八年级数学第18章《一元二次方程》单元测试卷
- 格式:doc
- 大小:138.00 KB
- 文档页数:4
八年级数学下册《一元二次方程》练习题与答案(浙教版)一、选择题1.下列方程是一元二次方程的一般形式的是( )A.(x ﹣1)2=16B.3(x ﹣2)2=27C.5x 2﹣3x=0D.2x 2+2x=82.已知关于x 的方程x 2﹣kx ﹣6=0的一个根为x=3,则实数k 的值为( )A.1B.﹣1C.2D.﹣23.方程x(x+1)(x ﹣2)=0的根是( )A.﹣1,2B.1,﹣2C.0,﹣1,2D.0,1,24.下表是满足二次函数y=ax 2+bx+c 的五组数据,x 1是方程ax 2+bx+c=0的一个解,则下列选项的正确是( ) x1.6 1.82.0 2.2 2.4 y ﹣0.80 ﹣0.54 ﹣0.20 0.22 0.72 <x <2.45.用直接开平方的方法解方程(2x ﹣1)2=x 2做法正确的是( )A.2x ﹣1=xB.2x ﹣1=﹣xC.2x ﹣1=±xD.2x ﹣1=±x 26.用配方法解一元二次方程x 2﹣6x +4=0,下列变形正确的是( )A.(x ﹣6)2=﹣4+36B.(x ﹣6)2=4+36C.(x ﹣3)2=﹣4+9D.(x ﹣3)2=4+97.下列说法正确的是( )A.x 2+4=0,则x =±2B.x 2=x 的根为x =1C.x 2﹣2x =3没有实数根D.4x 2+9=12x 有两个相等的实数根8.方程(x ﹣2)(x ﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A.6B.8C.10D.8或109.已知关于x 的一元二次方程(m ﹣2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m >34B.m ≥34C.m >34且m ≠2D.m ≥34且m ≠210.已知x 1,x 2是关于x 的方程x 2+bx -3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为( )A.4B.-4C.3D.-311.如图,某小区计划在一块长为32 m ,宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m ,则下面所列方程正确的是( )A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57012.如图所示为两条互相垂直的街道,且A到B,C的距离都是7 km,现甲从B地走向A地,乙从A地走向C地,若两人同时出发且速度都是4 km/h,则两人之间的距离为5 km时是出发后( )A.1 hB.0.75 hC.1.2 h或0.75 hD.1 h或0.75 h二、填空题13.把方程 (x﹣1)(x+3)=1﹣x2化为一般形式为.14.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= .15.若将方程x2+6x=7化为(x+m)2=16,则m=________.16.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是____________(填序号).17.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为 .18.如图,在△ABC中,AB=6 cm,BC=4 cm,∠B=60°,动点P,Q分别从点A,B同时出发,分别沿AB,BC方向匀速移动,点P,Q的速度分别为2 cm/s和1 cm/s.当点P到达点B时,P,Q两点同时停止运动.设点P的运动时间为t(s),当t=时,△PBQ是直角三角形.三、解答题19.用配方法解方程:2x2+4x﹣1=0.20.用公式法解方程:2x2+3=7x.21.已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.22.已知关于x的一元二次方程x2-6x+2m+1=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.23.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?24.如图所示,A,B,C,D是矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到达点B为止,点Q以2 cm/s的速度向点D移动.(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33 cm2?(2)P,Q两点从出发开始到几秒时,点P和点Q的距离第一次是10 cm?25.市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?参考答案1.C2.A ;3.C4.C5.C6.C.7.D.8.C9.C.10.A11.A12.D13.答案为:2x 2+2x ﹣4=0.14.答案为:-2.15.答案为:316.答案为:①③.17.答案为:(9﹣2x)(5﹣2x)=12.18.答案为:32或125.19.解:x 2+2x ﹣12=0,x 2+2x =12x 2+2x +12=12+12∴(x +1)2=32,∴x +1=±62∴x 1=-2+62,x 2=-2-62.20.解:x 1=12,x 2=3. 21.解:(1)k >﹣3;(2)取k =﹣2,则方程变形为x 2﹣2x =0解得x 1=0,x 2=2.22.解:(1)根据题意得△=(-6)2-4(2m +1)≥0解得m ≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1而2x 1x 2+x 1+x 2≥20所以2(2m +1)+6≥20解得m ≥3,而m ≤4所以m 的范围为3≤m ≤4.23.解:设有x 家公司出席了这次交易会,根据题意得12x(x-1)=78. 解得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.24.解:(1)设P,Q 两点从出发开始到xs 时,四边形PBCQ 的面积为33cm 2. 根据题意,得PB =AB ﹣AP =(16﹣3x)cm,CQ =2xcm,故12(2x +16﹣3x)×6=33,解得x =5.(2)设P,Q 两点从出发开始到ys 时,点P 和点Q 的距离第一次是10cm. 如图所示,过点Q 作QM ⊥AB 于点M,则BM =CQ =2ycm,故PM =(16﹣5y)cm.在Rt △PMQ 中,有PM 2+QM 2=PQ 2,∴(16﹣5y)2+62=102.=1.6,y 2=245. ∴y 1∵所求的是距离第一次为10cm 时所用的时间,∴y =1.6.25.解:(1)设各通道的宽度为x米根据题意得:(90﹣3x)(60﹣3x)=4536解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务根据题意得:﹣=2,解得:y=400 经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.。
八年级数学下册《一元二次方程》单元测试卷及答案解析一、选择题(共8题,每小题3分,共24分)1.在下列方程中,属于一元二次方程的是( )A.x2-√3=xB.x2+y2=4C.2-1=0 D.x(1-2x2)=5x2x22. 一元二次方程x2-9x=0的解为( )A.x=0B.x=3C.x=9D.x1=0,x2=93. 将方程2x2+7=4x改写成ax2+bx+c=0的形式,则a,b,c的值分别为( )A. 2,4,7B. 2,4,-7C. 2,-4,7D. 2,-4,-74. 关于x的方程(x+a)2=b能直接开平方求解的条件是( )A.a≥0,b≥0B.a≥0,b≤0C.a为任意实数且b<0D.a为任意实数且b≥05. 用配方法解方程x2-4x+1=0时,配方后所得的方程是( )A. (x-2)2=3B. (x+2)2=3C. (x-2)2=1D. (x-2)2=-16. 已知m、n是一元二次方程x2+2x-5=0的两个根,则m2+mn+2m的值为( )A. 0B. -10C. 3D. 107. 2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神,据统计,某商店2021年第四季度的“冰墩墩”总销售量为9.93万件,其中10月的销量为3万件,设11,12月销量的平均增长率为x,则可列方程为( ) A. 3(1+x)2=9.93 B. 3+3(1+x)2=9.93C. 3+3x+3(1+x)2=9.93D. 3+3(1+x)+3(1+x)2=9.938. 下列关于x的一元二次方程ax2+bx+c=0(a≠0)的命题中,真命题有( )①若a-b+c=0,则b2-4ac≥0;②若方程ax2+bx+c=0(a≠0)的两根为1和-2,则a-b=0;③若方程ax2+bx+c=0(a≠0)有一个根是x=-c(c≠0),则b=ac+1.A.①②③B.①②C.②③D.①③二、填空题(共6题,每小题4分,共24分)9. 写出一个一元二次方程,使它以x为未知数,它的两个根为1和-2,则这个方程可以是.(只需写出一个符合条件的方程,要求化为一般式)10. 关于x的方程(a2-3)x2+ax+1=0是一元二次方程的条件是.11. 已知a是方程x2+3x-4=0的一个根,则代数式2a2+6a+4的值是.12. 已知-1是关于x的方程x2+bx-3=0的一个根,则另一个根是.13. 若关于x的一元二次方程x2+2x-k+3=0有两个不相等的实数根,则k的取值范围是.14. 如图,在一块长为40米,宽为30米的长方形荒地上,建造一个花园(阴影部分),使得花园的,小明设计出如图所示的方案,则图中x的值为.面积为荒地面积的34三、解答题(共6题,共52分)15. (6分)解方程:(1)(y-1)2-4=0; (2)x2+2x-1=0.16. (8分)三个连续的正奇数,最大数与最小数的积比中间数的6倍多3,求这三个正奇数.17. (8分)某电影自上映以来,全国票房连创佳绩.据统计,某市第一天票房收入约为2亿元,第三天票房收入约为4亿元,则票房收入每天的平均增长率为多少?(精确到1%,√2≈1.414)18. (8分)一个正方形的一边增加3 cm,相邻一边减少3 cm,所得长方形的面积与这个正方形的每边减去1 cm所得的正方形面积相等,求这个长方形的长和宽.19. (10分)已知关于x的方程x2+ax+a-2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:无论a取何实数,该方程都有两个不相等的实数根.20. (12分)阅读下面的材料,回答问题:方程x4-5x2+4=0是一个一元四次方程,根据该方程的特点,它的解法通常如下:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2.∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学中的转化思想;(2)解方程:(x2+x)2-4(x2+x)-12=0.参考答案与解析1. A x2-√3=x符合一元二次方程的定义,是一元二次方程,所以A符合题意;x2+y2=4含有两个未知数,不是一元二次方程,所以B不符合题意;2x2−1=0中等号左边2x2是分式,不是一元二次方程,所以C不符合题意;x(1-2x2)=5x2中等号左边的展开结果为三次多项式,不是一元二次方程,所以D不符合题意.