位置不确定,可设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),求出m,n的值即可.(2)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(3)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 提醒 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.典例6:已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.【规律方法】(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.(3)涉及弦的中点、斜率时,一般用“点差法”求解.典例7:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x+3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|PA |·|PB |,并求λ的值.(1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1. 由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.① 方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).【规律方法】有关圆锥曲线弦长问题的求解方法:涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.典例8:设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围.又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上,所以y 0=-12k +m . 所以m =y 0+12k =34y 0.由点P ⎝⎛⎭⎫-12,y 0在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0. 【规律方法】处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.典例9:已知椭圆x 2a 2+y 2b2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点.典例10:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形.(1)求椭圆的方程;(2)过点S ⎝⎛⎭⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0, Δ=144k 2+64(9+18k 2)>0,x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9, QA →=(x 1,y 1-1),QB →=(x 2,y 2-1),QA →·QB →=x 1x 2+(y 1-1)(y 2-1)=(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k 2-4k 3·12k 9+18k 2+169=0, ∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).【规律方法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.典例11:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.从而|BM |=|1-y M |=⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪2+x 0y 0-1. ∴|AN |·|BM |=⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4. 当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.故|AN |·|BM |为定值.【规律方法】圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.典例12:设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |FA |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.由(1)知F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k . 因为直线MH 的方程为y =-1k x +9-4k 212k . 设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k消去y ,解得x M =20k 2+912(k 2+1). 在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1, 解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64或⎣⎡⎭⎫64,+∞. 典例13:已知圆x 2+y 2=1过椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,与椭圆有且仅有两个公共点,直线l :y =kx +m 与圆x 2+y 2=1相切,与椭圆x 2a 2+y 2b 2=1相交于A ,B 两点.记λ=OA →·OB →,且23≤λ≤34. (1)求椭圆的方程;(2)求k 的取值范围;(3)求△OAB 的面积S 的取值范围.由12≤k 2≤1,得62≤|AB |≤43. 设△OAB 的AB 边上的高为d ,则S =12|AB |d =12|AB |,所以64≤S ≤23. 即△OAB 的面积S 的取值范围是⎣⎡⎦⎤64,23. 【规律方法】解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.典例14:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切. (1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标;(3)在(2)的条件下求△AMN 面积的最大值.②m =±1时,l MN :x =-65,过点⎝⎛⎭⎫-65,0. ∴l MN 恒过定点⎝⎛⎭⎫-65,0. (3)由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m 4m 4+17m 2+4=8⎪⎪⎪⎪m +1m 4⎝⎛⎭⎫m +1m 2+9=84⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪m +1m . 令t =⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号, ∴S △AMN ≤1625,且当m =±1时取等号.∴(S △AMN )max =1625.【规律方法】处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【归纳常用万能模板】1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上. (1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM的斜率与直线l 的斜率的乘积为定值.A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0.7分 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1.10分 于是直线OM 的斜率k OM =y M x M=-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.12分❶列出方程组,解出a 2,b 2得4分.❷设出直线l 的方程后与椭圆方程联立消去y 得到关于x 的方程准确者得4分.❸求出点M 的坐标得1分,再得到直线OM 的斜率与直线l 的斜率的乘积为定值得2分. ❹结论得1分.解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.2. (本小题满分12分)(2016·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPN Q 面积的取值范围.由题设得A (-1,0),B (1,0),所以|AB |=2, 由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0). 4分得分点②(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.6分得分点③高考状元满分心得1.正确使用圆锥曲线的定义:牢记圆锥曲线的定义,能根据圆锥曲线定义判断曲线类型,如本题第(1)问就涉及椭圆的定义.2.注意分类讨论:当用点斜式表示直线方程时,应分直线的斜率存在和不存在两种情况求解,易出现忽略斜率不存在的情况,导致扣分,如本题第(2)问中的得分10分,导致失2分.3.写全得分关键:在解析几何类解答题中,直线方程与圆锥曲线方程联立后得到的一元二次方程,根据一元二次方程得到的两根之和与两根之积、弦长、目标函数等一些关键式子和结果都是得分点,在解答时一定要写清楚.解题程序第一步:利用条件与几何性质,求|EA|+|EB|=4.第二步:由定义,求点E的轨迹方程x24+y23=1(y≠0).第三步:联立方程,用斜率k表示|MN|.第四步:用k表示出|PQ|,并得出四边形的面积.第五步:结合函数性质,求出当斜率存在时S 的取值范围. 第六步:求出斜率不存在时面积S 的值,正确得出结论.【易错易混温馨提醒】一、忽视椭圆的焦点轴导致方程出错. 