故选A.2. D 方程左边分解因式,得x(x-9)=0,所以x=0或x-9=0,解得x1=0,x2=9.3. C 方程2x2+7=4x,移项,得2x2-4x+7=0,所以a=2,b=-4,c=7.4. D∵(x+a)2=b,∴b≥0.5. A x2-4x+1=0,移项,得x2-4x=-1,方程两边同时加上4,得x2-4x+4=3,即(x-2)2=3,故选A.6. A∵m、n是一元二次方程x2+2x-5=0的两个根,∴mn=-5,m2+2m-5=0,∴m2+2m=5,∴m2+mn+2m=m2+2m+mn=5-5=0.7. D因为10月销量为3万件,11月,12月销量的平均增长率为x,所以11月的销量为3(x+1)万件,12月的销量为3(x+1)2万件.因为第四季度为10月,11月,12月这三个月,根据“2021年第四季度的“冰墩墩”总销售量为9.93万件”可列方程为3+3(1+x)+3(1+x)2=9.93.8. A∵a-b+c=0,∴方程ax2+bx+c=0(a≠0)有一根为x=-1,所以b2-4ac≥0成立,所以①是真命题;因为方程ax2+bx+c=0(a≠0)的两根为1和-2,所以a+b+c=0,4a-2b+c=0,两式相减,得3a-3b=0,即a-b=0,所以②是真命题;因为方程ax2+bx+c=0(a≠0)有一个根是x=-c(c≠0),所以ac2-bc+c=0,因为c≠0,所以两边可同时除以c,得ac-b+1=0,即b=ac+1,所以③是真命题.9. x2+x-2=0(答案不唯一)解析要使这个一元二次方程以x为未知数,它的两个根为1和-2,则这个方程可以为(x-1)(x+2)=0,化为一般式为x2+x-2=0(答案不唯一).10. a≠±√3解析因为关于x的方程(a2-3)x2+ax+1=0是关于x的一元二次方程,所以a2-3≠0,解得a≠±√3.11. 12解析因为a是方程x2+3x-4=0的一个根,所以a2+3a-4=0,所以a2+3a=4,所以2a2+6a+4=2(a2+3a)+4=2×4+4=12.12. 3解析因为-1是关于x的方程x2+bx-3=0的一个根,所以(-1)2-b-3=0,解得b=-2.所以这个方程为x2-2x-3=0,解得x1=-1,x2=3.∴方程的另一个根为3.13. k>2解析∵关于x的一元二次方程x2+2x-k+3=0有两个不相等的实数根,∴b2-4ac>0,∴22-4×1×(-k+3)>0,解得k>2.14. 10解析题图中四块空白部分可合成长为(40-x)米,宽为(30-2x)米的长方形,),解得x1=10,x2=45(舍去).依题意得(40-x)(30-2x)=40×30×(1−3415. 解析(1)方程(y-1)2-4=0,左边分解因式,得(y-1+2)(y-1-2)=0,所以y-1+2=0或y-1-2=0,解得y1=-1,y2=3.(2)方程x2+2x-1=0,两边同时加上2,得x2+2x+1=2,即(x+1)2=2,所以x+1=±√2,解得x1=-1+√2,x2=-1-√2.16.解析设中间的正奇数为x,则(x+2)(x-2)=6x+3,解得x1=7,x2=-1.∵x为正奇数,∴x=7,∴这三个正奇数分别为5,7,9.17. 解析设票房收入每天的平均增长率为x,则第二天票房收入约为2(1+x)亿元,第三天票房收入约为2(1+x)2亿元,根据“第三天票房收入约为4亿元”,可得2(1+x)2=4,解得x=-√2-1(舍去),x2=√2-1≈1.414-1≈41%.1答:票房收入每天的平均增长率为41%.18.解析设原正方形的边长为x cm,依题意可列方程为(x+3)(x-3)=(x-1)2,∴x2-9=x2-2x+1,∴2x=10,∴x=5,故所得长方形的长为5+3=8(cm),宽为5-3=2(cm).19.解析(1)设方程的另一根为x1,则{x1+1=−a,1·x1=a−2,解得{a=12,x1=−32,故a的值为12,该方程的另一根为x=-32.(2)证明:∵a2-4×(a-2)=(a-2)2+4>0,∴无论a取何实数,该方程都有两个不相等的实数根.20.解析(1)换元;降次.(2)设x2+x=y,则原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6得x1=-3,x2=2;由x2+x=-2得方程x2+x+2=0,∵b2-4ac=1-4×2=-7<0,∴此方程无解.∴原方程的解为x1=-3,x2=2.。
《一元二次方程》单元测试卷一、选择题(每小题3分,共30分)1.(3分)已知3是关于x的方程x2﹣2a+1=0的一个解,则2a的值是()A.11B.12C.13D.142.(3分)用配方法解一元二次方程x2﹣4x+2=0时,可配方得()A.(x﹣2)2=6B.(x+2)2=6C.(x﹣2)2=2D.(x+2)2=2 3.(3分)一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.(3分)某校办厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件,若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1400B.200+200(1+x)+200(1+x)2=1400C.200(1+x)2=1400D.200(1+x)+200(1+x)2=14005.(3分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠56.(3分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是()A.2017B.2018C.2019D.20207.(3分)关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1B.2C.3D.48.(3分)用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9 9.(3分)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±210.(3分)如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0D.a>且a≠0二、填空题(每小题3分,共30分)11.(3分)若方程mx2+3x﹣4=3x2是关于x的一元二次方程,则m的取值范围是.12.(3分)一元二次方程(x+1)(3x﹣2)=10的一般形式是.13.(3分)方程x2=3x的解为:.14.(3分)已知两个连续奇数的积是15,则这两个数是.15.(3分)已知(x2+y2﹣1)(x2+y2﹣2)=4,则x2+y2的值等于.16.(3分)某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有名学生.17.(3分)参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x人参加同学聚会.列方程得.18.(3分)已知a,b是方程x2﹣1840x+1997=0的两根,(a2﹣1841a+1997)(b2﹣1841b+1997)=.19.(3分)一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出个小分支.20.(3分)如果(a2+b2+1)(a2+b2﹣1)=63,那么a2+b2的值为.三、解答题(共60分)21.(20分)解方程(1)x2﹣4x﹣3=0(2)(x﹣3)2+2x(x﹣3)=0(3)(x﹣1)2=4(4)3x2+5(2x+1)=0.22.(10分)求证:代数式3x2﹣6x+9的值恒为正数.23.(10分)某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次.求每年接受科技培训的人次的平均增长率.24.(10分)某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.若要平均每天盈利960元,则每千克应降价多少元?25.(10分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.《一元二次方程》单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)已知3是关于x的方程x2﹣2a+1=0的一个解,则2a的值是()A.11B.12C.13D.14【考点】A3:一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=3代入已知方程,列出关于2a的一元一次方程,通过解方程即可求得2a的值.【解答】解:根据题意,得×32﹣2a+1=0,即12﹣2a+1=0,解得,2a=13;故选:C.【点评】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.2.(3分)用配方法解一元二次方程x2﹣4x+2=0时,可配方得()A.(x﹣2)2=6B.(x+2)2=6C.(x﹣2)2=2D.(x+2)2=2【考点】A6:解一元二次方程﹣配方法.【分析】根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【解答】解:移项,得x2﹣4x=﹣2在等号两边加上4,得x2﹣4x+4=﹣2+4∴(x﹣2)2=2.故C答案正确.故选:C.【点评】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法﹣﹣配方法的运用,解答过程注意解答一元二次方程配方法的步骤.3.(3分)一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】AA:根的判别式.【分析】先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.(3分)某校办厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件,若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1400B.200+200(1+x)+200(1+x)2=1400C.200(1+x)2=1400D.200(1+x)+200(1+x)2=1400【考点】AD:一元二次方程的应用.【分析】根据题意:第一年的产量+第二年的产量+第三年的产量=1400且今后两年的产量都比前一年增长一个相同的百分数x.【解答】解:已设这个百分数为x.200+200(1+x)+200(1+x)2=1400.故选:B.【点评】本题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.5.(3分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠5【考点】AA:根的判别式.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6.(3分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是()A.2017B.2018C.2019D.2020【考点】A3:一元二次方程的解.【分析】把x=1代入已知方程求得(a+b)的值,然后将其整体代入所求的代数式并求值即可.【解答】解:∵关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,∴a+b=﹣5,∴2015﹣a﹣b=2015﹣(a+b)=2015﹣(﹣5)=2020;故选:D.【点评】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.7.(3分)关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1B.2C.3D.4【考点】AA:根的判别式;CC:一元一次不等式组的整数解.【分析】由于关于x的方程(2﹣a)x2+5x﹣3=0有实数根,分情况讨论:①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a的最大值.【解答】解:∵关于x的方程(2﹣a)x2+5x﹣3=0有实数根,∴①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2﹣a)≥0,解之得a≤,∴整数a的最大值是4.故选:D.【点评】本题考查了一元二次方程根的判别式的应用.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意次方程应分是一元二次方程与不是一元二次方程两种情况进行讨论.8.(3分)用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9【考点】A6:解一元二次方程﹣配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.9.(3分)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±2【考点】A1:一元二次方程的定义.【分析】本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此即可求解.【解答】解:由一元二次方程的定义可得,解得:m=2.故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.10.(3分)如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a>﹣B.a≥﹣C.a≥﹣且a≠0D.a>且a≠0【考点】A1:一元二次方程的定义;AA:根的判别式.【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根的情况下必须满足△=b2﹣4ac≥0.【解答】解:依题意列方程组,解得a≥﹣且a≠0.故选C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.二、填空题(每小题3分,共30分)11.(3分)若方程mx2+3x﹣4=3x2是关于x的一元二次方程,则m的取值范围是m≠3.【考点】A1:一元二次方程的定义.【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:把方程mx2+3x﹣4=3x2转化成一般形式,(m﹣3)x2+3x﹣4=0,(m﹣3)是二次项系数不能为0,即m﹣3≠0,得m≠3.故答案为:m≠3.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.12.(3分)一元二次方程(x+1)(3x﹣2)=10的一般形式是3x2+x﹣12=0.【考点】A2:一元二次方程的一般形式.【分析】先把一元二次方程(x+1)(3x﹣2)=10的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.【解答】解:∵一元二次方程(x+1)(3x﹣2)=10可化为3x2﹣2x+3x﹣2=10,∴化为一元二次方程的一般形式为3x2+x﹣12=0.【点评】去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.13.(3分)方程x2=3x的解为:x1=0,x2=3.【考点】A8:解一元二次方程﹣因式分解法.【分析】首先把方程移项,把方程的右边变成0,然后对方程左边分解因式,根据几个式子的积是0,则这几个因式中至少有一个是0,即可把方程转化成一元一次方程,从而求解.【解答】解:移项得:x2﹣3x=0,即x(x﹣3)=0,于是得:x=0或x﹣3=0.则方程x2=3x的解为:x1=0,x2=3.故答案是:x1=0,x2=3.【点评】本题考查了因式分解法解二元一次方程,理解因式分解法解方程的依据是关键.14.(3分)已知两个连续奇数的积是15,则这两个数是3和5或﹣3和﹣5.【考点】AD:一元二次方程的应用.【分析】设出两个连续的奇数,根据两个连续奇数的积是15这一等量关系,列出方程解答即可.【解答】解:设其中一个奇数为x,则较大的奇数为(x+2),由题意得,x(x+2)=15,解得,x=3或x=﹣5,所以这两个数为3和5或﹣3和﹣5.【点评】本题属于列一元二次解应用题中的数字类问题,此类题目易根据等量关系列出方程,解决此类题目的关键是设未知数一定准确,答案不能漏解.15.(3分)已知(x2+y2﹣1)(x2+y2﹣2)=4,则x2+y2的值等于.【考点】A9:换元法解一元二次方程.【分析】设t=x2+y2(t≥0),则原方程转化为关于t的一元二次方程,通过解该方程求得t即x2+y2的值.【解答】解:设t=x2+y2(t≥0),则由原方程得到:(t﹣1)(t﹣2)=4,整理,得t2﹣3t﹣2=0.则t=.∵t≥0,∴t=.故答案是:.【点评】本题考查了换元法解一元二次方程.我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.16.(3分)某兴趣小组的每位同学,将自己收集的植物标本向本组其他成员各赠送1件,全组互赠标本共110件,则全组有11名学生.【考点】AD:一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了110件,可得到方程,求解即可.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=110解得:x1=﹣10(不合题意舍去),x2=11,答:全组共有11名学生.故答案为11.【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.17.(3分)参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x人参加同学聚会.列方程得x(x﹣1)=45.【考点】AC:由实际问题抽象出一元二次方程.【分析】此题利用一元二次方程应用中的基本数量关系:x人参加聚会,两人只握一次手,握手总次数为x(x﹣1)解决问题即可.【解答】解:由题意列方程得,x(x﹣1)=45.故答案为:x(x﹣1)=45.【点评】此题主要由x人参加聚会,两人只握一次手,握手总次数为x(x﹣1),利用这一基本数量关系类比运用解决问题.18.(3分)已知a,b是方程x2﹣1840x+1997=0的两根,(a2﹣1841a+1997)(b2﹣1841b+1997)=1997.【考点】AB:根与系数的关系.【分析】先利用一元二次方程解的定义得到a2=1840a﹣1997,b2=1840b﹣1997,则利用整体代入的方法得到原式=ab,然后根据根与系数的关系求解.【解答】解:∵a,b是方程x2﹣1840x+1997=0的两根,∴a2﹣1840a+1997=0,b2﹣1840b+1997=0,∴a2=1840a﹣1997,b2=1840b﹣1997,∴(a2﹣1841a+1997)(b2﹣1841b+1997)=(1840a﹣1997﹣1841a+1997)(1840b﹣1997﹣1841b+1997)=﹣a•(﹣b)=ab,∵a,b是方程x2﹣1840x+1997=0的两根,∴ab=1997,∴原式=1997.故答案为1997.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.19.(3分)一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出7个小分支.【考点】AD:一元二次方程的应用.【分析】由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=57,解得:x=7或x=﹣8(不合题意,应舍去);∴x=7.故答案为:7.【点评】此题主要考查了一元二次方程的应用,注意能够熟练运用因式分解法解方程.20.(3分)如果(a2+b2+1)(a2+b2﹣1)=63,那么a2+b2的值为8.【考点】A5:解一元二次方程﹣直接开平方法.【分析】首先把a2+b2看作一个整体为x,进一步整理方程,开方得出答案即可.【解答】解:设a2+b2=x,则(x+1)(x﹣1)=63整理得:x2=64,x=±8,即a2+b2=8或a2+b2=﹣8(不合题意,舍去).故答案为:8.【点评】此题考查利用换元法和直接开平方解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.三、解答题(共60分)21.(20分)解方程(1)x2﹣4x﹣3=0(2)(x﹣3)2+2x(x﹣3)=0(3)(x﹣1)2=4(4)3x2+5(2x+1)=0.【考点】A5:解一元二次方程﹣直接开平方法;A8:解一元二次方程﹣因式分解法.【分析】(1)配方法求解可得;(2)因式分解法求解可得;(3)直接开平方可得;(4)先化成一元二次方程的一般式,再利用公式法求解可得.【解答】解:(1)x2﹣4x=3,x2﹣4x+4=3+4,∴(x﹣2)2=7,两边开平方,得:x﹣2=±,∴x1=+2,x2=﹣+2;(2)左边因式分解,得:(x﹣3)(x﹣3+2x)=0,即(x﹣3)(3x﹣3)=0,∴3(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,解得:x1=1,x2=3;(3)两边直接开平方,得:x﹣1=±2,即x=±2+1,∴x1=3,x2=﹣1;(4)原方程整理可得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=102﹣4×3×5=40>0,则x==,即x1=,x2=﹣.【点评】本题主要考查一元二次方程的解法,根据不同形式的方程,灵活选择解方程的方法是解题的关键.22.(10分)求证:代数式3x2﹣6x+9的值恒为正数.【考点】1F:非负数的性质:偶次方;AE:配方法的应用.【分析】将代数式前两项提取3,配方后根据完全平方式为非负数,得到代数式大于等于6,即对于任何实数x,代数式3x2﹣6x+9的值总大于0,得证.【解答】证明:∵对于任何实数x,(x﹣1)2≥0,∴3x2﹣6x+9=3(x2﹣2x)+9=3(x2﹣2x+1)+9﹣3=3(x﹣1)2+6≥6>0,则对于任何实数x,代数式3x2﹣6x+9的值恒为正数.【点评】此题考查了配方法的应用,以及非负数的性质:偶次幂,灵活应用完全平方公式是解本题的关键.23.(10分)某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次.求每年接受科技培训的人次的平均增长率.【考点】AD:一元二次方程的应用.【分析】设每年接受科技培训的人次的平均增长率为x,根据原有人数×(1+增长率)2=增长后的人数,再将三年的所有人数加起来,即可列出方程,再求解即可.【解答】解:设每年接受科技培训的人次的平均增长率为x,根据题意得:20+20(1+x)+20(1+x)2=95,解得:x1==50%,x2=﹣(不合题意,舍去),答:每年接受科技培训的人次的平均增长率为50%.【点评】本题本题考查了一元二次方程的运用,解此类题目时常常根据原有人数×(1+增长率)2=增长后的人数来列方程.24.(10分)某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.若要平均每天盈利960元,则每千克应降价多少元?【考点】AD:一元二次方程的应用.【分析】根据“每天利润=每天销售质量×每千克的利润”即可得出关于x的一元二次方程,解方程即可得出结论.【解答】解:设每千克降价x元,根据题意得:(200+20x)×(6﹣x)=960,整理得:960=﹣20x2﹣80x+1200,即x2+4x﹣12=0,解得:x=﹣6(舍去),或x=2.答:若要平均每天盈利960元,则每千克应降价2元.【点评】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的数量×每千克盈利=每天销售的利润是解题关键.25.(10分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.【考点】AD:一元二次方程的应用.【分析】(1)根据铁栏的长是长方形的长与宽的2倍的和,从而确定长和宽,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【解答】解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.【点评】此题主要考查了一元二次方程的应用,首先要注意读懂题意,正确理解题意,然后才能利用题目的数量关系列出方程.。