易错1:已知椭圆2222:1(0)y x W a b ab+=>>的焦距与椭圆22:14xyΩ+=的短轴长相等,且W 与Ω的长轴长相等,这两个椭圆在第一象限的交点为A ,直线l 与直线O A (O 为坐标原点)垂直,且l 与W 交于,M N 两点. (1)求W 的方程;(2)求M O N ∆的面积的最大值. 【答案】(1)22143yx+=(2联立223{ 143y x my x=-++=得2231183120x m x m -+-=,设()()1122,,,Mx y N x y ,分别计算M N 和O 到直线l 的距离为d 得M O N ∆的面积)2213123131S d M N mm==≤+-=进而得解.二、多解问题的取舍.易错2:已知椭圆2222:1(0)x yC a ba b+=>>的左、右焦点分别为1F,2F,B为椭圆的上顶点,12B F F∆为A为椭圆的右顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线:l y kx m=+与椭圆C相交于,M N两点(,M N不是左、右顶点),且满足M A N A⊥,试问:直线l是否过定点?若过定点,求出该定点的坐标,否则说明理由.【答案】(Ⅰ)22143x y+=;(Ⅱ)直线l过定点,定点坐标为27⎛⎫⎪⎝⎭,.解得: 12m k =-, 227k m =-,且均满足22340k m +->,当12m k =-时, l 的方程为()2y k x =-,直线过定点()20,,与已知矛盾; 当227k m =-时, l 的方程为27y k x ⎛⎫=-⎪⎝⎭,直线过定点207⎛⎫⎪⎝⎭,. 所以,直线l 过定点,定点坐标为207⎛⎫⎪⎝⎭,.三、巧用均值不等式求最值,避免大量运算.易错3:已知椭圆()222210x y a b ab+=>>的离心率3e =,左、右焦点分别为12,F F ,且2F 与抛物线24y x =的焦点重合.(1)求椭圆的标准方程;(2)若过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于,A C 两点,且A C B D ⊥,求AC BD +的最小值.【答案】(1)椭圆的标准方程为22132xy+=;(2)A C B D +5解析:(1)抛物线24y x =的焦点为()1,0,所以1c =,又因为13c e aa===,所以a =所以22b =,所以椭圆的标准方程为22132xy+=.(2)(i )当直线B D 的斜率k 存在且0k ≠时, 直线B D 的方程为()1y k x =+,代入椭圆方程22132xy+=,并化简得()2222326360k x k x k +++-=. 设()11,B x y , ()22,D x y ,则2122632k x x k+=-+, 21223632k x x k-=+,四、多元的最值问题.易错4:平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.解 (1)由题意知3a 2+14b 2=1.又a 2-b 2a =32,解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.(ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1,又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.五、不能完全用韦达定理代换的坐标的处理..易错5:已知椭圆2222:1(0)x yC a ba b-=>>21F,2F为顶点的三角形的周长为)41.(1)求椭圆C的标准方程;(2)设该椭圆C与y轴的交点为M,N (点M位于点N的上方),直线y=k x+4与椭圆C相交于不同的两点,A B ,求证:直线M B与直线N A的交点D在定直线上.【答案】(1)22184x y+= (2)见解析直线N A的方程62AAk xy xx+=-②联立①②,得()233A B A BB Ak x x x xyx x++==-222241622212116421BBk kxk kKxK-⎛⎫++⎪++⎝⎭--+2282221116421BBkxkkxk⎛⎫+⎪+⎝⎭==++,即1cy=∴直线M B与直线N A的交点D在定直线1y=上六、求曲线方程时的挖点问题易错6:已知定点()3,0A-、()3,0B,直线A M、B M相交于点M,且它们的斜率之积为19-,记动点M的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设直线l与曲线C交于P、Q两点,若直线A P与A Q斜率之积为118-,求证:直线l过定点,并求定点坐标.【答案】(1)曲线C的方程为2219xy+=()3x≠±;(2)直线l过定点,定点坐标为()1,0.故曲线C的方程为2219xy+=()3x≠±.(Ⅱ)由已知直线l斜率为0时,显然不满足条件。