浙教版数学八年级下册《一元二次方程》单元测试卷(1)一、选择题(本题共计9小题,每题3分,共计27分,)1.(3分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于()A.1B.2C.1或2D.02.(3分)用配方法解方程x2+2x﹣1=0,配方后的方程是()A.(x+1)2=2B.(x+1)2=﹣2C.(x+1)2=0D.(x﹣1)2=2 3.(3分)方程6x2=5x﹣4化为一般形式为()A.6x2﹣5x+4=0B.6x2﹣5x﹣4=0C.6x2+5x﹣4=0D.6x2+5x﹣4 4.(3分)下列各未知数的值是方程3x2+x﹣2=0的解的是()A.x=1B.x=﹣1C.x=2D.x=﹣25.(3分)方程x(x+5)=x+5的根为()A.x1=5,x2=﹣5B.x1=1,x2=﹣5C.x=0D.x1=x2=﹣5 6.(3分)用直接开平方法解方程(x+h)2=k,方程必须满足的条件是()A.k≥0B.h≥0C.hk>0D.k<07.(3分)已知方程x2﹣6x+q=0可以配方成(x﹣p)2=7的形式,那么x2﹣6x+q=2可以配方成下列的()A.(x﹣p)2=5B.(x﹣p)2=9C.(x﹣p+2)2=9D.(x﹣p+2)2=5 8.(3分)不论x取何值,x﹣x2﹣1的值都()A.大于等于﹣B.小于等于﹣C.有最小值﹣D.恒大于零9.(3分)已知二次函数y=ax2+bx+1,一次函数y=k(x+1)﹣,若它们的图象对于任意的非零实数k都只有一个公共点,则a,b的值分别为()A.a=﹣1,b=﹣2B.a=1,b=﹣2C.a=﹣1,b=2D.a=1,b=2二、填空题(本题共计9小题,每题3分,共计27分,)10.(3分)若代数式x2﹣4x+1的值与﹣3x+2的值相等,则x的值为.11.(3分)方程x2=﹣3x的解是.12.(3分)随着近期国家抑制房价新政策的出台,某小区房价两次下跌,由原来的每平方米6000元降至每平方米4860元,设每次降价的百分率为x,则所列方程为.13.(3分)一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是.14.(3分)若关于x的方程x2﹣2x﹣k=0有两个不相等的实数根,则k的取值范围为.15.(3分)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为.16.(3分)若(m+1)x+2mx﹣1=0是一元二次方程,则m的值是.17.(3分)已知x1,x2是方程2x2﹣5x﹣3=0的两个根,则=.18.(3分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后会有81台电脑被感染,每轮感染中平均一台电脑会感染几台电脑?设每轮感染中平均一台电脑会感染x台电脑,则x满足的方程是.三、解答题(本题共计7小题,共计66分,)19.(8分)用适当的方法解下列方程:(1)x2+2x﹣1=0;(2)3x(x﹣1)=1﹣x.20.(8分)解下列方程:(1)x2+4x﹣2=0;(2)(x﹣3)2+2x(3﹣x)=0.21.(8分)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2﹣5,求k的值.22.(12分)用适当的方法解下列一元二次方程(1)4(x﹣1)2﹣36=0.(2)x2+2x﹣3=0.(3)x(x﹣4)=8﹣2x.(4)(x+1)(x﹣2)=4.23.(8分)关于x的一元二次方程(k﹣1)x2﹣2x+3=0有实数根.(1)求k的取值范围;(2)求整数k的最大值,并计算k取最大值时方程的根.24.(10分)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.25.(12分)某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为x.(1)则今年南瓜的种植面积为亩;(用含x的代数式表示)(2)如果今年南瓜亩产量的增长率是种植面积的增长率的,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.。
八年级数学下册《一元二次方程》单元检测卷(附含答案)一、单选题1.若方程x 2+kx -6=0的一个根是-3,则k 的值是( )A .-1B .1C .2D .-22.下列方程中,两实数根之和为-4的是( )A .x 2+2x -4=0B .x 2-4x +4=0C .4x 2+x +10=0D .x 2+4x -5=03.若关于x 的方程220x x a ++=有两个不相等的实数根,则a 的值可以是( )A .3B .2C .1D .04.一元二次方程22x x =的解为( )A .-2B .2C .0或-2D .0或25.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为277m ,设道路的宽为xm ,则根据题意,可列方程为( )A .2128128277x x x ⨯--+=B .128122877x x ⨯--⨯=C .(12)(8)77x x --=D .(8)(122)77x x --=6.在下列关于x 的一元二次方程中,有两个相等实数根的方程是( )A .2210x x --=B .2360x x ++=C .28160x x ++=D .()219x -=7.将方程x 2-8x +10=0配方为(x +a)2=b 的形式,正确的是( )A .(x -4)2=6B .(x -8)2=6C .(x -4)2=-6D .(x -8)2=548.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠9.今年为庆祝共青团成立100周年,教体局举行篮球友谊赛,初赛采用单循环制(每两支球队之间都进行一场比赛),据统计,比赛共进行了28场,则一共邀请了多少支球队参加比赛?设一共邀请了x 支球队参加比赛.根据题意可列方程是( ) A .(1)282x x += B .()128x x -=C .(1)282x x -= D .()328x x -=10.一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共共握66次手.若设这次会议到会的人数为x 人,依题意可列方程( ) A .12x (x ﹣1)=66 B .21(1)2x +=66 C .x (1+x )=66D .x (x ﹣1)=66二、填空题11.关于x 的方程20x mx +=的一个根是-2,则m 的值为 .12.市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒300元下调至192元,则这种药品平均每次降价的百分率为 .13.若m ,n 为一元二次方程2220x x --=的两个实数根,则()()11m n ++的值为 . 14.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路,余下的部分种上草坪,要使草坪的面积为540m 2,求道路的宽若设道路宽为xm ,则根据题意可列方程为三、解答题15.解方程 x 2-6x+5=016.求证 无论k 取何值,关于x 的方程 210x kx k ++-= 都有两个实数根.17.已知 关于x 的方程2380x mx +-=有一个根是-4,求另一个根及m 的值.18.某超市老板以4800元购进一批玩具.“六一”儿童节期间,按进价增加20%作为销售价,销售了50件,之后把最后几件以低于进价10元作为售价,售完所有玩具.全部售完后共盈利700元,求每个玩具的进价是多少元?19.用配方法解一元二次方程 22310.x x ++=小明同学的解题过程如下解 231x x 022++= 2399102442x x ++-+= 237(x )24+=37x 22+=±137x 2+=-237x 2-=-20.目前,以5G 为代表的战略性新兴产业蓬勃发展,某市2019年底有5G 用户2万户,计划到2021年底5G 用户数达到9.68万户,求这两年全市5G 用户数的年平均增长率.21.如图,某农场有两堵互相垂直的墙,长度分别为27米和15米.该农场打算借这两堵墙建一个长方形饲养场ABCD ,其中AD 和AB 两边借助墙体且不超出墙体,其余部分用 总长45米的木栏围成.中间预留1米宽的通道,在EH 和FG 边上各留1米宽的门.设AB 长x 米.(1)求BC 的长度(用含x 的代数式表示).(2)若饲养场ABCD 的面积为180平方米,求x 的值.22.已知关于x 的一元二次方程x 2-(a +2)x +a +1=0.(1)求证 方程总有两个实数根.(2)若方程的两个根都是正整数,求a 的最小值.23.2022年北京冬奥会吉祥物深受大家的喜欢,某特许零售店的冬奥会吉祥物销售量日益火爆.据统计,该店2022年1月的“冰墩墩”销量为1万件,2022年3月的“冰墩墩”销量为1.21万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)该零售店4月将采用提高售价的方法增加利润,根据市场调研得出结论如果将进价80元的“冰墩墩”按每件100元出售,每天可销售500件,在此基础上售价每涨1元,那么每天的销售量就会减少10件,该零售店要想每天获得12000元的利润,且销量尽可能大,则每件商品的售价应该定为多少元?参考答案1.【答案】B【解析】【解答】解 ∵ 方程x 2+kx -6=0的一个根是-3∴将x=-3代入得9-3k -6=0 解得k=1. 故答案为 B.【分析】根据方程根的概念,将x=-3代入原方程,可得关于字母k 的方程,求解即可.2.【答案】D【解析】【解答】解 设方程的两根为x 1与x 2A 、∵122bx x a+=-=- ∴此选项不符合题意; B 、∵124bx x a+=-= ∴此选项不符合题意; C 、∵1214b x x a +=-=- ∴此选项符合题意; D 、∵124bx x a+=-=- ∴此选项符合题意. 故答案为 D.【分析】设方程的两根为x 1与x 2,然后根据根与系数的关系12bx x a+=-一一判断即可得出答案. 3.【答案】D【解析】【解答】解 ∵关于x 的一元二次方程220x x a ++=有两个不相等的实数根∴44144a a =-⨯⨯=-当a=3时,4444380a -=-⨯=-<方程没有实数根,A 不符合题意; 当a=2时,4444240a -=-⨯=-<方程没有实数根,B 不符合题意; 当a=1时,444410a -=-⨯=方程由两个相等的实根,C 不符合题意; 当a=0时,4444040a -=-⨯=>方程有两个不相等的实数根,D 符合题意. 故答案为 D .【分析】利用一元二次方程根的判别式列出不等式求解即可。