(二)直线与圆锥曲线(2)1.(2017届浙江省嘉兴一中适应性测试)如图,已知中心在原点,焦点在x 轴上的椭圆的一个焦点为(3,0),⎝ ⎛⎭⎪⎫1,32是椭圆上的一个点.(1)求椭圆的标准方程;(2)设椭圆的上、下顶点分别为A ,B ,P (x 0,y 0)(x 0≠0)是椭圆上异于A ,B 的任意一点,PQ ⊥y 轴,Q 为垂足,M 为线段PQ 的中点,直线AM 交直线l :y =-1于点C ,N 为线段BC 的中点,如果△MON 的面积为32,求y 0的值. 解 (1)设椭圆标准方程为x 2a 2+y 2b 2=1, 由题意,得c = 3.因为a 2-c 2=b 2,所以b 2=a 2-3.又⎝ ⎛⎭⎪⎫1,32是椭圆上的一个点, 所以1a 2+34a 2-3=1,解得a 2=4或a 2=34(舍去), 从而椭圆的标准方程为x 24+y 2=1. (2)因为P (x 0,y 0),x 0≠0,则Q (0,y 0),且x 204+y 20=1.因为M 为线段PQ 的中点, 所以M ⎝ ⎛⎭⎪⎫x 02,y 0. 又A (0,1),所以直线AM 的方程为y =2(y 0-1)x 0x +1. 因为x 0≠0,所以y 0≠1,令y =-1,得C ⎝ ⎛⎭⎪⎫x 01-y 0,-1.又B (0,-1), N 为线段BC 的中点,则N ⎝ ⎛⎭⎪⎫x 02(1-y 0),-1. 所以NM →=⎝ ⎛⎭⎪⎫x 02-x 02(1-y 0),y 0+1.因此,OM →·NM →=x 02⎝ ⎛⎭⎪⎫x 02-x 02(1-y 0)+y 0·(y 0+1) =x 204-x 204(1-y 0)+y 20+y 0 =⎝ ⎛⎭⎪⎫x 204+y 20-x 204(1-y 0)+y 0 =1-(1+y 0)+y 0=0.从而OM ⊥MN .因为|OM |=x 204+y 20=1, |ON |= x 204(1-y 0)2+1= 1-y 20(1-y 0)2+1= 21-y 0, 所以在Rt△MON 中,|MN |=|ON |2-|OM |2,因此S △MON =12|OM ||MN |=121+y 01-y 0. 从而有121+y 01-y 0=32,解得y 0=45. 2.(2017届江西省重点中学盟校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的右顶点为A (2,0),离心率e =32. (1)求椭圆C 的方程;(2)设B 为椭圆上顶点,P 是椭圆C 在第一象限上的一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,问△PMN 与△PAB 面积之差是否为定值?说明理由.解 (1)依题意得⎩⎪⎨⎪⎧a =2,c a =32,a 2-b 2=c 2, 解得⎩⎪⎨⎪⎧ a =2,b =1, 则椭圆C 的方程为x 24+y 2=1. (2)设P (x 0,y 0)(x 0>0,y 0>0),则x 20+4y 20=4,直线PA :y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2, 则|BM |=|1-y M |=y M -1=-1-2y 0x 0-2. 直线PB :y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1, 则|AN |=|2-x N |=x N -2=-2-x 0y 0-1,∴S △PMN -S △PAB =12|AN |·(|OM |-|OB |) =12|AN |·|BM | =12⎝ ⎛⎭⎪⎫-2-x 0y 0-1⎝ ⎛⎭⎪⎫-1-2y 0x 0-2 =12·x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=12·4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=2. 3.(2017·山西省实验中学模拟)已知椭圆E :x 2a 2+y 2b 2=1 (a >b >0)过点(0,-2),F 1,F 2分别为其左、右焦点,O 为坐标原点,点P 为椭圆上一点,PF 1⊥x 轴,且△OPF 1的面积为 2.(1)求椭圆E 的离心率和方程;(2)设A ,B 是椭圆上两动点,若直线AB 的斜率为-14,求△OAB 面积的最大值. 解 (1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,-2),所以b =2,由PF 1⊥x 轴,且△OPF 1的面积为2, 得12×c ×b 2a =2, 所以c a =22,即离心率e =22. 因为a 2=b 2+c 2,所以a 2-c 2=4,由⎩⎪⎨⎪⎧ a 2-c 2=4,c a =22,解得⎩⎨⎧ a =22,c =2(舍负),故椭圆E 的方程为x 28+y 24=1. (2)设直线AB 的方程为y =-14x +t , 与x 2+2y 2=8联立,消去y ,整理得98x 2-tx +2t 2-8=0, 由Δ=(-t )2-4×98(2t 2-8)=-8t 2+36>0,得-322<t <322, x 1+x 2=8t 9,x 1x 2=89(2t 2-8), 故|AB |=1+k 2|x 1-x 2|= 1+116× 64t 281-329(2t 2-8) =174×1699-2t 2 =41799-2t 2, 易知点O 到直线AB 的距离为d =4|t |17, 则△OAB 的面积S =12×4|t |17×41799-2t 2 =8922t 2(9-2t 2) ≤892×2t 2+9-2t 22=22, 当且仅当2t 2=9-2t 2,即t =±32时取“=”,经检验,满足要求,故△OAB 面积的最大值为2 2. 4.(2017·湖南省长沙市长郡中学临考冲刺训练)在平面直角坐标系xOy 中,点F 1(-3,0),圆F 2:x 2+y 2-23x -13=0,以动点P 为圆心的圆经过点F 1,且圆P 与圆F 2内切.(1)求动点P 的轨迹E 的方程;(2)若直线l 过点(1,0),且与曲线E 交于A ,B 两点,则在x 轴上是否存在一点D (t,0)(t ≠0),使得x 轴平分∠ADB ?若存在,求出t 的值;若不存在,请说明理由.解 (1)圆F 2的方程可化为(x -3)2+y 2=16,故圆心F 2(3,0),半径r =4,而|F 1F 2|=23<4,所以点F 1在圆F 2内.又由已知得圆P 的半径R =|PF 1|,由圆P 与圆F 2内切,可得圆P 内切于圆F 2,即|PF 2|=4-|PF 1|,所以|PF 1|+|PF 2|=4>|F 1F 2|,故点P 的轨迹即曲线E 是以F 1,F 2为焦点,长轴长为4的椭圆.显然c =3,a =2,所以b 2=a 2-c 2=1,故曲线E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),当直线AB 的斜率不为0且存在时,设直线l :x =ny +1,代入x 2+4y 2-4=0,得(n 2+4)y 2+2ny -3=0,Δ=16(n 2+3)>0恒成立.由根与系数的关系,可得y 1+y 2=-2nn 2+4,y 1y 2=-3n 2+4,设直线DA ,DB 的斜率分别为k 1,k 2,则由∠ODA =∠ODB ,得k 1+k 2=y 1x 1-t +y 2x 2-t=y 1(x 2-t )+y 2(x 1-t )(x 1-t )(x 2-t )=y 1(ny 2+1-t )+y 2(ny 1+1-t )(x 1-t )(x 2-t )=2ny 1y 2+(1-t )(y 1+y 2)(x 1-t )(x 2-t )=0.所以2ny 1y 2+(1-t )(y 1+y 2)=0,将y 1+y 2=-2n n 2+4,y 1y 2=-3n 2+4代入得-6n -2n +2nt =0,因此n (t -4)=0,故存在t =4满足题意.当直线AB 的斜率为0时,直线为x 轴,取A (-2,0),B (2,0),满足∠ODA =∠ODB , 当直线AB 的斜率不存在时,取A ⎝ ⎛⎭⎪⎫1,32,B ⎝ ⎛⎭⎪⎫1,-32,满足∠ODA =∠ODB .综上,在x 轴上存在一点D (4,0),使得x 轴平分∠ADB .。
导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。
压轴大题突破练6(解析几何+函数与导数)-2018版高考文科数学三轮冲刺压轴解答题精品训练含解析一、解析几何大题1.【2018江西高三教学质监】已知椭圆C : 22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,以点1F 为圆心,以3为半径的圆与以点2F 为圆心,以1为半径的圆相交,且交点在椭圆C 上.设点()0,A b ,在12AF F ∆中,1223F AF π∠=. (1)求椭圆C 的方程;LIANGW(2)设过点()2,1P -的直线l 不经过点A ,且与椭圆C 相交于M , N 两点,若直线AM 与AN 的斜率分别为1k , 2k ,求12k k +的值.【答案】(1) 2214x y +=;(2)-1.试题解析:(1)设两圆的一个交点为P ,则13PF =, 21PF =,由P 在椭圆上可得1224PF PF a +==,则2a =,①由121233F AF F AO ππ∠=⇒∠=,∴2a b ==,② 联立①②,解得2{1a b ==,∴椭圆方程为2214x y +=; (2)直线l 的斜率显然存在,设直线l 方程: ()12y k x +=-,交点()11,M x y , ()22,N x y 由2221{44y kx k x y =--+= ()()()2221482142140k x k k x k ⇒+-+++-=.()()21212228214214,1414k k k x x x x k k ++-∴+==++,1212121212112222y y kx k kx k k k x x x x ------+=+=+()()()()1212121212222222kx x k x x k x x k x x x x -++++==-, ()()()22282124214k k k k k +⋅+=-+- ()221k k =-+ 1=-. 2.【2018东北四市高三一模】在平面直角坐标系中,椭圆C : 22221(0)x y a b a b +=>>的离心率为12,点31,2M ⎛⎫⎪⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)已知()2,0P -与()2,0Q 为平面内的两个定点,过()1,0点的直线l 与椭圆C 交于A , B 两点,求四边形APBQ 面积的最大值.