八年级数学下册《一元二次方程》测试卷学校:__________一、选择题1.(2分)一元二次方程x 2=c 有解的条件是( )A .c <OB .c >OC .c ≤0D .c ≥02.(2分) 三角形两边的长分别是 8 和 6,第三边的长是方程212200x x -+=的一个实数根,则三角形的周长是( )A . 24B . 24 和 26C . 16D . 223.(2分)下列方程是一元二次方程的是( )A .12=+y xB .()32122+=-x x xC .413=+xx D .022=-x二、填空题4.(3分)小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的一个根是 x =____.5.(3分)一块正方形钢板上截去3cm 宽的长方形钢条,剩下的面积是254cm ,则原来这块钢板的面积是 2cm .6.(3分)若方程x 2-4x+m=0有两个相等的实数根,则m 的值是____ ___.7.(3分)若一个等腰三角形三边长均满足方程x 2-6x +8=0,则此三角形的周长为 .8.(3分)某种手表,原来每只售价96元,经过连续两次降价后,现在每只售价54元,则平均每次降价的百分率是 .9.(3分)若关于x 的方程240x x a ++=有两个相等的实数根,则a= .10.(3分) 方程22310x x +-=,则24b ac -= .11.(3分) 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac - 0)12.(3分) 用换元法解方程222=-,则原方程化为关于y 的一y x21(21)410x x-+-=,设2元二次方程是.13.(3分)一元二次方程2y-=的根是.98014.(3分) 关于 x 的一元二次方程20++=的两根为1-,3,则2x bx c++分解因式的结x bx c果为.15.(3分)将方程4(2)25x x+=化为一般形式为,一次项系数是,常数项为.16.(3分)用因式分解法解一元二次方程时,方程应具备的特征是:.17.(3分)判断题(对的打“√”,错的打“×”)(1)一元二次方程的一次项系数、常数项可以是任意实数,但二次项系数不能是零. ( )(2) 2x x++是一元二次方程. ( )234(3)方程(1)(3)1--=-的解只有3x x xx=. ( )评卷人得分三、解答题18.(6分)如图,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1) 用a,b,x表示纸片剩余部分的面积;(2) 当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.19.(6分)如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)设铺设地面所用瓷砖的总块数为y ,请写出y 与n (表示第n 个图形)的关系式;(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n 的值;(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?(4)否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.20.(6分)已知关于x 的方程01)1(22=+-++-m m x x m 有一个根为-1,分析根的情况,并求出方程所有的根.21.(6分)一个直角三角形的三边长是连续整数,求这三条边的长.22.(6分)分别用公式法和配方法解方程:2322=-x x .23.(6分)已知方程260x kx +-=的一个根是2,求它的另一个根及k 的值.24.(6分)某钢铁厂今年一月份钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多l200吨,求这个相同的百分数.25.(6分)已知一元二次方程240x x k -+=有两个不相等的实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程240x x k -+=与210x mx +-=有一个相同的根,求此时 m 的值.26.(6分)设a,b是一个直角三角形两条直角边的长,且2222()(4)21a b a b+++=,求这个直角三角形的斜边长.27.(6分) 用配方法解方程:(1)2450x x+-=;(2)(1)(21)3m m-+=28.(6分)一个两位数,十位上的数字与个位上的数字之和为5,把这个两位数的十位上的数字与个位上的数字对调后,所得的新的两位数与原来的两位数的积是736,求原来的两位数.29.(6分)要做一个高是8cm,底面的长比宽多5cm,体积是528cm3的长方体木箱,问底面的长和宽各是多少?30.(6分)阅读下列解题过程,再回答问题:解方程:(2)(3)6x x-+=.解:26x-=,36x+=,得18x=,23x=.请你判断上述解题过程是否正确?.若不正确,请写出正确的解题过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.A3.D二、填空题4.05.816.47.108.25%9.410.171112.2210y y++=13.y=14.(1)(3)x x+-15.2+-=,8,-2548250x x16.0A B⋅=17.(1)√(2)×(3)×三、解答题18.解:(1)a b-4x2;(2)依题意有: a b -4x 2=4x 2 ,将a =6,b =4,代入上式,得x 2=3, 解得)(3,321舍去-==x x .即正方形的边长为3.19.(1)256y n n =++;(2)20n =;(3)1604(元);(4)不存在黑、白瓷砖块数相等的情形.20.当m =1时,方程为一元一次方程,解为一1;当m ≠1时,方程为一元二次方程,解为一1,23. 21.3、4、5.22.2,2121=-=x x . 23.1k =,3x =-24.20%25.(1)4k <;(2)0m =或83- 2627.(1)15x =-,21x =;(2)m =28.32 或 2329.11 cm ,6cm30.错误,正确答案为14x =-,23x =,。
八年级数学下册《一元二次方程》单元检测卷(附答案)一、选择题:(本题包括12小题,每小题3分,共36分) 是一元二次方程,则m 的值为( ) 1.已知关于x 的方程A .1B .﹣1C .±1D .不能确定 2.有下列关于x 的方程:①ax 2+bx+c=0,②3x (x ﹣4)=0,③x 2+y ﹣3=0,④ +x=2,⑤x 3﹣3x+8=0,⑥ x 2﹣5x+7=0,⑦(x ﹣2)(x+5)=x 2﹣1.其中是一元二次方程的有( )个.A .2B .3C .4D .5 3.一元二次方程2660x x --=配方后化为( )A .2(3)15x -= B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=4.一元二次方程(x+1)2﹣2(x ﹣1)2=7的根的情况是( ) A .无实数根 B .有一正根一负根C .有两个正根D .有两个负根5.设1x ,2x 是一元二次方程0322=--x x 的两根,则2221x x +=( )A .6B .8C .10D .126.若关于x 的方程0632=+-m x x 有两个不相等的实数根,则m 的取值范围在数轴上表示正确的是().7.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A .9人 B .10人 C .11人 D .12人8.若x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两个根,则x 12﹣x 1+x 2的值为( ) A .﹣1 B .0 C .2 D .3 9.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或1010.若关于x 的一元二次方程0122=++-kb x x 有两个不相等的实数根,则一次函数b kx y +=的大致图象可能是 ( )A B C D 11.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x )(4﹣0.5x )=15 B .(x+3)(4+0.5x )=15 C .(x+4)(3﹣0.5x )=15 D .(x+1)(4﹣0.5x )=1512.某种植基地2022年蔬菜产量为80吨,预计2023年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )()032112=++-+x x m mA .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100 D .80(1+x 2)=100二.填空题(本大题共6个小题,每小题3分,共18分)13.关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为 .14.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m= .15.一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x+21=0的根,则三角形的周长为 . 16.若m ,n 是方程210x x +-=的两个实数根,则22m m n ++的值为 .17.关于x 的一元二次方程01222=+-+m x x 的两实数根之积为负,则实数m 的取值范围是 .18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 个图形有94个小圆.(用含n 的代数式表示)三、解答题:(共66分)19.解下列方程(每小题4分,满分16分):(1)3x 2-7x =0 ; (2)0432=-+x x(3))5(2)5(2-=-x x (4)22(3)5x x -+=20.(6分)关于x 的方程0832=-+mx x 有一个根是32,求另一个根及m 的值.21.(8分)已知一元二次方程0222=-+-m mx mx . (1)若方程有两实数根,求m 的范围。
22.1一元二次方程一、认认真真,书写快乐1.把方程2(21)(1)(1)x x x x +-=+-化成一般形式是 .2.一元二次方程226x x -=的二次项系数、一次项系数及常数之和为 . 3.已知1x ≠-是方程260x ax -+=的一个根,则a = .4.关于x 的方程2(1)230m x mx ++-=是一元二次方程,则m 的取值范围是 . 5.已知236x x ++的值为9,则代数式2392x x +-的值为 . 二、仔仔细细,记录自信6.下列关于x 的方程:①20ax bx c ++=;②2430x x+-=;③2540x x -+=;④23x x =中,一元二次方程的个数是( ) A .1个 B .2个 C .3个D .4个7.若2530ax x -+=是关于x 的一元二次方程,则不等式360a +>的解集是( ) A .2a >-B .2a <-C .2a >-且0a ≠D .12a >8.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( ) A .1B .1-C .1或1-D .129.已知2是关于x 的方程23202x a -=的一个解,则21a -的值是( ) A .3 B .4 C .5 D .6三、拓广探索,游刃有余10.如右图所示,相框长为10cm ,宽为6cm ,内有宽度相同的边缘木板,里面用来夹相片的面积为32cm 2,则相框的边缘宽为多少厘米?我们可以这样来解:(1)若设相框的边缘宽为cm x ,可得方程 (一般形式); (2)分析并确定x 的取值范围; (3(4参考答案:一、1.23320x x ++= 2.5- 3.7- 4.1m ≠-5.7二、6.A7.C8.B9.C三、10.(1)2870x x -+=;(2)03x <<;(3)7,0,5-,8-;(4)1cm .22.1 一元二次方程一、双基整合: 1.方程(x+3)(x+4)=5,化成一般形式是________.2.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是_________. 3.若关于的方程x 2-3x+k=0有一个根是1,则它的另一个根是________. 4.已知方程x 2-x-m=0有整数根,则整数m=________.(填上一个你认为正确的答案) 5.根据题意列出方程:有一面积为54m 2(设正方形的边长为m )的长方形,将它的一边剪短5m ,另一边剪短2m ,恰好变成一个正方形,这个正方形的边长是多少?设正方形的边长为xm ,请列出你求解的方程__________.6.如果两个连续奇数的和是323,求这两个数,如果设其中一个奇数为x ,•你能列出求解x 的方程吗?______________.7.如图,在宽为20m ,长30m 的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500m 2,若设路宽为xm ,则可列方程为:_________. 8.下列各方程中一定是关于x 的一元二次方程的是( )A .3x 2=4x+mB .ax 2-8=0C .x+y 2=0D .5xy-x+6=09.如果关于x 的方程(m-3)27mx -x+3=0是关于x 的一元二次方程,那么m 的值为( )A .±3B .3C .-3D .都不对10.以-2为根的一元二次方程是( )A .x 2+2x-x=0B .x 2-x-2=0C .x 2+x+2=0D .x 2+x-2=0 11.若ax 2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是( ) A .a>-2 B .a<-2 C .a>-2且a≠0 D .a>1212.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,•全组共互赠了182件,如果全组有x 名同学,则根据题意列出的方程是( ) A .x (x+1)=182 B .x (x-1)=182 C .2x (x+1)=182 D .x (x-1)=182×213.已知关于x 的方程(2k+1)x 2-4kx+(k-1)=0,问:(1)k 为何值时,此方程是一元二次方程?求出这个一元一次方程的根;(2)k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项.14.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.一个两位数,个位上的数字比十位上的数字小4,•且个位上数字与十位上数字的平方和比这个两位数小4,求这个两位数.二、拓广探索:15.先从括号内①②③④备选项中选出合适的一项,填在横线上,•将题目补充完整后再解答.如果a 是关于x 的方程x 2+bx+a=0的根,且a≠0,求________的值. ①ab ②ba③a+b ④a-b 16.如果方程ax 2+bx+c=0(a≠0),a-b+c=0,那么方程必有一个解是________.17.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( ) A .x 2+130x-1400=0 B .x 2+65x-350=0C .x 2+130x-1400=0D .x 2-65x-350=0 18.若x 2a+b -3x a-b +1=0是关于x的一元二次方程,求a 、b 的值,下面是两位学生的解法:•甲:根据题意得2a+b=2,a-b=1解方程组得a=1,b=0.乙:由题意得2a+b=2,a-b=1•或2a+b=1,a-b=2解方程组得a=1,b=0或a=1,b=-1.你认为上述两位同学的解法是否正确?•为什么?如果都不正确,请给出正确的解答.三、智能升级19.为争创市规范化学校,某中学向全体师生征集空地绿化 方案,•如图是李刚同学对其中一块正方形空地的设计图,中央绿地面积为24平方米,如果设正方形空地的边长为x ,那么空地中央长方形绿地的长为______米,宽为______米,根据题意,•可得方程___________.20.若方程(m-1)x 2x=1是关于x 的一元二次方程,则m 的取值范围是( )A .m≠1B .m≥0C .m≥0且m≠1D .m 为任意实数21.某大学为改善校园环境,计划在一块长80m ,宽60m •的长方形场地的中央建一个长方形网球场,网球场占地面积为3500m 2.四周为宽度相等的人行走道,如图所示,若设人行走道的宽为xm .(1)你能列出相应的方程吗?(2)x 可能小于0吗?说说你的理由.(3)x 可能大于40吗?可能大于30吗?说说你的理由.(4)你知道人行走道的宽xm 是多少吗?说说你的求解过程.答案:1.x2+7x+7=0 2.k≠3 3.2 4.2等5.(x+5)(x+2)=54 6.x(x+2)=323或x(x-2)=3237.(30-x)(20-x)=500 8.A 9.C 10.D 11.C 12.B13.(1)k=-12时,方程是一元二次方程,x=34;(2)k≠12,2k+1,-4k,k-1.14.设个位数字为x,则十位数字为x+4,由题意得x2+(x+4)2=10(x+4)x+x-415.③a+b=-1 16.-1 17.B18.解:均不正确,考虑不全,欲使x2a+b-3x(a-b)+1=0是关于x•的一元二次方程,•则2a+b=2,a-b=2;或2a+b=2,a-b=1;或2a+b=2,a-b=0;或2a+b=1,a-b=2;或2a+b=0,a-b=2,∴a=43,b=-23;或a=1,b=0;或a=23,b=23或a=1,b=-1;或a=23,b=-4319.x-2,x-4,(x-2)(x-4)=24 20.C21.(1)设人行道的宽为xm,则网球场的长和宽分别为(80-2x)m,(60-2x)m,•则可列方程:(80-2x)(60-2x)=3500,整理为:x2-70x+325=0;(2)x的值不可能小于0,因为人行道的宽度不可能为负数.(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际,当然x更不可能大于40.(4)由上面问题可知:x的大致范围应为0<x<30.求解过程如下:显然当x=5时,x-70x+325=0,∴人行道的宽度为5m.人教九上22.2降次——解一元二次方程一、选一选!1. 把方程23402x x ++=左边配成一个完全平方式后,所得方程是( ). (A )2355()416x += (B )2315()24x +=- (C )2315()24x += (D )2355()416x +=-2. (2006年杭州)已知方程260x x q -+=可以配方成2()7x p -=的形式, 那么262x x q -+=可以配方成下列的 ( )(A) 2()5x p -= (B) 2()9x p -= (C) 2(2)9x p -+= (D) 2(2)5x p -+=3. (2006年广州)一元二次方程2230x x --=的两个根分别为( ). (A)X l =1, x 2=3 (B)X l =1, x 2=-3(C)X 1=-1,X 2=3 (D)X I =-1, X 2=-34. 若2222()(1)60m n m n +--+=,则22m n +的值为( ).(A )3 (B )-2 (C )3或-2 (D )-3或2 5. 方程(3)x x x +=的根是( ).(A )-2 (B )0 (C )无实根 (D )0或-26. 已知x 满足方程2310x x -+=,则1x x +的值为( ). (A )3 (B )-3 (C )32(D )以上都不对7. 要使分式2544x x x -+-的值为0,x 等于( ).(A )1 (B )4或1 (C )4 (D )-4或-1 8. 关于x 的方程22(2)0a a x ax b --++=是一元二次方程的条件是( ). (A )2a ≠-且1a = (B )2a ≠ (C )2a ≠-且1a =- (D )1a =- 二、填一填! 9. 222(_____)[(____)]3y y y -+=+.10. x =__________. 11. 若代数式2713x x -+的值为31,则x =_________________.12.用公式法解方程2815x x =--,其中24b ac -=__________,1x =__________,2x =_______________.13. 一元二次方程x 2-2x-1=0的根是__________.14. 若方程x 2-m=0的根为整数,则m 的值可以是________(只填符合条件的一个即可)15. 若(2x+3y )2+3(2x+3y )-4=0,则2x+3y 的值为_________.16. 请写出一个根为x= 1, 另一根满足-1< x< 1 的一元二次方程_______. 三、做一做!17.用配方法解下列方程:(1)210257x x -+=;(2)261x x +=;(3)23830x x +-=;(4)2310x x -+=. 18.用公式法解下列方程:(1)27180x x --=;(2)22980x x -+=;(3)29610x x ++=;(4)21683x x +=. 19.用因式分解法解下列方程:(1)(41)(57)0x x -+=;(2)3(1)22x x x -=-; (3)2(23)4(23)x x +=+;(4)222(3)9x x -=-.20. 阅读材料,解答问题:材料:为解方程(x 2-1)2-5(x 2-1)+4=0我们可以将x 2-1视为一个整体,然后设x 2-1=y ,•则(x 2-1)2=y 2,原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=y=4时,x 2-1=4,∴x 2=5,∴x=x 1x 2x 3x 4解答问题:(1)填空,在解原方程得到①的过程中利用_________法达到了降次的目的,体现了_______•数学思想;(2)利用上述方法解方程x 4-x 2-6=0.21. 若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b=4ab ,例如2※6=4•×2•×6=48 (1)求3※5的值;(2)求x ※x+2※x-2※4=0中x 的值;(3)若无论x 是什么数,总有a ※x=x ,求a 的值.参考答案:一、选一选! 1.D ; 2.B ; 3.C ; 4.A ; 5.D ; 6.A ; 7.A ; 8.C ;二、填一填! 9.19,13-; 10. -5或3; 11.9或-2; 12.4,-3,-5;13. x 1x 214.如4 , 提示:m 应是一个整数的平方,此题可填的数字很多. 15. -•4或1; 16.略;三、做一做!17.(1)15x =25x =(2)13x =-23x =- (3)113x =,23x =-;(4)1x =2x =18.(1)19x =,22x =-;(2)1x =2x =; (3)1213x x ==-;(4)114x =,234x =-; 19.(1)175x =-,214x =;(2)12 3x=-,21x=;(3)13 2x=-,21 2x=;(4)13x=,29x=.20. (1)换元,转化;(2)x=21. (1)3※5=4×3×5=60,(2)由x※x+2※x-2※4=0得4x2+8x-32=0,即x2+2x-8=0,∴x1=2,x2=-4,(3)由a*x=x得4ax=a,无论x为何值总有4ax=x,∴a=14.22.3 实际问题与一元二次方程一、双基整合:1.要用一条长为24cm的铁丝围成一个斜边是10cm的直角三角形,•则两条直角边的长分别为________.2.一个多边形有9条对角线,则这个多边形有________条边.3.