【答案】(1)22143x y +=(2)6试题解析: 解:(1)∵12c a =,∴2a c =, 椭圆的方程为2222143x y c c+=,将31,2⎛⎫⎪⎝⎭代入得22191412c c +=,∴21c =, ∴椭圆的方程为22143x y +=.点()2,0Q 到直线l从而四边形APBQ 的面积()221211234m S m +=⨯=+(或1212S PQ y y =-)令t 1t ≥,有22431t S t =+ 2413t t=+,设函数()13f t t t =+, ()21'30f t t =->,所以()f t 在[)1,+∞上单调递增, 有134t t +≥,故2242461313t S t t t==≤++,所以当1t =,即0m =时,四边形APBQ 面积的最大值为6.点睛:四边形的面积可以用对角线乘积的一半表示,也可以分割为三角形处理,当面积中带有根号的分式时,可以考虑换元法求其最值,或者考虑用均值不等式、构造函数利用单调性等方法处理.3.【2018福建宁德高三质检一】已知抛物线Γ: 22(0)y px p =>的焦点为F ,圆M : ()222x p y p ++=,过F 作垂直于x 轴的直线交抛物线Γ于A 、B 两点,且MAB ∆的面积为6. (1)求抛物线Γ的方程和圆M 的方程;(2)若直线1l 、2l 均过坐标原点O ,且互相垂直, 1l 交抛物线Γ于C ,交圆M 于D , 2l 交抛物线Γ于E ,交圆M 于G ,求COE ∆与DOG ∆的面积比的最小值.【答案】(1) 抛物线方程为: 24y x =,圆方程为: ()2224;x y ++= (2) 当1k =±时, COE ∆与DOG ∆的面积比的取到最小值4.试题解析:(1)因为抛物线焦点F 坐标为,02p ⎛⎫⎪⎝⎭, 则:2AB p l x =,联立 22{ 2y pxp x ==∴11{2p x y p ==或22{ 2px y p ==-, 故122AB y y p =-=, ∴213326222MAB S p p p ∆=⨯⨯==, 即2p =,∴抛物线方程为: 24y x =.圆方程为: ()2224x y ++=,(2) 显然1l 、2l 的斜率必须存在且均不为0,设1l 的方程为y kx =, 则2l 方程为1y x k=-.(注:末说明斜率不给分)由24{y x y kx==得x =0,或24x k =∴ 244,C k k ⎛⎫ ⎪⎝⎭同理可求得()24,4E k k -.【方法点晴】本题主要考查待定系数法求椭抛物线方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形面积比的最值的.二、函数与导数大题1.【2018湖南张家界高三三模】已知函数()()ln f x x x m m R =--∈. (Ⅰ)若函数()f x 有两个零点,求m 的取值范围;(Ⅱ)证明:当3m ≥-时,关于x 的不等式()()20xf x x e +-<在1,12⎡⎤⎢⎥⎣⎦上恒成立.【答案】(1)(),1-∞-(2)3m ≥-【解析】试题分析:(Ⅰ)由题意,可利用导数法来进行求解,由ln 0x x m --=,转换为ln x x m -=,即将问题转化为曲线()ln g x x x =-与直线y m =有两交点,求m 的取值范围,构造函数()ln g x x x =-,求函数()g x 的单调区间,再求函数()g x 的最值,从而问题可得解;(Ⅱ)由题意,将问题转化为:当3m ≥-时,不等式()2ln xm x e x x >-+-在112⎡⎤⎢⎥⎣⎦,上恒成立,可构造函数()()12ln ,,12x h x x e x x x ⎡⎤=-+-∈⎢⎥⎣⎦,并证明其最大值()max 3h x <-在区间112⎡⎤⎢⎥⎣⎦,上成立即可.(Ⅱ)∵()()20xf x x e +-<,∴()2ln xm x e x x >-+-.设()()2ln xh x x e x x =-+-, 1,12x ⎡⎤∈⎢⎥⎣⎦,∴()()1'1x h x x e x ⎛⎫=--⎪⎝⎭, 设()1xu x e x =-,∴()21'0xu x e x =+>,则()u x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,又1202u ⎛⎫=<⎪⎝⎭, ()110u e =->, ∴01,12x ⎛⎫∃∈⎪⎝⎭,使得()00u x =,即001x e x =,∴00ln x x =-.当01,2x x ⎡⎫∈⎪⎢⎣⎭时, ()0u x <, ()'0h x >;当(]0,1x x ∈时, ()0u x >, ()'0h x <; ∴函数()h x 在01,2x ⎡⎤⎢⎥⎣⎦上单调递增,在[]0,1x 上单调递减,∴()()()00000max 2ln xh x h x x e x x ==-+- ()00000122212x x x x x =-⋅-=--. 设()212x x x ϕ=--,∴()222222'2x x x xϕ-=-=, 当1,12x ⎛⎫∈⎪⎝⎭时, ()'0x ϕ>恒成立,则()x ϕ在1,12⎛⎫⎪⎝⎭上单调递增, ∴()()13x ϕϕ<=-,即当1,12x ⎡⎤∈⎢⎥⎣⎦时, ()3h x <-,∴当3m ≥-时,关于x 的不等式()()20xf x x e +-<在1,12⎡⎤⎢⎥⎣⎦上恒成立.2.【2018江西高三质监】已知函数()ln f x x =. (1)若函数()()212g x f x ax x =-+有两个极值点,求实数a 的取值范围; (2)若关于x 的方程()()1f x m x =+, ()m Z ∈有实数解,求整数m 的最大值. 【答案】(1) 2a >;(2)0.试题解析:(1) ()21ln 2g x x ax x =-+,则()21x ax g x x-+'=,得方程210x ax -+=有两个不等的正实数根,即2121240{0 210a x x a a x x ∆=->+=>∴>=>,,,,(2)方程()ln 1x m x =+,即ln 1x m x =+,记函数()ln 1x h x x =+,(0)x >, ()()21ln 1x xx h x x +-+'=,令()1ln x x x x ϕ+=- (0)x >,()2110x x xϕ'=--<, ()x ϕ单调递减, ()()()()222222110,011e h e h ee e e e -=>=<++'',存在()20,x e e ∈,使得()00h x '=,即0001ln x x x +=, 当()00,x x ∈,()0h x '>, ()h x 递增, ()()0,,0x x h x ∈+∞<', ()h x 递减,()02max 00ln 111,1x h x x x e e ⎛⎫∴==∈ ⎪+⎝⎭,即()max m h x ≤,()m Z ∈, 故0m ≤,整数m 的最大值为0.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 3.【2018安徽宣城高三调研二】已知函数()2x af x x e=-+ (a R ∈, e 为自然对数的底数). (Ⅰ)求函数()f x 的极值;(Ⅱ)当1a =时,若直线:2l y kx =-与曲线()y f x =没有公共点,求k 的最大值. 【答案】(1)见解析(2)k 的最大值为1.试题解析:(Ⅰ) ()1x af x e='-, ①当0a ≤时, ()0f x '>, ()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值.②当0a >时,令()0f x '=,得xe a =, ln x a =.(),ln x a ∈-∞, ()0f x '<; ()ln x a ∈+∞, ()0f x '>.所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln 1f a a =-,无极大值. 综上,当0a ≤时,函数()f x 无极小值;当0a >, ()f x 在ln x a =处取得极小值ln a ,无极大值.②当1k ≠时,方程()*化为11x xe k =-. 令()xg x xe =,则有()()1xg x x e ='+ 令()0g x '=,得1x =-,当x 变化时, ()g x '的变化情况如下表:当1x =-时, ()min g x e =-,同时当x 趋于+∞时, ()g x 趋于+∞,从而()g x 的取值范围为1[,e-+∞).所以当11,1k e ⎛⎫∈-∞- ⎪-⎝⎭时,方程()*无实数解,解得k 的取值范围是()1,1e -. 综上,得k 的最大值为1.。
1.解析大题 已知动圆C 恒过点1,02⎛⎫
⎪⎝⎭
,且与直线12x =-相切.
(1)求圆心C 的轨迹方程;
(2)若过点()3,0P 的直线交轨迹C 于A , B 两点,直线OA , OB (O 为坐标原点)分别交直线3x =-于点M , N ,证明:以MN 为直径的圆被x 轴截得的弦长为定值. 【答案】(1) 22y x =;(2)见解析.
试题解析:
(1)由题意得,点C 与点1,02⎛⎫
⎪⎝⎭
的距离始终等于点C 到直线12x =-的距离.
因此由抛物线的定义,可知圆心C 的轨迹为以1,02⎛⎫
⎪⎝⎭
为焦点, 12x =-为准线的抛物线.
所以
1
22
p =,即1p =. 所以圆心C 的轨迹方程为22y x =
.
因此以MN 为直径的圆的方程可设为()()1233330x x y y t t ⎛⎫⎛⎫
++++
+= ⎪⎪⎝⎭⎝⎭
. 化简得()2
2
1212339
30x y y t t t t ⎛⎫+++++=
⎪⎝⎭
,
即()()2
12212
12
39
30t t x y y t t t t ++++
+=. 将1232
t t =-
代入上式,可知()()22
123260x y t t y ++-+-=, 在上式中令0y =
,可知13x =-
23x =-,
因此以MN 为直径的圆被x
轴截得的弦长为1233x x -=-=.
点睛:本题主要考查轨迹方程的求法以及直线与抛物线,直线与圆的位置关系,属于中档题。
熟练掌握定
理及公式是解答本题的关键。
2.导数大题
已知函数,其中为自然对数的底数.
(Ⅰ)当,时,证明:;
(Ⅱ)当时,讨论函数的极值点的个数.
(Ⅱ)
,
记,.
(1)当时,,在上单调递增,,,
所以存在唯一,,且当时,;当,,
①若,即时,对任意,,此时在上单调递增,无极值点.
②若,即时,此时当或时,.即在,上单调递增;当时,,即在上单调递减.
.。