一个矩形及与它等积的正方形的周长之和为54cm,矩形两邻边的差为9cm,•则这个矩形的面积为________.4.两个正方形,小正方形边长比正方形边长的一半多4cm,•大正方形的面积比小正方形的面积的2倍少32cm2,则大小正方形的边长分别是______.5.如图,一块矩形纸片ABCD,长BC=8cm,宽CD=6cm,将这块矩形纸片沿对角线BD 对折(折痕与折叠后得到的图形用虚线表示),得到△BDE,则EF=________.6.从正方形的铁片上,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm2B.64cm2C.80cm2D.32cm27.用一块长80cm、宽60cm的长方形铁皮,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖长方体盒子,设小正方形的边长为x,则可列出方程()A.x2-70x+825=0 B.x2+70x-825=0 C.x2-70x-825=0 D.x2+70x+825=0 8.若一个等腰三角形两边长分别是x2-12x+32=0的两根,•则这个等腰三角形的周长为()A.20 B.16 C.16或20 D.不能确定9.如图,水池中离岸边D点1.5m的C处,直立着一根芦苇,出水部分BC的长是0.5m,把芦苇拉到岸边,它的顶端B恰好在D点,求水池的深度AC.10.一块长方形铁片长32cm,宽24cm,四角都截去相同的小正方形,折起来做成一个无盖铁盒,使底面积是原来面积的一半,求盒子的高.二、拓广探索:11.如图,有一块直角△纸片,两直角边AC=6cm,BC=8cm,现将直角边AC•沿直线AD 折叠,使它落在斜边AB上,且与AE重合,则CD=()A.2cm B.3cm C.4cm D.5cm12.线段AB=6cm,点C是AB的黄金分割点(如图),即较长线段AC是较短线段BC和原线段AB的比例中项,那么线段AC的长为()A B C.()cm D.()cm13.如图所示,东西和南北街道交于点O,甲沿东西道由西向东,速度是每秒4m,乙沿南北道由南向北走,速度是每秒3m,当乙通过O点后又继续前进50m时,•甲刚好通过O 点,当甲、乙相距85m时,求每个人位置.14.用一根8米长的木料做成一个长方形的窗框,若设这个长方形的长为x米.(1)这个长方形的面积S=________.(2)根据上式完成下表:(3)你发现了什么?(4)为什么现实生活中,窗户一般都做成一个长与宽接近相等的长方形,•而不做成一个正方形,谈谈你的看法.三、智能升级:15.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米(如右图),如果梯子的顶端下滑1米,那么(1)猜一猜,底端也将滑动1米吗?(2)•列出底端滑动距离所满足的方程,并说明(1)中结论.16.有一块缺角矩形地皮ABCDE (如下图),其中AB=110m ,BC=80m ,CD=90m ,•∠EDC=135°,现准备用此地建一座地基为长方形(图中用阴影部分表示)的数学大楼,建筑公司在接受任务后,设计了A 、B 、C 、D 四种方案,请你研究探索应选用哪一种方案,•才能使地基面积最大?(1)求出A 、B 两种方案的面积.(2)若设地基的面积为S ,宽为x ,写出方案C (或D )中S 与x 的关系式.(3(4 (5)用配方法对(2)中的S 与x 之间的关系式进行分析,并检验你的猜测是否正确. (6)你认为A 、B 、C 、D 中哪一种方案合理?答案:1.6cm ,8cm 2.6 3.36cm 2 4.16m 和12cm 5.74cm 6.B 7.A 8.A 9.AC=2 10.4cm 11.B 12.C 13.设甲通过O 点以后t 秒时,甲、乙位置分别是AB (图略), 则OA`=4t ,OB`=50+3t ,根据题意得(4t )2+(50+3t )2=852, 即t 2+12t-189=0,t 1=9,t 2=-21,当t=9时,OA`=36,OB`=77; 当t=-21时,OA`=-84,OB`=-13,答:甲、乙分别都在通过O 点后又前进了36m ,77m 或者尚未通过O 点,分别在距O 点84m ,13m 的位置. 14.(1)S=x×822x=-x 2+4x , (2)S 的值分别为1.75、3、3.75、3.99、4、3.99、3.75、3、1.75, (3)当长与宽相等时,S 的值最大,即当窗户为正方形时,面积最大,(4)•窗户做成正方形时,面积最大,透光性最大,但同时窗户内部的其他用料也相对增多,如钢筋、水泥等,所以,制成一个长与宽接近相等的长方形,即有利于透光,又可相对地节省材料,当然,也涉及到美学等方面的知识. 15.(1)底端滑动的距离大于1米.(2)设底端将滑动x 米,依题意,得72+(x+6)2=102,•解得x 1,x 2(舍去),-6=7-6=1,∴底端滑动的距离大于1米. 16.(1)方案A 的面积为80×90=7200m 2,方案B 的面积为110×(80-20)=6600m 2;(2)•由于MF=80-x ,∠EDC=135°,所以DF=80-x ,NB=CD+DF=90+(80-x )=170-x ,S=(170-x )×x ,即S=-x 2+170x ; (3)S 的值从左到右依次为6000、6600、7000、7125、7176、7189、7200、7209、7216;(4)猜想:当x≤80时,S 随x 的增大而增大; (5)S=-x 2+170x=-(x-85)2+852,所以当x≤85时,S 随x 的增大而增大,由于x≤80,所以,当x=80•时,•S •最大值为7200m 2;(6)选A 种方案.第二十二章一元二次方程水平测试题一.填空题:(每小题2分,共22分)1.方程20x x -=的一次项系数是____________,常数项是____________; 2.若代数式219991998m m -+的值为0,则m 的值为____________; 3.在实数范围内分解因式:221x x --=__________________________;4.已知13x =-是方程2230x kx +-=的一个根,2x 是它的另一个根,则k =_____,2x =____5.方程220x -+=的判别式∆=____________,所以方程_________________实数根;6.已知分式2212x x x -+-的值为0,则x 的值为____________;7.以2,-3为根的一元二次方程是__________________________; 8.当方程()()211120m m xm x +--+-=是一元二次方程时,m 的值为________________;9.若12,x x 是方程25x x -=的两根,则2212x x +=________________;10.已知210x x +-=,则2339x x +-=____________; 11.已知2x y +=,1xy =,则x y -=____________; 二.选择题(每小题3分,共30分)1.方程()2211x +=化为一般式为( ) A .22421x x ++=B .241x x +=-C .22410x x ++=D .22210x x ++=2.用配方法解下列方程,其中应在两端同时加上4的是( )A .225x x -= B .2245x x -= C .245x x += D .225x x += 3.方程()1x x x -=的根是( )A .2x =B .2x =-C .122,0x x ==D .122,0x x =-=4.下列方程中以1,2-为根的一元二次方程是( )A .()()120x x +-=B .()()121x x -+=C .()221x +=D .21924x ⎛⎫+=⎪⎝⎭ 5.下列方程中,无论b取什么实数,总有两个不相等实数根的是( )A .210x bx ++=B .221x bx b +=+C .20x bx b ++=D .22x bx b += 6.将222x x --分解因式为( )A .1144x x ⎛--- ⎝⎭⎝⎭ B .11244x x ⎛+- ⎝⎭⎝⎭C .11244x x ⎛-++ ⎝⎭⎝⎭D .11244x x ⎛-+- ⎝⎭⎝⎭7.县化肥厂今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为( )A .()21a x + B .()21100a x + C . ()21100x + D .()2100a a x + 8.已知2120m m+=,则1m -=( ) A .0或12- B .0或-2 C .-2 D .12-9.一项工程,甲队独做要x天,乙队独做要y天,若甲乙两队合作,所需天数为( )A .xy x y +B .2x y+ C .x y xy+ D .x y +10.已知方程2220383x x x x+-=+,若设23x x y +=,则原方程可化为( )A .2208y y -= B .2208y -= C .208y y -= D .2208y y -= 三.解方程(组)(每小题5分,共20分)1.()()22211x x +=- 2.2232211x y x y x y +=⎧⎨+++=⎩3.22431242x x x x -=+--- 4.22124321x x x x +++=++四.解答下列各题(每小题7分,共28分)1.已知12,x x 是关于x 的一元二次方程()2160x m x m ++++=的两实数根,且22125x x +=,求m 的值是多少?2.求证:无论k 为何值,方程()23210x k x k -++-=总有两个不相等的实数根。
一、选择题1、已知03)(2=+--x m x mx 是关于x 的一元二次方程,则( )A 、 0>mB 、0≠mC 、1<mD 、1≠m2、用配方法解方程0522=--x x 时,原方程应变形为( ) A 、 6)1(2=-x B 、9)2(2=+x C 、6)1(2=+x D 、9)2(2=-x3、已知一元二次方程)0(02≠=+m n mx ,若方程有解,则( )A 、 0=nB 、同号、n mC 、的整数倍是m nD 、异号、或n m n 0=4、一元二次方程0412=+-x x 的根为( ) A 、 212121-==x x , B 、2121-==x x C 、2221-==x x , D 、2121==x x 5、若关于x 的一元二次方程01412=++-x x k )(,有两个不相等的实数根,则k 的取值范围是( ) A 、 5<k B 、15≠<k k 且 C 、15≠≤k k 且 D 、5>k6、若2-=x 是关于x 的一元二次方程02322=-+a ax x 的一个根,则a 的值为( ) A 、 41或- B 、41--或 C 、41-或 D 、41或7、关于x 的方程)0(02≠=++m k h m k h x m 均为常数,且、、)(的解是2,3-。
则方程0)3(2=+-+k h x m 的解是( )A 、 1621-=-=x x ,B 、5021==x x ,C 、5321=-=x x ,D 、2621=-=x x ,8、一个QQ 群里有若干人,每人分别给其他人发一条消息,这样共有870条消息,则群里人数为( )A 、 31B 、30C 、29D 、289、股票每天涨幅不超过10%,即涨到了原价的10%后,便不能再涨,叫涨停;反之,叫跌停。
已知某支股票某天涨停,两天之后又跌回原价,若这两天股票股价平均下跌的百分率为%x ,则x 满足的方程是( )A 、 111021=-xB 、111012=-)(xC 、10921=-xD 、10912=-)(x 10、若关于x 的一元二次方程)0(02≠=++a c bx ax ,有下列命题①若0=++c b a ,则042≥-ac b ;②若一元二次方程02=++c bx ax 的两根为-1和2,则02=+c a ;③若一元二次方程02=+c ax 有两个不相等的实根,则一元二次方程)0(02≠=++a c bx ax 必有两个不相等的实根。
八年级数学下册《一元二次方程》测试卷学校:__________一、选择题1.(2分)已知2x =是 关于x 的方程23202x a -=的一个根,则22a -的值是( ) A .3 B .4 C .5 D .62.(2分)方程0232=+-x x 的实数根有( )A .4个B .3个C .2个D .1个3.(2分)关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( )A .4B .0或2C .1D .1- 4.(2分)一个容器装满40 L 纯酒精,第一次倒出若干升后,用水注满,第二次倒出第一次倒出量的一半的液体,已知两次共倒出纯酒精25L ,则第一次倒出纯酒精 ( )A .10 LB .15 LC .20 LD .25 L5.(2分)在方程20ax bx c ++=(0a ≠)中,当240b ac -=时方程的解是( )A .2b x a =±B .b x a =±C .2b x a =-D .2b x a= 6.(2分) 三角形两边的长分别是 8 和 6,第三边的长是方程212200x x -+=的一个实数根,则三角形的周长是( )A . 24B . 24 和 26C . 16D . 227.(2分) 方程220x px q ++=有两个不相等的实根,则p ,q 满足的关系式是( )A .240p q ->B .20p q -≥C .240p q -≥D .20p q ->8.(2分)将方程2345x x =-化为一般形式后,二次项系数、一次项系数、常数项分别为( )A . 3,4,-5B . 3,-4, -5C .3,-4,5D . 4 , - 3 , 59.(2分)关于x 的一元二次方程22(3)60a x x a a -++--=的一个根是 0,则a 的值为( )A .2-B .3C .-2 或 3D .-1或 6二、填空题10.(3分)请写出两根分别为-2,3的一个一元二次方程 .11.(3分)已知223x x --与7x +的值相等,则x 的值是 .12.(3分)一块正方形钢板上截去3cm 宽的长方形钢条,剩下的面积是254cm ,则原来这块钢板的面积是 2cm .13.(3分)当x =_______时,代数式x x 42+的值与代数式32+x 的值相等.14.(3分)若x=0是方程0823)2(22=-+++-m m x x m 的解,则m= .15.(3分) 在实数范围内定义一种运算“*”,其规则为22a b a b *=-,根据这个规则,方程(2)50x +*=的解为 .16.(3分)若 b(b ≠0)是方程20x cx b ++=的根,则b c +的值为 .17.(3分) 关于 x 的一元二次方程20x bx c ++=的两根为1-,3,则2x bx c ++分解因式的结果为 .18.(3分)将方程4(2)25x x +=化为一般形式为 ,一次项系数是 ,常数项为 .19.(3分)将方程2(1)(2)3x x x +-=+化为一般形式是 ,其中二次项系数是 ,一次项是 ,常数项是 .20.(3分)已知关于x 的方程1460x kx -+=的一个根是 2,则k = .三、解答题21.(6分)解下列方程:(1)3(x -2)2=12 (2))4(5)4(2+=+x x(3)4222=-x x22.(6分) 国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x 元(叫做税率x%), 则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?23.(6分)已知x =1是一元二次方程2400ax bx +-=的一个解,且a b ≠,求b a b a 2222--的值.24.(6分)一个直角三角形的三边长是连续整数,求这三条边的长.25.(6分)机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90 kg ,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36 kg .为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70 kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少?(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1 kg ,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到l2 kg .问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少?用油的重复利用率是多少?26.(6分)某商场今年二月份的营业额为400万元,三月份的营业额比二月份增加10%,五月份的营业额达到633.6万元.求三月份到五月份营业额的平均月增长率.27.(6分)有一个225L容量的酒精桶,装满纯酒精,倒出若干后,补进等量的水,又倒出等量的混合液,再补进等量的水,这时桶内纯酒精占64%,问每次倒出多少?28.(6分)已知一元二次方程240x x k-+=有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程240x x kx mx+-=有一个相-+=与210同的根,求此时 m的值.29.(6分) 用配方法说明,无论 x 取何值,代数式2-+-的值小于 0.2812x x30.(6分)要做一个高是8cm,底面的长比宽多5cm,体积是528cm3的长方体木箱,问底面的长和宽各是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.A3.C4.C5.C6.A7.D8.C9.A二、填空题10.如(2)(3)0x x +-=等11.5 或-212.8113.1或-314.-415.13x =,27x =-16.1-17.(1)(3)x x +-18.248250x x +-=,8,-2519.2210x x -+=,2,x -,120.11三、解答题21.(1)4,0,(2)-4,1,(3)62±. 22.6%.23.20 .24.3、4、5.25.(1)28 kg ;(2)75 kg ,84%26.20%27.45 L28.(1)4k <;(2)0m =或83- 29.原式=22(2)4x ---,∵22(2)0x --≤,∴22(2)40x ---< 30.11 cm ,6cm。
八年级数学单元测试卷(沪科版)
《一元二次方程》
姓名 班级 得分
一、选择题 (每题4分,计40分)
1、将方程0362=+-x x 左边配成完全平方式,得到的方程是( )
A .3)3(2-=-x
B .6)3(2=-x
C .3)3(2=-x
D .12)3(2=-x
2、下列方程中,①0432=--x x ②y y 692=+ ③0752=-y y ④x x 2222=+有两个不相等的实数根的方程个数为( )
A .1个
B .2个
C .3个
D .4个
3、方程021
1)11(2=----x x 的解为( ) A .-1,2 B .1,-2 C .0,
23 D .0,3 4、下列方程中,关于x 的一元二次方程的有 ( )
①01232=+-y x ②312=-)(x x ③432322+=-x x x ④3252=-x x
⑤02=+-c bx ax ⑥02=x A .0个 B .1个 C .2个 D .3个 5、已知c b a 、、是△ABC 三边的长,那么方程04)(2
=+++c x b a cx 的根的情况是( ) A .没有实数根 B .有两个不相等的正实数根
C .有两个不相等的负实数根
D .有两个异号实数根
6、不解方程,01322=-+x x 的两个根的符号为( )
A . 同号
B .异号
C .两根都为正
D .不能确定
7、若方程0)()()(2=-+-+-a c x c b x b a ( )
A .a=b=c
B .有一根为1
C .有一根为 -1
D .以上都不正确
8、已知方程)()(00122≠=++-k k x k kx 有两个不相等的实数根,则k 的取值范围是( )
A .k =41-
B .k >41-
C .k <41-
D .k ≠4
1-
9、某城市2003年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2005年底增加 到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )
A .300(1+x )=363
B .300(1+x )2=363
C .300(1+2x )=363
D .363(1-x )2=300
10、一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )
A. 6-
B. 1
C. 6-或1
D. 2
二、填空(每题4分,计20分)
11、方程8)2(2)1(3++=-x x x 化成一般形式是 ;
12、若方程06)4(22=+--x kx x 无实数根,则k 的最小整数值为 ;
13、若的值为则的解为方程a a ,x x a 10152+
=+- ; 14、当m 时, )3(212-=-x x mx 是关于x 的一元二次方程;
15、方程x x 22
=的根是 ;
三、解下列方程(每小题4分,共24分)
16、9)12(2=-x (直接开平方法) 17、041132=--x x (因式分解法)
18、01322
=-+x x (公式法) 19、2)12)(2(=-+x x (配方法)
20、23(2)120x --= (用适当方法) 21、23520x x -+=(用适当方法)
四、解分式方程(16分)
22、 4615=+-+x x x x 23、 31
2122=+++x x x x
五、解答题(每小题8分,计24分)
24、不解方程,求作一个新的一元二次方程,使它的两个根分别是方程272=-x x 的两根的2倍。
25、设x 1、x 2是方程03422=-+x x 的两个根,利用根与系数关系,求下列各式的值:
(1)221)(x x - (2))1)(1(1
221x x x x ++
26、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x 2-17x +66=0的根。
求此三角形的周长。
六、解应用题(16分)
27、某校办工厂生产某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前
一年增长一个相同的百分数,这样三年的总产量达到1400件,求这个百分数。
28、有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果
竹篱笆的长为35米,求鸡场的长和宽。
七、阅读下列例题:(10分)
29、例:已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.
(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.
解:(1)根据题意,得△=(2a -1)2-4a 2>0,解得41<
a . ∴当4
1<a 时,方程有两个不相等的实数根. (2)存在,如果方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=0122=--
a a , 解得21=
a ,经检验,2
1=a 是上述分式方程的解. ∴当21=a 时,方程的两个实数根x 1与x 2互为相反数. 上述解答过程是否有错误?如果有,请指出错误之处,并重新解答.。